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Á. CSÁSZÁR
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GEOMETRY OF TREFOIL CONE – MANIFOLD*

By
D. DEREVNIN, A. MEDNYKH, AND M. MULAZZANI

(Received March 8, 2011)

Abstract. In this paper we prove that Trefoil knot cone manifold T (α) with cone
angle α is spherical for π/3 < α < 5π/3. We show also that its spherical volume is
given by the formula Vol(T (α)) = (3α− π)2/12.

1. Introduction

Let T (α) be a cone manifold whose underlying space is the three-
dimensional sphere S3 and singular set is Trefoil knot T with cone angle α
(Fig. 1). Since T is a toric knot by the Thurston theorem its complement
T (0) = S3 \ T in the S3 does not admit hyperbolic structure. We think this
is the reason why the simplest nontrivial knot came out of attention of geome-
tricians. However, it is well known that Trefoil knot admits geometric structure.
H. Seifert and C. Weber (1935) [16] have shown that the spherical space of do-
decahedron (= Poincaré homology 3-sphere) is a cyclic 5-fold covering of S3

branched over T . Topological structure and fundamental groups of cyclic n-fold
coverings have described by D. Rolfsen [14] and A.J. Sieradsky [18]. In spite of
positive solution of the Orbifold Geometrization Conjecture given in [1] and [2]
the geometrical structure of T (α) for an arbitrary α is still unknown. The most
progress is achieved for the case α = 2π/n, n ∈ N. In that case T (2π/n) is a
geometric orbifold, that is can be represented in the formX3/Γ, whereX3 is one
of the eight three-dimensional homogeneous geometries andΓ is a discrete group
of isometries ofX3. By Dunbar [4] classification of non-hyperbolic orbifolds has
a spherical structure for n ≤ 5, Nil for n = 6 and P̃SL(2,R) for n ≥ 7. Quite

AMS Subject Classification (2000): 51M10, 51M25; 26B15, 57M25.
* Work performed under the auspices of the G.N.S.A.G.A. of I.N.d.A.M. (Italy) and the Univer-

sity of Bologna, funds for selected research topics, INTAS (grant 03-51-3663), Fondecyt (grants
7050189, 1060378) and by the Russian Foundation for the Basic Researches (grant 06-01-00153).
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surprising situation appears in the case of the Trefoil knot complement T (0). By
P. Norbury (see Appendix A in [12]) the manifold T (0) admits two geometrical
structures H2 × R and P̃SL(2,R).

In the present paper we prove that the Trefoil knot cone manifold T (α) is
spherical for π/3 < α < 5π/3. We show also that spherical volume of T (α) is
given by the formula Vol(T (α)) = (3α− π)2/12.

We note that the existence of spherical structure on the figure-eight knot and
others two-bridge knots was investigated in [5], [8] and [13].

A further development of the results of this paper is performed in [11]
and [6].

α

Figure 1. Trefoil cone-manifold T (α).

2. Preliminary

The standard model for 3-dimensional spherical geometry is the unit sphere
S3 of R4 defined by

S3 = {x ∈ R4 : |x| = 1}.
Let x, y be points in S3 and let θ(x, y) be the Euclidean angle between x and y.
The spherical distance between x and y is defined to be the real number

dS(x, y) = θ(x, y).

Note that 0 ≤ dS(x, y) ≤ π and cos dS(x, y) = ⟨x, y⟩, where ⟨x, y⟩ is the scalar
product of x and y. The metric space consisting of S3 together with its spherical
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metric dS is called spherical 3-space and will be denoted by the same symbol S3.
For more details, see for instance [14].

Theorem 1 ([14], p. 41). A function λ : R → S3 is a geodesic line if and only
if there are orthogonal vectors x, y in S3 such that

(1) λ(t) = (cos t)x+ (sin t)y.

If x and y are orthogonal vectors in S3 wewill denote by λ(x, y) the geodesic
line in S3 determined by (1). For any x ∈ R4, x ̸= (0, 0, 0, 0), we denote by x̃
the vector

x
|x|

∈ S3.

It is well known that the group of spherical isometries Isom(S3) is isomor-
phic to the orthogonal group O(4).

Recall also the spherical Cosine Rules [20]. If α, β, γ are the angles of a
spherical triangle and a, b, c are the lengths of the opposite sides, then

(2) cos γ =
cos c− cos a cos b

sin a sin b
,

and

(3) cos c =
cos γ + cosα cosβ

sinα sinβ
.

3. Fundamental polyhedron

LetX3 be one of the following spaces: hyperbolic spaceH3, Euclidean space
E3, or spherical space S3. Let C3 be a cone-manifold that can modeled on X3.
Suppose that the underlying space of C3 is the 3-sphere and Σ is the singular
set. Let φ : π1(C3 − Σ) → Isom(X3) be a holonomy map. If C3 is a complete
X3 orbifold, for instance compact, then Γ = φ(π1(C3 − Σ)) is a discrete sub-
group of Isom(X3) and C3 = X3/Γ. In that case one can canonically construct
a fundamental polyhedron FΓ for Γ. For instance one can use Dirichlet, Ford or
Delaunay polyhedron. Pairwise identification of faces of FΓ gives C3.

In general caseΓ is not a discrete group and has no fundamental polyhedron.
However, in many cases there exist polyhedron F such that pairwise identifica-
tion of faces of F gives C3 (see [5], [19]). We call F fundamental polyhedron.
We emphasize that images of F under the Γ action do not necessary tessellate
X3. Our aim is to construct the polyhedron F in the case when X3 = S3 and C3

is the trefoil knot cone-manifold T (α).
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In this section we discuss the existence of F (see Figure 2) and its metrical
properties. To obtain F, we introduce points S,N,P1, . . . ,P6 ∈ R4, depending
on two real parameters l, d, 0 < l < 4π, 0 < d < π

3 . These points, with a
suitable choice of the parameters will belong to the unite sphere S3 and be the
vertices of the polyhedron

F =
6∪

i=1
T(S,N,Pi,Pi−1),

where T(S,N,Pi,Pi−1) is the spherical tetrahedron with vertices S,N,Pi,Pi−1,
and subscripts are consider mod 6. The parameters d and l depend onα (the re-
lations are established in Propositions 7 and 8) and admit the following geomet-
rical sense. The spherical length of the singular set of T (α) is l = 2dS(P3,P6)
and d = dS(S,N).

α

α

1

6

5

4

3

2

N

S

P
P

P

P

P

P

Figure 2
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Define S,N,P1, . . . ,P6 ∈ R4 by

S = (1, 0, 0, 0),
N = (cos d, sin d, 0, 0),

P1 =
(
cos d cos

l
4
, sin d cos

l
4
, cos d sin

l
4
, sin d sin

l
4

)
,

P2 =
(
cos d cos

l
4
, cos d cos

l
4
tan

d
2
,− cos d sin

l
4
, cos d sin

l
4
cot

d
2

)
P3 =

(
cos

l
4
, 0,− sin

l
4
, 0
)

(4)

P4 =
(
cos d cos

l
4
, sin d cos

l
4
,− cos d sin

l
4
,− sin d sin

l
4

)
P5 =

(
cos d cos

l
4
, cos d cos

l
4
tan

d
2
, cos d sin

l
4
,− cos d sin

l
4
cot

d
2

)
,

P6 =
(
cos

l
4
, 0, sin

l
4
, 0
)
.

Proposition 2. Let 0 < d < π/3 and l, 0 < l < 4π be defined by

(5) cos
l
2
=

3 cos2 d− 1
2 cos3 d

.

Then the polyhedron F exists in S3 and has the following metrical properties:

dS(Pi,Pi+1) = dS(S,N) = d,(i) ∑6

i=1
δi = 2π,(ii)

where δi is the dihedral angle between the faces SPiPi−1 and NPiPi−1 of F, and
i = 1, 2, . . . , 6.

To prove Proposition 2 we need several lemmas.

Lemma 3. Let 0 < d < π/3 and l, 0 < l < 4π be defined by

cos
l
2
=

3 cos2 d− 1
2 cos3 d

.
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Then there exist t ∈ (0, 2π) such that

sin t =
cos d sin l

4
sin d

2
,

cos t =
cos d cos l

4
cos d

2
.

The proof is elementary. One need only check that under the conditions of
Lemma 3 the equality

(
cos d sin l

4
sin d

2

)2

+

(
cos d cos l

4
cos d

2

)2

= 1

holds.
Consider the points S∗ = (0, 0, 1, 0), N∗ = (0, 0, cos d, sin d) of S3.

Lemma 4. Let 0 < d < π/3 and l, 0 < l < 4π be defined by

cos
l
2
=

3 cos2 d− 1
2 cos3 d

.

Then S,N,P1, . . . ,P6 ∈ S3. Moreover P1,N,P4 ∈ λ(N,N∗), P3, S,P6 ∈
∈ λ(S, S∗), and P2,P5 ∈ λ(Ñ+ S, Ñ∗ − S∗), where Ñ =

N
|N|

.

Proof. [Proof of Lemma 4] We obviously have N ∈ λ(N,N∗), S ∈ λ(S, S∗).
Also we have

Ñ+ S =

(
cos

d
2
, sin

d
2
, 0, 0

)
,

Ñ∗ − S∗ =
(
0, 0,− sin

d
2
, cos

d
2

)
.
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It is easy to see that

P1 = cos
l
4
N+ sin

l
4
N∗,

P2 = cos t (Ñ+ S) + sin t (Ñ∗ − S∗),

P3 = cos
l
4
S− sin

l
4
S∗,

P4 = cos
l
4
N− sin

l
4
N∗,

P5 = cos t (Ñ+ S)− sin t (Ñ∗ − S∗),

P6 = cos
l
4
S+ sin

l
4
S∗,

where cos t and sin t are the same as in Lemma 3. Using Theorem 1 and Lemma
3 we obtain our assertion.

Lemma 5. The order two isometries L, L′ of S3 are determined by the orthogonal
matrices

cos d sin d 0 0
sin d − cos d 0 0
0 0 − cos d − sin d
0 0 − sin d cos d

 ,


cos d sin d 0 0
sin d − cos d 0 0
0 0 cos d sin d
0 0 sin d − cos d


respectively are symmetries of F. Moreover

L : S → N, L
′
: S → N,

P1 → P3, P1→ P6,
P2 → P2, P2→ P5,
P4 → P6, P3→ P4.
P5 → P5;

This lemma can be proved by direct calculations

Lemma 6. Under the conditions of Proposition 2 we have the following:

dS(Pi,Pi−1) = dS(S,N) = d,(i)
δ1 = δ4 = θ1 = θ4 = d,(ii)

δ2 = δ3 = δ5 = δ6 = θ2 = θ3 = θ5 = θ6 =
π − d
2

,(iii)
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where δi is a dihedral angle at the edge PiPi−1 of Ti = T(S,N,Pi,Pi−1), θi is a
dihedral angle at the edge SN of Ti and i = 1, 2, . . . , 6.

Proof. [Proof of Lemma 6] Consider the statement (i). Recall that for any
points x, y in S3 we have cos dS(x, y) = ⟨x, y⟩, where ⟨x, y⟩ is the scalar product
of x and y. Then the identities cos dS(Pi,Pi−1) = cos dS(S,N) = cos d, i =
1, 2, . . . , 6 follow from (4) by direct calculations.

(ii). By definition, θ1 is a dihedral angle at the edge SN of tetrahedron T1 =
T1(S,N,P1,P6). Since, by Lemma 4, P1 ∈ λ(N,N∗) and P6 ∈ λ(S, S∗) we
obtain that θ1 is also a dihedral angle at the edge SN of the spherical tetrahedron
T(S,N, S∗,N∗). Two edges SN and S∗N∗ of the tetrahedron are of the spherical
length d. All other edges have spherical length π/2. It is easy to calculate using
(2) that θ1 = d. Notice that dS(N,P1) = dS(S,P6) = l/4 and the tetrahedron
T1 = T(S,N,P1,P6) is invariant under the order two symmetry interchanging
the edges SN and P1P6. Hence δ1 = θ1 = d. All other equalities of (ii) follow
for the latter by making use of symmetries L and L′.

(iii). Consider the tetrahedron T2. We note by Lemma 5 that the product
L ◦ L′ is the order two rotation though axis λ(S,N) interchanging points P2 and
P5. Hence, the trianglesP2SN andP5SN lie in the same plane. It implies that θ2 =
(π − d)/2. The tetrahedron T2 also has the order two symmetry interchanging
the edges SN and P1P2. Hence δ2 = θ2 = (π − d)/2. As above we obtain all
other equalities of (iii) by symmetry.

Proof. [Proof of Proposition 2] The proof directly follows from Lemma 4 and
Lemma 6.

From Lemma 5 follows that the dihedral angle at the edge SP6 are equal to
the dihedral angles at the edges NP4, SP3, and NP1. We denote this angle by α.

Proposition 7. For any 0 < d < π/3 the angle α is given by the formula

(6) sin
α

2
=

1
2 cos d

.

Proof. Using (2) and (4) we have
∠SP6P1 = ∠SP6P5 = π/2.



GEOMETRY OF TREFOIL CONE – MANIFOLD 11

Hence from elementary spherical trigonometry follows that α = ∠P1P6P5.
By (2) and (i) of Lemma 6 we have

(7) cosα =
cos dS(P1,P5)− cos2 d

1− cos2 d
.

The straightforward calculation shows that

(8) cos dS(P1,P5) = cos d cos
l
2
.

From equations (7), (8) and (2) we obtain

cosα =
−2 cos4 d+ 3 cos2 d− 1
2 cos2 d (1− cos2 d)

=
2 cos2 d− 1
2 cos2 d

= 1− 1
2 cos2 d

.

Hence

sin2
α

2
=

1
4 cos2 d

and our assertion follows.
By straightforward calculations we obtain the following corollary.

Proposition 8. For any π/3 < α < 5π/3 we have

(9) l = 3α− π.

Proof. By Proposition 7, for π/3 < α < 5π/3 we obtain 0 < d < π/3. We
can use α as a main parameter of our construction. From (6) we have

cos d =
1

2 sin α
2
.

From (5) we now obtain

cos
l
2
= (3− 4 sin2

α

2
) sin

α

2
.

Since sin 3x = (3− 4 sin2 x) sin x and cos x = sin(x+ π
2 ) we get

sin
l+ π

2
= sin

3α
2
.

By assumption, π3 < α < 5π
3 and 0 < l < 4π. Hence l = 3α− π.

According to Lemma 4, N belongs to the spherical line P1P4 and S to the
spherical line P6P3. Let A and A′ be rotations of α about these lines respectively.
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By Proposition 2, Equation 3 and Lemma 5, we can conclude that A and A′

identify the faces of F in the following way:

A : NP1P2 → NP1P6, A
′
: SP6P5 → SP6P1,

NP2P3 → NP6P5, SP5P4 → SP1P2,
NP3P4 → NP5P4, SP4P3 → SP2P3.

Proposition 9. Let π/3 < α < 5π/3, then the identification of faces of F by
rotations A and A′ gives the spherical trefoil knot cone-manifold T (α).

Proof. From [10] (see also [7] and [8]) it follows that the identification of faces
of F by rotations A and A′ gives a cone-manifold with S3 as an underlying space
and the trefoil knot Σ as a singular set. The singular set Σ is formed by four
edgesNP1,NP4, SP3 and SP6. By Proposition 2, the cone-manifold has spherical
structure and cone-angle along Σ is equal to α.

4. The main theorem

Denote by V = Vol(T (α)) the spherical volume of T (α). We find V by
making use the Schläfli differential formula (see [17], [9] or [14] for details):

dV =
lα
2
dα,

where lα is the length of the singular setΣ of T (α) . We note thatΣ is formed by
four segments NP1, NP4, SP3 and SP6. By direct calculation from (4) we have

dS(N,P1) = dS(N,P4) = dS(S,P3) = dS(S,P6) =
l
4
.

Hence, lα = l and by Proposition 8 we obtain lα = 3α− π.

Theorem 10. The Trefoil cone-manifold T (α) is spherical for π/3 < α <
< 5π/3. The spherical volume is given by the formula

Vol(T (α)) =
(3α− π)2

12
.

Proof. The first part of the statement follows from Corollary 9.
By the Schläfli formula and Proposition 8 we have

Vol(T (α)) =

∫
lα
2
dα =

∫
3α− π

2
dα =

(3α− π)2

12
+ C.
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If α tends to π/3 then, by Proposition 7, d tends to 0 and by (5) the length l also
tends to 0. It means that F shrinks to a point andVol(T (α)) → 0. It implies that
the constant C = 0. Finally we obtain

Vol(T (α)) =
(3α− π)2

12
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ON SOME NEW POSITIONAL SMALL INDUCTIVE DIMENSIONS
FOR UNIFORM SPACES*

By
D. N. GEORGIOU

(Received March 23, 2011
Revised April 4, 2012)

Abstract. The paper defines new positional dimension-like functions of the type
ind for uniform spaces and presents several theorem concerning the standard properties
of dimension theory for these functions. Finally, some open questions concerning these
functions are given.

1. Preliminaries

It was observed in the book of Gillman-Jerison (see [9]) that a better dimen-
sion theory can be built out, for covering dimension, if we do not consider all
open sets, but only that base of them, that consist of the cozero sets (i.e., where a
continuous function is not 0). Then many statements, originally valid for normal
spaces, extend to all Tychonoff spaces. Later it was realized, by Charalambous,
that the same idea can be extended much further: for all uniform spaces one
can define covering dimension by (uniform) cozero sets (i.e., where a uniformly
continuous function is not 0). Of course, this theory of dimension depends only
on the system of cozero sets, not on the actual uniformity. Nevertheless, the usual
setting is that of uniform spaces, these theorems are considered to belong to the
theory of uniform spaces.

The paper intends to contribute to this theory. Its setting is a pair of uni-
form spaces, one a subspace of the other one, for which there are defined two
basic types of small inductive dimension-like functions, and several theorems
are proved for them. The paper follows rather closely the presentation of the
paper [8] who investigated the corresponding theorems for topological spaces.

AMS Subject Classification (2000): 54B99, 54C25
* Work supported by the Carathéodory Programme of the University of Patras.
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However, for topological spaces [8] contains several examples for distinctness of
the defined dimension like functions, which, however, are not Tychonoff spaces,
therefore these examples do not exist for the case of uniform spaces.

The set of real numbers with the natural metric is denoted by R and the
uniformity induced on R by this metric is denoted by UR. Also, by a base of a
topological space we mean an open base.

Let (X,U) be a uniform space (see [11]). The uniformity U induces a topol-
ogy τU on X. More exactly we have τU = {U ⊆ X : for every x ∈ U there
exists V ∈ U such that {y ∈ X : (x, y) ∈ V} ⊆ U}. Also, a map f : X → R
is called uniformly continuous if it is uniformly continuous with respect to the
uniformities U and UR, where UR is the usual metric uniformity of R, that is for
every UR ∈ UR, there exists U ∈ U such that for every (x, x′) ∈ U we have
(f(x), f(x′)) ∈ UR.

Let (X,U) be a uniform space and A a subset of X. The subset A is called
U-cozero set if there exists a bounded uniformly continuous map f : X → R and
an open set V of R such that A = f−1(V). The complement of a U -cozero set is
called U-zero.

Let (X,U) be a uniform space andM ⊆ X. The pair (M,UM), where

UM = {(M×M) ∩ V : V ∈ U},

is a uniform space which is called a subspace of the uniform space (X,U). We
note that a subset B ofM is UM-cozero (respectively, UM-zero) if and only if for
some U-cozero (respectively, U-zero) set A of X, we have B = A ∩ M (see [2]
and [11]).

We recall some properties of U-cozero and U-zero sets (see [1], [2], [3],
and [4]).

1. If CozU is the collection of all U-cozero sets, then this set is a base for
the topology τU .

2. If U is induced by ametric, then the setCozU coincideswith the topology
of the topological space X, that is CozU = τU .

3. If (X, τU ) is Lindelöf, then CozU is the collection of all cozero sets of X.
4. The union of a countable collection of U-cozero sets is a U-cozero set

and the intersection of a finite collection of U-cozero sets is a U-cozero set.
5. For any two U-cozero sets U1, U2 with U1 ∪ U2 = X, there are disjoint

U-cozero sets H1, H2 such that U1 ∪ H1 = U2 ∪ H2 = X.
6. A U-cozero set is a union of a countable collection of U-zero sets.
7. If F1, F2 are disjoint U-zero sets, then there are disjoint U-cozero setsU1,

U2 such that F1 ⊆ U1 and F2 ⊆ U2.
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8. If F ⊆ Uwith F being a U-zero set andU being a U-cozero set, then there
are a U-cozero set H and a U -zero set H̃ such that F ⊆ H ⊆ H̃ ⊆ U.

9. If F1,F2 are disjoint U-zero sets, then there are U-cozero sets H1, H2 and
disjoint U-zero sets H̄1, H̄2 such that F1 ⊆ H1 ⊆ H̃1 and F2 ⊆ H2 ⊆ H̃2.

Also, if F is a U-zero set and G a U-cozero set of X, then the following are
true (see [2] and [3]):

(i) F \ G is a U-zero set while G \ F is a U -cozero set of X.
(ii) If E is a UF-zero set of F, then E is a U-zero set of X.
(iii) If H is a UG-cozero set of G, then H is a U-cozero set of X.
(iv) If H1, H2 are disjoint UM-cozero sets of a subset M of X, then there are

disjoint U-cozero sets G1, G2 of X such that H1 ⊆ G1 and H2 ⊆ G2.
(v) If x ∈ G, where G is a U-cozero set, then there are a U-cozero set H and

a U-zero set F with x ∈ H ⊆ F ⊆ G.

In this paper by ω we denote the set {0, 1, 2, . . . } and consider the symbols −1
and ∞ considering that: (1) −1 < n, for every n ∈ (ω ∪ {∞}), (2) n < ∞, for
every n ∈ (ω∪{−1}), (3)−1+n = n+(−1) = n, for every n ∈ (ω∪{−1,∞}),
and (4)∞+ n = n+∞ = ∞, for every n ∈ (ω ∪ {−1,∞}).

In [13], [14], [5], [6], [10], and [8] the so called relative and positional
dimension-like functions are studied. In this paper we define new positional
dimension-like functions for uniform spaces. Our presentation will follow the
presentation in the paper [8] rather closely. In particular, in section 2 of this paper
we define some new positional dimension-like functions and give some relations
among them. In section 3 we consider subspace theorems and in section 4 sum
theorems. In section 5 we give some results connected with the dimension-like
functions of spaces. Finally, we give some open questions for these functions.

2. Some new positional small inductive dimension-like functions
of the type U-ind

In this section we define and study new positional small inductive
dimension-like functions of the type U- ind of uniform spaces.

Definition 2.1. Let (X,U) be a uniform space,Q ⊆ X. andB a subset ofCozU
(containing the empty set and X). The family B is said to be a U-p-base for Q in
X if the set {Q∩U : U ∈ B} is a base for the subspace Q of (X, τU ). The family
B is said to be a U-pos-base for Q in X if for every x ∈ Q and a U-cozero set U
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with x ∈ U there exists an element V of B such that x ∈ V ⊆ U. The family B is
said to be a U-ps-base for Q in X if B is a base for the space (X, τU ).

Clearly, we have the implications:

U-ps-base =⇒ U -pos-base =⇒ U -p-base.

Since CozU is a base for the topology τU of X, the requirement that U is a U-
cozero set in the definition of U-pos-base can be replaced by the condition that
U ∈ τU . That is, this property is equivalent to the fact that B is an outer base for
Q in the topological space (X, τU ).

Definition 2.2. (See [2], [3], and [1]) We denote by U-ind the dimension-like
function whose domain is the class of all uniform spaces X and whose range is
the setω∪{−1,∞}, whereω is the first infinite cardinal, satisfying the following
conditions:

(i) U- indX = −1 if and only if X = ∅.
(ii) U- indX ≤ n, where n ∈ ω if whenever x ∈ U with U a U-cozero

set there are a U-cozero set V and a U-zero set Ṽ with x ∈ V ⊆ Ṽ ⊆ U and
U- ind(Ṽ− V) ≤ n− 1.

For a subspace Y of X, by U- indY we mean UY- indY.
(iii) U- indX = ∞ if for each n ∈ ω ∪ {−1}, U- indX ̸≤ n.
(iv) U- indX = n if U- indX ≤ n and U- indX ̸≤ n− 1.

Definition 2.3.We denote by U-p0- ind the dimension-like function whose
domain is the class of all pairs (Q,X), where Q is a subset of a uniform space X,
and whose range is the set ω ∪ {−1,∞} satisfying the following conditions:

(i) U-p0- ind(Q,X) = −1 if and only if X = ∅.
(ii) U-p0- ind(Q,X) ≤ n, where n ∈ ω if either Q = ∅ or there exists a

U-p-base Bn (depending on n) for Q in X such that for every x ∈ Q∩U with U a
U-cozero set of X there are a V ∈ Bn and aU-zero set Ṽ of Xwith x ∈ V ⊆ Ṽ ⊆ U
and

U-p0- ind(Q ∩ (Ṽ− V), Ṽ− V) ≤ n− 1.
For a subspace Y ofX, byU-p0- ind(Q∩Y,Y)wemeanUY-p0- ind(Q∩Y,Y).
(iii) U-p0- ind(Q,X) = ∞ if for each n ∈ (ω ∪ {−1}),

U-p0- ind(Q,X) ̸≤ n.

(iv) U-p0- ind(Q,X) = n if

U-p0- ind(Q,X) ≤ n

and
U -p0- ind(Q,X) ̸≤ n− 1.
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Definition 2.4.We denote by U-p1- ind the dimension-like function whose
domain is the class of all pairs (Q,X), where Q is a subset of a uniform space X,
and whose range is the set ω ∪ {−1,∞} satisfying the following conditions:

(i) U-p1- ind(Q,X) = −1 if and only if Q = ∅.
(ii) U-p1- ind(Q,X) ≤ n, where n ∈ ω, if there exists a U-p-base Bn (de-

pending on n) forQ in X such that whenever x ∈ Q and x ∈ UwithU a U-cozero
set of X there are a V ∈ Bn and a U-zero set Ṽ of X with x ∈ V ⊆ Ṽ ⊆ U and

U-p1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

(iii) U-p1- ind(Q,X) = ∞ if for each n ∈ ω ∪ {−1},

U-p1- ind(Q,X) ̸≤ n.

(iv) U-p1- ind(Q,X) = n if

U-p1- ind(Q,X) ≤ n

and
U-p1- ind(Q,X) ̸≤ n− 1.

Definition 2.5. Let i ∈ {0, 1}. If in Definitions 2.3 and 2.4 instead of the
U-p-base B we consider a U-pos-base (respectively, a U-ps-base), then the
dimension-like function U-pi- ind will be denoted by U-posi- ind (respectively,
by U-psi- ind).

Remarks. (1) It is clear that all these dimension-like functions (in Definitions
2.2, 2.3, 2.4, and 2.5) depend only on the cozero-structure U .

(2) The requirement thatU is aU-cozero set in the Definitions 2.2(ii), 2.3(ii),
and 2.4(ii) can be replaced by the condition that U ∈ τU .

Proposition 2.1. Let (X,U) be a uniform space. Then, for every subset Q of X
we have

U- indQ ≤ U-pi- ind(Q,X), i ∈ {0, 1}.

Proof. We prove that

U- indQ ≤ U -p1- ind(Q,X). (1)

The proof of the other inequality is similar. Let

U-p1- ind(Q,X) = n ∈ (ω ∪ {−1,∞}).

The relation (1) is clear if n = −1 or n = ∞. Suppose that n ∈ ω and that (1) is
true for every pair (QY,Y) with U-p1- ind(QY,Y) < n. Since U-p1- ind(Q,X) =
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n, there exists a U-p-base Bn for Q in X such that for every x ∈ Q and x ∈ U
with U a U-cozero set there are a V ∈ Bn and a U-zero set Ṽ of X with

x ∈ V ⊆ Ṽ ⊆ U

and
U-p1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

To prove that U- indQ ≤ n it suffices to show that for every x ∈ Q and x ∈ UQ

withUQ a U-cozero subset ofQ there are a UQ-zero set VQ ofQ and a UQ-cozero
set ṼQ of Q with x ∈ VQ ⊆ ṼQ ⊆ UQ and

U- ind(ṼQ − VQ) ≤ n− 1.

Let x ∈ Q and x ∈ UQ with UQ a U -cozero set of Q. Then, there is a U-
cozero set U of X such that UQ = U ∩ Q. Clearly, x ∈ U. Thus, there exist a
V ∈ Bn and a U-zero set Ṽ of X with x ∈ V ⊆ Ṽ ⊆ U and

U-p1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

We consider the subsets

VQ = V ∩ Q

and
ṼQ = Ṽ ∩ Q

of Q. Clearly, the above sets VQ and V̄Q are UQ-cozero and UQ-zero sets of X,
respectively,

x ∈ VQ ⊆ ṼQ ⊆ UQ,

and
ṼQ − VQ = (Ṽ− V) ∩ Q.

By induction, we have

U- ind(ṼQ − VQ) = U- ind((Ṽ− V) ∩ Q)

≤ U -p1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

Thus, U- ind(Q) ≤ n.

Proposition 2.2. Let (X,U) be a uniform space. Then, for every subset Q of X
we have

U-pi- ind(Q,X) ≤ U-posi- ind(Q,X) ≤ U-psi- ind(Q,X), i ∈ {0, 1}.
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Proof. We prove by induction only the inequality

U -p1- ind(Q,X) ≤ U -pos1- ind(Q,X), (2)

where U-pos1- ind(Q,X) = n ∈ (ω ∪ {−1,∞}). The proofs of all other cases
are similar. The relation (2) is clear if n = −1 or n = ∞. Let n ∈ ω. Then, there
exists a U-pos-base Bn for Q in X such that for every x ∈ Q and x ∈ U with U a
U-cozero set of X there are a V ∈ Bn and a U-zero set Ṽ with x ∈ V ⊆ Ṽ ⊆ U
and

U-pos1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.
By induction, we have

U-p1- ind(Q ∩ (Ṽ− V),X) ≤ U-pos1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

Since Bn is also a U-p-base for Q in X, we have

U-p1- ind(Q,X) ≤ n.

Proposition 2.3. Let (X,U) be a uniform space. Then, for every subset Q of X
we have

U-ps0- ind(Q,X) ≤ U- indX.

Proof. We prove the inequality by induction. The relation is clear if n = −1 or
n = ∞. Let U - indX = n ∈ ω. We prove that U-ps0- ind(Q,X) ≤ n. If Q = ∅,
then the proof is clear. Suppose that Q ̸= ∅. We set Bn = CozU . Then, Bn is a
U-ps-base. Let x ∈ Q and x ∈ U with U a U-cozero set of X. Then, there are a
U-cozero set V of X and a U-zero set V̄ of X such that x ∈ V ⊆ Ṽ ⊆ U and

U- ind(Ṽ− V) ≤ n− 1.

Also, by induction, we have

U-ps0- ind(Q ∩ (V̄− V), V̄− V) ≤ U - ind(V̄− V) ≤ n− 1.

Thus,

U-ps0- ind(Q,X) ≤ n.

Examples. (1) Let Rn be the n-dimensional Euclidean space and d the usual
metric on Rn. Then, the sets of the form

V(A, ε) = {(x, y) : d(x, y) = 0, or x ̸∈ A, y ̸∈ A and d(x, y) < ε},
where A is a finite subset of Rn and ε is a positive real number, form a base for
a uniformity E on Rn. It is known that E- indRn = 0 (see [3]).
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Let Q be a non empty subset of Rn. Then, by Proposition 6 of [3], we have
E- indQ ≤ E- indRn = 0 and, therefore, since Q ̸= ∅, E- indQ = 0. Thus, by
Propositions 2.2 and 2.3, we have

E- indQ = E-p0- ind(Q,Rn)
= E-pos0- ind(Q,Rn)
= E-ps0- ind(Q,Rn)
= E- indRn = 0.

(2) Let U be the uniformity on the 2-dimensional Euclidean space R2 gen-
erated by sets of the form

V(A, ε) = {(x, y) : x = y, or x ̸∈ A, y ̸∈ A and d(x, y) < ε},

where d is the usual metric on R2, A is a finite subset of R2 − {a}, a a
fixed point of R2, and ε a positive real number. Then, U- ind(R2) = 1 and
U- ind(R2 − {a}) = 0 (see [3]).

LetQ be a non empty subset of R2−{a}. Then, by Propositions 2.2 and 2.3
and Proposition 6 of [3], we have

U-p0- indQ = U-p0- ind(Q,R2 − {a})
= U-pos0- ind(Q,R2 − {a})
= U-ps0- ind(Q,R2 − {a})
= U- ind(R2 − {a})
= 0 < U- indR2 = 1.

(3) Let U be the uniformity of the Example (2). Then, we have
U-ind{a} = 0 (see [3]). Also, by Definition 2.4, we have

U- ind{a} = 0 = U-p1- ind({a},R2)
= U-pos1- ind({a},R2)
= U-ps1- ind({a},R2)
< U- indR2 = 1.

Proposition 2.4. Let (X,U) be a uniform space. Then, we have

U-ps0- ind(X,X) = U- ind(X).

Proof. The inequality

U - ind(X) ≤ U-ps0- ind(X,X)
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is clear. Also, by Proposition 2.3, we have

U-ps0- ind(X,X) ≤ U- ind(X).

Thus,

U-ps0- ind(X,X) = U- ind(X).

Propositions 2.1, 2.2, 2.3, and 2.4 imply the following proposition.

Proposition 2.5. For every uniform space X we have

U-p0- ind(X,X) = U -pos0- ind(X,X) = U -ps0- ind(X,X) = U- ind(X).

Remark. The relations between the considered positional dimension-like func-
tions of the type U-ind are summarized in the following diagram, where “→”
means “≤”.

U- ind(X)

U-ps0- ind(Q,X)

OO

U-ps1- ind(Q,X)

U-pos0- ind(Q,X)

OO

U-pos1- ind(Q,X)

OO

U-p0- ind(Q,X)

OO

U-p1- ind(Q,X)

OO

U- ind(Q)

hhQQQQQQQQQQQQ

66mmmmmmmmmmmm

Questions.

1. Let i ∈ {0, 1}. Find a uniform space (X,U) and a subset Q of X such that
all the dimension-like functions U- ind(Q), U-pi- ind(Q,X), U-posi- ind(Q,X),
and U-psi- ind(Q,X) to be different.

2. In [1] M. Charalambous gave an example of a uniform space (Qn,MQn) such
that

MQn- ind(Qn) = n.
Find subsetsK ofQn such that the defined dimensions of this paper to be between
of 0 and n?
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3. In [1] M. Charalambous gave an example of a uniform space (S,MS) such
that

MS- ind(S) = 2.
Find subsets K of S such that the defined dimensions of this paper to be 1?

3. Subspace theorems

Proposition 3.1. Let i ∈ {0, 1} and Q,K be two subsets of a uniform space
(X,U) with K ⊆ Q. Then,

(a) U-pi- ind(K,X) ≤ U-pi- ind(Q,X),
(b) U-posi- ind(K,X) ≤ U-posi- ind(Q,X), and
(c) U-psi- ind(K,X) ≤ U-psi- ind(Q,X).

Proof. We prove the inequality

U -p1- ind(K,X) ≤ U-p1- ind(Q,X). (3)

The proofs of all other inequalities are similar.
Let U-p1- ind(Q,X) = n ∈ (ω ∪ {−1,∞}). The relation (3) is clear if

n = −1 or n = ∞. Let n ∈ ω and suppose that (3) is true for any K ⊆ Q ⊆ X
with U-p1- ind(Q,X) < n. There exists a U-p-base Bn for Q in X such that for
every x ∈ Q and x ∈ U with U a U-cozero set of X there exist a V ∈ Bn and a
U-zero set Ṽ of X with x ∈ V ⊆ Ṽ ⊆ U and

U-p1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

For the U-p-base Bn of X we have: if x ∈ K ⊆ Q and x ∈ U with U a U-cozero
set of X, then there exist a V ∈ Bn and a U-zero set Ṽ of X with

U-p0- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

By assumption, we have

U-p0- ind(K ∩ (Ṽ− V),X)

≤ U-p0- ind(Q ∩ (Ṽ− V),X)
≤ n− 1.

Also, the set Bn is a U-p-base for K in X. Thus,

U-p1- ind(K,X) ≤ n.
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Proposition 3.2. Let i ∈ {0, 1}, Y be a subspace of a uniform space (X,U), and
Q ⊆ Y. Then,

(a) U -pi- ind(Q,Y) ≤ U -pi- ind(Q,X),
(b) U-posi- ind(Q,Y) ≤ U -posi- ind(Q,X), and
(c) U -psi- ind(Q,Y) ≤ U -psi- ind(Q,X).

Proof. We prove the inequality

U-ps1- ind(Q,Y) ≤ U -ps1- ind(Q,X). (4)

The proofs of all other inequalities are similar. Let

U-ps1- ind(Q,X) = n ∈ ω(∪{−1,∞}).

The relation (4) is clear if n = −1 or n = ∞. Let n ∈ ω and suppose that (4) is
true for any Q ⊆ Y ⊆ X with U-ps1- ind(Q,X) < n. There exists a U-ps-base
Bn for Q in X such that for every x ∈ Q and x ∈ U with U U-cozero set of X
there exists a V ∈ Bn and a U-zero set set Ṽ of X such that x ∈ V ⊆ Ṽ ⊆ U and

U-ps1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

We must prove that
U-ps1- ind(Q,Y) ≤ n.

We consider the set BY = {U ∩ Y : U ∈ Bn}. This set is a UY-p-base of Y. Let
x ∈ Q and UY be a U-cozero set of Y with x ∈ UY. Then, there exists a U-cozero
set U of X with UY = U ∩ Y. Clearly, x ∈ U. Thus, there exist a V ∈ Bn and a
U-zero set Ṽ of X with x ∈ V ⊆ Ṽ ⊆ U and

U-ps1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

We consider the sets VY = V ∩ Y and ṼY = Ṽ ∩ Y. Then, VY ∈ BY and ṼY is a
UY-closed set of Y. Also, we have ṼY − VY = Y ∩ (Ṽ− V). Thus,

U-ps1- ind(Q ∩ (ṼY − VY),Y) = U-ps1- ind(Q ∩ Y ∩ (Ṽ− V),Y)

≤ U -ps1- ind(Q ∩ (Ṽ− V),X) ≤ n− 1.

Therefore, since the set BY is a U-ps-base for Q in Y, we have
U -ps1- ind(Q,Y) ≤ n.

Proposition 3.3. Let U , V be two uniformities on a set X such that induce the
same topology on X and CozU ⊆ CozV . If i ∈ {0, 1} and Q is a subset of X,
then,

(a) V-pi- ind(Q,X) ≤ U-pi- ind(Q,X),
(b) V-posi- ind(Q,X) ≤ U -posi- ind(Q,X), and
(c) V-psi- ind(Q,X) ≤ U -psi- ind(Q,X).
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Proof. We prove the inequality

V-p0- ind(Q,X) ≤ U-p0- ind(Q,X). (5)

The proofs of all other inequalities are similar. Let

U-p0- ind(Q,X) = n ∈ (ω ∪ {−1,∞}).

The relation (5) is clear if n = −1 or n = ∞. Let n ∈ ω and suppose that (5) is
true for any Q ⊆ X with U-p0- ind(Q,X) < n. There exists a U-p-base Bn for Q
in X such that for every x ∈ Q and x ∈ U with U a U-cozero set of X there exist
a V ∈ Bn and a U-zero set Ṽ of X with x ∈ V ⊆ Ṽ ⊆ U and

U-p0- ind(Q ∩ (Ṽ− V), Ṽ− V) ≤ n− 1.

Since CozU ⊆ CozV , we have that Bn is a V-p-base for Q in X. Let x ∈ Q
and U be a U-cozero set of X. Then, there exist a V ∈ Bn and a U-zero set Ṽ of
x with x ∈ V ⊆ Ṽ ⊆ U and

U-p0- ind(Q ∩ (Ṽ− V), Ṽ− V) ≤ n− 1.

Since Ṽ is a U-zero set, the set X−Ṽ is a U-cozero set. Thus, this set is a V-cozero
set and, therefore, Ṽ is a V-zero set. Moreover, by assumption, we have

V-p0- ind(Q ∩ (Ṽ− V), Ṽ− V)

≤ U -p0- ind(Q ∩ (Ṽ− V), Ṽ− V)
≤ n− 1.

Thus,

V-p0- ind(Q,X) ≤ n.

4. Sum theorems

Proposition 4.1. Let (X,U) be a uniform space. Then for every two subsets Q1
and Q2 of X we have:

U-pos0- ind(Q1 ∪ Q2,X) ≤ U-pos0- ind(Q1,X) + U -pos0- ind(Q2,X). (6)

Proof. We prove the relation (6) by induction on n, where

n = U-pos0- ind(Q1,X) + U-pos0- ind(Q2,X).
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If n = −1, then

U-pos0- ind(Q1,X) = U-pos0- ind(Q2,X) = −1

which means that Q1 ∪ Q2 = X = ∅ and, therefore, (6) is true. Also, if Q1 = ∅
or Q2 = ∅, then the relation (6) is true.

Suppose that for any uniform space X and its subsets Q1,Q2 the relation (6)
is true if

U-pos0- ind(Q1,X) + U-pos0- ind(Q2,X) < n,
where n ∈ ω. We shall prove (6) for the case

U-pos0- ind(Q1,X) + U-pos0- ind(Q2,X) = n.

Let
U-pos0- ind(Q1,X) = n1 and U-pos0- ind(Q2,X) = n2,

where n1, n2 ∈ (ω ∪ {−1}). If one of the elements n1, n2 is equal to −1, then
the other is also equal to −1 and, therefore, n = −1 is not a natural number.

Hence, we can suppose that n1, n2 ∈ ω and Q1,Q2 ̸= ∅.
There exists a U-pos-base B1 for Q1 in X such that for every x ∈ Q1 and

x ∈ U with U a U-cozero set of X there exist a V1 ∈ B1 and a U-zero set Ṽ1 of X
with x ∈ V1 ⊆ Ṽ1 ⊆ U and

U -pos0- ind(Q1 ∩ (Ṽ1 − V1), Ṽ1 − V1) ≤ n1 − 1.

Also, there exists a U-pos-base B2 for Q2 in X such that for every x ∈ Q2
and x ∈ U with U a U-cozero set of X there exist a V2 ∈ B2 and a U-zero set V̄2
of X with x ∈ V2 ⊆ Ṽ2 ⊆ U and

U -pos0- ind(Q2 ∩ (Ṽ2 − V2), Ṽ2 − V2) ≤ n2 − 1.

The set B = B1 ∪ B2 is a U-pos-base for Q1 ∪ Q2 in X. Let x ∈ Q1 ∪ Q2
and x ∈ U with U a U-cozero set of X. Without loss of generality we suppose
that x ∈ Q1. Then, there exist a V1 ∈ B1 and a U-zero set Ṽ1 of X with x ∈ V1 ⊆
⊆ Ṽ1 ⊆ U and

U -pos0- ind(Q1 ∩ (Ṽ1 − V1), Ṽ1 − V1) ≤ n1 − 1.

Also, by Propositions 3.2 and 3.1, we have

U-pos0- ind(Q2 ∩ (Ṽ1 − V1), Ṽ1 − V1)

≤ U-pos0- ind(Q2 ∩ (Ṽ1 − V1),X)
≤ U-pos0- ind(Q2,X) ≤ n2
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and, therefore, by inductive assumption,

U-pos0- ind((Q1 ∪ Q2) ∩ (Ṽ1 − V1), Ṽ1 − V1) =

U-pos0- ind((Q1 ∩ (Ṽ1 − V1)) ∪ (Q2 ∩ (Ṽ1 − V1)), Ṽ1 − V1) ≤

U-pos0- ind(Q1 ∩ (Ṽ1 − V1), Ṽ1 − V1)+

U-pos0- ind(Q2 ∩ (Ṽ1 − V1), Ṽ1 − V1) ≤ n1 + n2 − 1 = n− 1.
Thus,

U-pos0- ind(Q1 ∪ Q2,X) ≤ n.

Proposition 4.2. Let (X,U) be a uniform space. Then for every two subsets Q1
and Q2 of X we have:

U-pos1- ind(Q1 ∪ Q2,X) ≤
U-pos1- ind(Q1,X) + U-pos1- ind(Q2,X) + 1 (7)

and
U-ps1- ind(Q1 ∪ Q2,X) ≤
U-ps1- ind(Q1,X) + U-ps1- ind(Q2,X) + 1. (8)

Proof. We prove relation (8) by induction on n, where
n = U-ps1- ind(Q1,X) + U-ps1- ind(Q2,X).

If n = −1, then U-ps1- ind(Q1,X) = U -ps1- ind(Q2,X) = −1 which means
that Q1 ∪ Q2 = ∅ and, therefore, (8) is true.

Suppose that for any uniform space X and its subsets Q1,Q2 the relation (8)
is true if

U-ps1- ind(Q1,X) + U-ps1- ind(Q2,X) < n,
where n is a natural number. We shall prove (8) for the case

U-ps1- ind(Q1,X) + U-ps1- ind(Q2,X) = n.
Let

U-ps1- ind(Q1,X) = n1 and U-ps1- ind(Q2,X) = n2,
where n1, n2 ∈ (ω ∪ {−1}). If n1 = −1 or n2 = −1, then Q1 = ∅ or Q2 = ∅,
respectively and the relation (8) is true.

There exists a U-ps-base B1 for Q1 in X such that for every x ∈ Q1 and
x ∈ U with U a U-cozero set of X there exist a V1 ∈ B1 and a U-zero set Ṽ of X
such that x ∈ V1 ⊆ Ṽ1 ⊆ U and

U-ps1- ind(Q1 ∩ (Ṽ1 − V1),X) ≤ n1 − 1.



ON SOME NEW POSITIONAL SMALL INDUCTIVE DIMENSIONS FOR UNIFORM SPACES 29

Also, there exists a U -ps-base B2 forQ2 in X such that for every x ∈ Q2 and
x ∈ U with U a U-cozero set of X there exist a V2 ∈ B2 and a U-zero set Ṽ of X
such that x ∈ V2 ⊆ Ṽ2 ⊆ U and

U-ps1- ind(Q2 ∩ (Ṽ2 − V2),X) ≤ n2 − 1.
The set B = B1 ∪ B2 is a U-ps-base for Q1 ∪Q2 in X. Let x ∈ Q1 ∪Q2 and

x ∈ U with U a U-cozero set of X. Without loss of generality we suppose that
x ∈ Q1. Then, there exist a V1 ∈ B1 and a U -zero set Ṽ1 of X with x ∈ V1 ⊆
⊆ Ṽ1 ⊆ U and

U-ps1- ind(Q1 ∩ (Ṽ1 − V1),X) ≤ n1 − 1
and, by Proposition 3.1,

U-ps1- ind(Q2 ∩ (Ṽ1 − V1),X) ≤ U-ps1- ind(Q2,X) = n2.
By inductive assumption we have

U-ps1- ind((Q1 ∪ Q2) ∩ (Ṽ1 − V),X) =

U-ps1- ind((Q1 ∩ (Ṽ1 − V1)) ∪ (Q2 ∩ (Ṽ1 − V1)),X) ≤

U-ps1- ind(Q1 ∩ (Ṽ1 − V1),X)+

U-ps1- ind(Q2 ∩ (Ṽ1 − V1),X) + 1 ≤ n1 − 1+ n2 + 1 = n.

Thus, U-ps1- ind(Q1 ∪ Q2,X) ≤ n+ 1.
The proof of the relation (7) is similar.

Question. Is the sum theorems (Propositions 4.1 and 4.2) true for the positional
dimension-like functions of the type U-ind that are not mentioned in Proposi-
tions 4.1 and 4.2?

5. Some other results

Definition 5.1. Let (X,U) and (Y,V) be two uniform spaces and f : X → Y.
The map f is called (U ,V)-cozero map if f−1(U) ∈ CozU for every U ∈

∈ CozV . It is clear that every (U ,V)-cozero map from a uniform space (X,U)
to a uniform space (Y,V) is a continuous map from the topological space (X, τU )
to the topological space (Y, τV).

The map f : X → Y is called (U ,V)-cozero-set preserving map if f(U) ∈
∈ CozV , for every U ∈ CozU .

Also, the map f is called (U ,V)-isomorphism if the map f is 1-1, onto,
(U ,V)-cozero map, and (U ,V)-cozero-set preserving map.
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Proposition 5.1. Let (X,U) and (Y,V) be two uniform spaces and Q ⊆ X. If
the map f : X → Y is a (U ,V)-isoomorphism, then

U-p1- ind(Q,X) ≤ V-p1- ind(f(Q),Y). (9)

Proof. We prove the relation (9) by induction on the element

V-p1- ind(f(Q),Y) ∈ (ω ∪ {−1,∞}).
This relation is true if

V-p1- ind(f(Q),Y) = −1
or

V-p1- ind(f(Q),Y) = ∞.

Suppose that the relation (9) is true if V-p1- ind(f(Q),Y) < n ∈ ω and prove it
in the case where V-p1- ind(f(Q),Y) = n.

There exists a V-p-base Bn for f(Q) in Y such that for every y ∈ f(Q) and
y ∈ U with U a U-cozero set of Y there exist a V ∈ B and a V-zero set Ṽ of Y
with y ∈ V ⊆ Ṽ ⊆ U and

V-p1- ind(f(Q) ∩ (Ṽ− V),Y) ≤ n− 1.

We consider the set
{f−1(W) : W ∈ Bn}.

We observe that this set is a U-p-base for Q in X. Now, let x ∈ Q and x ∈ W with
W a U-cozero set of X. Then, y = f(x) ∈ f(Q) and since f is (U ,V)-cozero-set
preserving map, the set f(W) is a V-cozero set of Y. Also, y ∈ f(W). Thus, there
exist a V ∈ Bn and a V-zero set Ṽ of Y with y ∈ V ⊆ Ṽ ⊆ f(W) and

V-p1- ind(f(Q) ∩ (Ṽ− V),Y) ≤ n− 1.

Since the map f is a (U ,V)-cozero map, the set f−1(Ṽ) is a U-zero set of X and
the set f−1(V) is a U-cozero set of X. Also, we have x ∈ f−1(V) ⊆ f−1(Ṽ) ⊆
⊆ f−1(f(W)) = W and

U-p1- ind(Q ∩ (f−1(Ṽ)− f−1(V)),X) < n.

Indeed, we have f(f−1(Ṽ) − f−1(V)) ⊆ Ṽ − V. By inductive assumption and
Proposition 3.1, we have

U-p1- ind(Q ∩ (f−1(Ṽ)− f−1(V)),X)

≤ V-p1- ind(f(Q ∩ (f−1(Ṽ)− f−1(V)),Y) ≤

V-p1- ind(f(Q) ∩ f(f−1(Ṽ)− f−1(V)),Y) ≤

V-p1- ind(f(Q) ∩ (Ṽ− V),Y) < n.
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Thus,
U-p1- ind(Q ∩ (f−1(Ṽ)− f−1(V)),X) < n

and, therefore, U-p1- ind(Q,X) ≤ n.

Similarly, we have the following proposition.

Proposition 5.2. Let (X,U) and (Y,V) be two uniform spaces, f : X → Y a
(U ,V)-isomorphism, and Q ⊆ X. If the restriction f|Q of the map f to Q is a
(UQ,Vf(Q))-isomorphism, then

U-pos1- ind(Q,X) ≤ U-pos1- ind(f(Q),Y).

Acknowledgements. I am grateful to the referee for a number of helpful sug-
gestions for improvement in the article.
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Abstract. Neighbourhood structures are particular cases of generalized neigh-
bourhood systems. LetX ̸= ∅ be a set andN(X) be the set of all neighbourhood structures
on X, partially ordered as follows: ψ ≤ φ for ψ,φ ∈ N(X) iff ψ(x) ≤ φ(x) for each
x ∈ X. Then N(X) is a complete sublattice of the GN(X) which denotes the set of all
strongly generalized neighbourhood systems on X partially ordered as above. We in-
vestigate some properties of GN(X). In addition we discuss the product of generalized
neighbourhood systems and present some new results concerning gn-continuity related
to this product.

1. Introduction

In 1914, Hausdorff [6] defined toplogical spaces in terms of a system of
neighbourhoods at each point. Csaszar [1] continued to study this approach un-
der the name of neighbourhood spaces, with various conditions on the systems of
neighbourhoods at each point. Recently, the properties of neighbourhood spaces
have investigated by using neighbourhood p-stacks instead of neighbourhood
filters in [7,9] and Richmond and Slapal [11] continued to study these concepts
by using neighbourhood rasters which is a subclass of neighbourhood p-stacks.
The concept of generalized neighbourhood systems which is a strict generaliza-
tion of neighbourhood structures recalled below was given by Csaszar [2]. Let
X ̸= ∅ then a map ψ : X → exp(expX) satisfying x ∈ V for V ∈ ψ(x), x ∈ X
is called a generalized neighbourhood system (briefly GNS) on X. In this paper,
GN(X) denotes the set of all strongly generalized neighbourhood structures on
X partially ordered as follows: ψ ≤ φ for ψ,φ ∈ GN(X) iff ψ(x) ⊆ φ(x) for
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each x ∈ X. We investigate the properties of GN(X) and show that N(X) is a
complete sublattice of GN(X). In addition we describe the product of GNSs’
and give some new results concerning gn-continuity related to this product.

2. Preliminaries

Suppose H is be a collection of subsets of a nonempty set X. Consider the
following conditions onH.

(a) A ∈ H, A ⊆ B implies B ∈ H. (H is a stack)
(b) A1,A2 ∈ H implies A1 ∩ A2 ̸= ∅. (H has the pairwise intersection

property.)
(b′) A1,A2, . . . ,An ∈ H implies A1 ∩ A2 ∩ . . . ∩ An ̸= ∅. (H has the finite

intersection property.)
(b′′) ∩H ̸= ∅. (H is an m-family [8].)
If H satisfies (a) and (b), it is called a p-stack in [7]. If H satisfies (a) and

(b′) it is called a raster in [11]. Clearly every raster is a p-stack and every filter
is a raster, but not conversely. For every point x ∈ X ̸= ∅, ẋ denotes the filter of
all supersets of {x}. A neighbourhood space, in the sense of [7] (resp. [11]), is a
pair (X, ν) where ν : X → exp(expX) is a map such that ν(x) ⊆ ẋ is a p-stack
(resp. raster) for each x ∈ X. Then ν is called a neighbourhood structure on X.
Clearly, a neighbourhood space is defined to be pretopological if ν(x) is a filter
for all x ∈ X.

LetX ̸= ∅ andψ be aGNS onX. Then the pair (X, ψ) is called a gn-space [8].
Now consider the following conditions on ψ.

(a) ψ(x) ̸= ∅ for all x ∈ X.
(b) U,V ∈ ψ(x) implies U ∩ V ∈ ψ(x) for all x ∈ X.
(c) ψ(x) is a stack for all x ∈ X.
(d) for each x ∈ X and V ∈ ψ(x), there is a set O satisfying x ∈ O ⊂ V, and

y ∈ O implies the existence of a set U ∈ ψ(y) with U ⊂ O.
(e) X ∈ ψ(x) for all x ∈ X.
If ψ satisfies (a) and (b), it is called a weak neighbourhood system in [10].

If ψ satisfies (c), it is called ascending [4]. If ψ satisfies (c) and (d), it is called
complete [12]. If ψ satisfies (e), we shall say that it is strongly. If ψ satisfies (a),
then ψ(x) is an m-family for each x ∈ X. Clearly a neighbourhood structure ν is
an ascending, strongly GNS.
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Now we recall some concepts and notations defined in [2]. The collec-
tion of all GNSs’ on X is denoted by Ψ(X). For ψ ∈ Ψ(X) and A ⊂
⊂ X, the interior and closure of A on ψ (denoted by ıψA, γψA, respec-
tively) are defined as ıψA = {x ∈ A : there existsV ∈ ψ(x) such thatV ⊂ A} and
γψA = {x ∈ X : V ∩ A ̸= ∅for allV ∈ ψ(x)}, respectively. A generalized topol-
ogy (briefly GT) on X is a subset µ of the power set expX such that ∅ ∈ µ and
every union of some elements of µ belongs to µ. The elements of µ are called
µ-open sets and their complements are called µ-closed sets. Let A ⊂ X, the
µ-interior of A (denoted by iµA) is the union of all µ-open sets contained in A
and the µ-closure of A (denoted by cµA) is the intersection of all µ-closed sets
containing A. If X ∈ µ, then µ is said to be a strongly generalized topology [3] on
X. If µ and υ are generalized topologies on X and Y, respectively, then a mapping
f : X → Y is said to be (µ, υ)-continuous [2] if f−1(υ) ⊆ µ. If ψ ∈ Ψ(X), then
µ = µψ is defined as the collection of all subsetsM ⊂ X such that x ∈ M implies
the existence of a set V ∈ ψ(x) satisfying V ⊂ M. Also it is shown that µψ is a
GT on X, generated by the GNS ψ and anyone can write iψ for iµψ and cψ for
cµψ . In addition, for an arbitrary subfamily µ of expX (thus µ need not to be a
GT) consider ψ(x) = ψµ(x) = {M ∈ µ : x ∈ M} for each x ∈ X, then ψµ is a
GNS on X. Also Ψµ(X) is defined as the set of all ψ ∈ Ψ(X) satisfying V ∈ µ
for V ∈ ψ(x), x ∈ X.

Lemma 2.1. (a) If ψ ∈ Ψµ(X) for the GT µ = µψ on X, then ıψ = iψ and
γψ = cψ.

(b) If µ is a GT on X and ψ = ψµ, then µψ = µ.
In addition, for a GNS ψ on X and A ⊂ X, two more operators (denoted

by I∗ψ and cl∗ψ) are defined by K. Min [8] as I∗ψA = {x ∈ A : A ∈ ψ(x)} and
cl∗ψ A = {x ∈ X : X− A /∈ ψ(x)}. If ψ and φ are GNSs’ on X and Y, respectively,
then a mapping f : X → Y is said to be (ψ,φ)-continuous [2] if for each x ∈ X
and V ∈ φ(f(x)), there is U ∈ ψ(x) such that f(U) ⊂ V, gn-continuous [8] if
f−1(φ(f(x))) ⊆ ψ(x) for each x ∈ X and gn-open [8] if f(ψ(x)) ⊆ φ(f(x)) for
each x ∈ X.

3. The Lattice GN(X)

GN(X) denotes the set of all strongly generalized neighbourhood structures
on X, partially ordered as follows: ψ ≤ φ for ψ,φ ∈ GN(X) iff ψ(x) ⊆ φ(x)
for each x ∈ X (in which case ψ is coarser than φ and φ is finer than ψ). For
ψ,φ ∈ GN(X), we denote the meet and join asψ∧φ = ψ∩φ andψ∨φ = ψ∪φ,
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respectively, such that

(ψ ∧ φ)(x) = {V : V ∈ ψ(x) andV ∈ φ(x)} ,
(ψ ∨ φ)(x) = {V : V ∈ ψ(x) orV ∈ φ(x)}

for each x ∈ X. Therefore, for an arbitrary subfamily A = {ψk : k ∈ K} ⊆
⊆ GN(X), we shall define ∧ = infGN(x)A and ∨ = supGN(X)A such that

∧(x) = ∩{ψk(x) : k ∈ K} and ∨ (x) = ∪{ψk(x) : k ∈ K}

for all x ∈ X, respectively. Clearly GN(X) is a complete lattice, with ψsup(x) =
{V : x ∈ V} for all x ∈ X and ψinf(x) = {X} for all x ∈ X as greatest and least
elements.
Lemma 3.1. If A = {ψk : k ∈ K}⊆GN(X), ∧ = infGN(x)A and ∨ =
supGN(X)A, then the following statements are valid.

(a) If each ψk is ascending, so is infGN(x)A and supGN(X)A.
(b) If each ψk is complete, so is supGN(X)A;
(c) If each ψk is a weak GNS, so is infGN(X)A.

Corollary 3.2. N(X) is a complete sublattice of GN(X), with ψsup(x) = ẋ for
all x ∈ X and ψinf(x) = {X} for all x ∈ X, as greatest and least elements.

Proof. It is straightforward from Lemma 3.1 (a).
The following result is a consequence of the definitions.

Proposition 3.3. Let A = {ψk : k ∈ K} ⊆ GN(X), ∧ = infGN(x)A, ∨ =
supGN(X)A and A ⊂ X. Then we have

(a) ı∨A = ∪k∈KıψkA and γ∨A ⊆ ∪k∈KγψkA,
(b) ı∧A ⊆ ∩k∈KıψkA and ∩k∈KγψkA ⊆ γ∧A,
(c) I∗∨A = ∪k∈KI∗ψkA and cl∗∨ A ⊆ ∪k∈K cl

∗
ψk
A

(d) I∗∧A = ∩k∈KI∗ψkA and ∩k∈K cl
∗
ψk
A ⊆ cl∗∧ A.

Proposition 3.4. Let A = {ψk : k ∈ K}⊆GN(X), ∧ = infGN(x)A and ∨ =
supGN(X) A. Then µ∧ ⊆ ∪k∈Kµψk ⊆ µ∨.

Proof. If A ∈ µ∧, then for each x ∈ A there exists V ∈ ∧(x) such that V ⊂ A.
Thus A ∈ ∪k∈Kµψk since V ∈ ψk(x) for all k ∈ K. If A ∈ µψk for some k ∈ K,
then there exists Vk ∈ ψk(x) such that Vk ⊂ A for each x ∈ A. Hence A ∈ µ∨.

4. Initial and final structures for GNSs’

Let X be a set, {(Xk, ψk) : k ∈ K} be collection of gn-spaces and {fk : k ∈
∈ K} a corresponding collection of functions fk : X → Xk. Then let us define the
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mapping ϑ : X → exp(expX) such that

ϑ(x) =
{
f−1
k (V) : k ∈ K and V ∈ ψk(fk(x))

}
for each x ∈ X. Clearly ϑ is a GNS on X. We call ϑ the initial generalized
neighbourhood structure on X for the family (fk)k∈K.

Clearly ϑ is the coarsest GNS on X for which the mappings fk are gn-
continuous. Then the following result is clear.

Proposition 4.1. Let X be a set, {(Xk, ψk) : k ∈ K} be a collection of strongly
gn-spaces and {fk : k ∈ K} be a corresponding collection of functions fk : X →
Xk. The initial generalized neighbourhood structure on X exists and is specified
by ϑ(x) = supGN(X){f−1

k (ψk(fk(x))) : k ∈ K} for all x ∈ X.
The concept of convergence in gn-spaces was given in [8] by using m-

families. Let ψ be a GNS and H be an m-family on X. Then H converges to
x ∈ X ifH is finer than ψ(x) i.e. ψ(x) ⊂ H. So we can give the following result.

Proposition 4.2. Let ϑ be the initial generalized neighbourhood structure on X
induced by the collection of strongly gn-spaces {(Xk, ψk) : k ∈ K} and functions
{fk : k ∈ K}, where fk : X → Xk. For an m-family H on X,

(a) if H converges to x ∈ X, then fk(H) converges to fk(x) for all k ∈ K.
(b) if {fk : k ∈ K} is a collection of injective functions and fk(H) converges

to fk(x) for all k ∈ K, then H converges to x ∈ X.

Proof. (a) For all k ∈ K, we have f−1
k (ψk(fk(x))) ⊂ ϑ(x) since fk is gn-

continuous. Thus ψk(fk(x)) ⊂ fk(ϑ(x)) ⊂ fk(H).
(b) If V ∈ ϑ(x), then V ∈ f−1

k
(
ψk(fk(x))

)
for some k ∈ K. Thus fk(V) ∈

∈ fk
(
f−1
k
(
ψk(fk(x))

))
⊂ ψk(fk(x)). Therefore we have fk(V) ∈ fk(H) by hy-

pothesis. Hence V ∈ H.
Let X be a set, {(Xk, ψk) : k ∈ K} be a collection of strongly gn-spaces,

{hk : k ∈ K} be a corresponding collection of functions hk : Xk → X and Y = ∪
∪k∈Khk(Xk). We shall define the mapping Φ: X → exp(expX) as;

(a) if x ∈ Y, Φ(x) =
{
V ⊆ X : h−1

k (V) ∈ ψk(z), for all z ∈ h−1
k (x) and for

all k ∈ K such that x ∈ hk(Xk)
}
;

(b) if x /∈ Y, Φ(x) = {V ⊆ X : x ∈ V}.
Clearly Φ is the finest strongly GNS on X, for which the mappings fk are

gn-continuous. Then we shall say that Φ is the final generalized neighbourhood
structure on X for the family (fk)k∈K.

Proposition 4.3. LetX be a set and {(Xk, ψk) : k ∈ K} be a collection of strongly
gn-spaces. ϑ andΦ are the initial and final generalized neighbourhood structures
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on X for the functions {fk : X → Xk}k∈K and {hk : Xk → X}k∈K, respectively.
Then the following statements are valid.

(a) If {fk : k ∈ K} is a collection of injective functions and each ψk is an
ascending (resp. complete) GNS, so is ϑ.

(c) If each ψk is an ascending (resp. weak) GNS, so is Φ.

Proof. (a) Let U ∈ ϑ(x) and U ⊂ V. Then U ∈ f−1
k
(
ψk(fk(x))

)
for some

k ∈ K. Thus fk(U) ∈ ψk (fk(x)), and so fk(V) ∈ ψk(fk(x)). Therefore V ∈
∈ f−1

k
(
ψk(fk(x))

)
⊂ ϑ(x). It can be easily seen that ϑ is complete.

(b) Let U ∈ Φ(x) and U ⊂ V. If x ∈ Y, then h−1
k (U) ∈ ψk(z) for all z ∈

∈ h−1
k (x) and for all k ∈ K such that x ∈ hk(Xk). Thus h−1

k (V) ∈ ψk(z) for all
z ∈ h−1

k (x) and for all k ∈ K such that x ∈ hk(Xk) since each ψk is ascending.
Therefore V ∈ Φ(x). If x /∈ Y, then clearly V ∈ Φ(x).

Now let U,V ∈ Φ(x). If x ∈ Y, then h−1
k (U), h−1

k (V) ∈ ψk(z) and so
h−1
k (U)∩ h−1

k (V) for all z ∈ h−1
k (x) and for all k ∈ K such that x ∈ hk(Xk). Thus

U ∩ V ∈ Φ(x). If x /∈ Y, then clearly U ∩ V ∈ Φ(x).

5. Product of GNSs’ as an application

In [5], Császár show that how the definition of the product of topologies can
be modified in order to define the product of GT’s. Let µk be a GT on Xk andMµk
is the union of all elements of µk for k ∈ K. By µ = Pk∈Kµk, Császár denoted
the all unions of some elements of the sets of the form; M =

∏
k∈KMk where

Mk ∈ µk and, with the exception of a finite number of indices k,Mk = Mµk . µ is
called as the product of the GT’s µk. In this section, we discuss this concept on
generalized neighbourhood systems.

Let K ̸= ∅ be an index set, Xk ̸= ∅ for k ∈ K and X =
∏

k∈K Xk is the
Cartesian product of the sets Xk. Then consider the initial generalized neigh-
bourhood structure ϑ on X, induced by the collection of strongly gn-spaces
{(Xk, ψk) : k ∈ K} and the projections {pk : k ∈ K}, where pk : X → Xk. If we
denote the set of all finite intersections of ϑ(x) by ϑ∩(x), then ϑ∩(x) is all sets
of the form V =

∏
k∈K Vk, where Vk ∈ ψk(xk) for each k ∈ K and Vk ̸= Xk only

finitely many times, for each x ∈ X. Clearly ϑ∩ is a finer GNS than ϑ on X.
Then we can give the following result by Lemma 2.1 (b).

Proposition 5.1. If µk is a strongly GT on Xk and ψk = ψµk for each k ∈ K,
then µϑ∩ = Pk∈Kµk.
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In the particular case, when µk = τk is a topology on Xk and ψk = ψτk for
k ∈ K, µϑ∩ coincides with the product topology of the factors τk.

Proposition 5.2. The projection pk : (X, ϑ∩) → (Xk, ψk), pk(x) = xk is gn-
continuous and gn-open for all k ∈ K.

Proof. pk is gn-continuous since ϑ∩ is finer than ϑ. Now let x ∈ X and V ∈
∈ ϑ∩(x). Then V =

∏
k∈K Vk where Vk ∈ ψk(xk) for each k ∈ K and Vk ̸= Xk

only finitely many times. Thus we have pk(V) = Vk ∈ ψk(xk). Hence pk is
gn-open.

Clearly gn-continuity of pk implies (ψ,ψk)-continuity of pk. So pk is
(µψ, µψk)-continuous by Proposition 2.1 of [2]. Then we obtain Proposition 2.7
of [5] as a corollary by Proposition 5.1 and Lemma 2.1 (b).

Corollary 5.3. Let µk be a strongly GT on Xk and ψk = ψµk for k ∈ K. Then
the projection pk is (Pk∈Kµk, µk)-continuous.

Proposition 5.4. Let Ak ⊂ Xk for k ∈ K and A =
∏

k∈K Ak. Then
(a) ıϑ∩A ⊂

∏
k∈K ıψkAk.

If there exists a finite subset J ⊂ K such that Ak = Xk for k ∈ (K− J), then
(b) ıϑ∩A =

∏
k∈K ıψkAk,

(c) I∗ϑ∩A =
∏

k∈K I∗ψkAk.

Proof. (a) If x ∈ ıϑ∩A, then there exists V ∈ ϑ∩(x) such that V =
∏

k∈K Vk ⊂ A
where Vk ∈ ψk(xk) for each k ∈ K and Vk ̸= Xk only finitely many times. Thus
pk(x) = xk ∈ pk(V) = Vk ⊂ pk(A) = Ak for each k ∈ K. Hence xk ∈ ıψkAk for
each k ∈ K.

(b) If x ∈
∏

k∈K ıψkAk, then pk(x) = xk ∈ ıψkAk for each k ∈ K. Thus there
exists Vk ∈ ψk(xk) such that Vk ⊂ Ak. Now let Vk = Xk for k ∈ (K − J). Then
we have V =

∏
k∈K Vk ∈ ϑ∩(x) and V ⊂ A. Hence x ∈ ıϑ∩A.

(c) For eack k ∈ K, pk(I∗ϑ∩A) ⊂ I∗ψkpk(A) = I∗ψkAk by Theorem 5.7 of [8]
since pk is gn-open. Then I∗ϑ∩A ⊂ ∩k∈Jp−1

k (I∗ψkAk) =
∏

k∈K I∗ψkAk. Conversely;
let x ∈

∏
k∈K I∗ψkAk, then for pk(x) = xk we have xk ∈ I∗ψkAk for each k ∈ K. Thus

Ak ∈ ψk(xk) for each k ∈ K and Ak = Xk for k ∈ K − J. Therefore A ∈ ϑ∩(x)
and this implies that x ∈ I∗ϑ∩A.

Proposition 5.5. If Ak ⊂ Xk for k ∈ K and A =
∏

k∈K Ak, then γϑ∩A =∏
k∈K γψkAk.

Proof. Let x ∈ γϑ∩A and Vj ∈ ψj(xj) for a fixed index j ∈ K and Vk = Xk
for k ∈ K − {j}. Then clearly V ∈ ϑ∩(x) and we have V ∩ A ̸= ∅. Therefore
pj(V ∩ A) ̸= ∅ and this implies that Vj ∩ Aj ̸= ∅. Thus xj ∈ γψjAj for each j ∈ K.
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Hence x ∈
∏

k∈K γψkAk. Conversely let x ∈
∏

k∈K γψkAk and an arbitrary V ∈
∈ ϑ∩(x). Then V =

∏
k∈K Vk where Vk ∈ ψk(xk) for each k ∈ K and Vk ̸= Xk

only finitely many times. Thus pk(x) = xk ∈ pk(V) = Vk and so we have Vk ∩
∩Ak ̸= ∅ for each k ∈ K. Therefore

∏
k∈K Vk∩

∏
k∈K Ak ̸= ∅. Hence x ∈ γϑ∩A.

The following example shows that a similar equality need not to be valid
for the closure operator in the sense of Min.

Example 5.6. Let X = {1, 2} and denote the GNSs’; ψ as ψ(1) = {X, {1}},
ψ(2) = {X}, and ϕ as ϕ(1) = {X}, ϕ(2) = {X, {2}} on X. Now consider the
GNS ϑ∩ on X × X induced by ψ and ϕ, then ϑ∩

(
(1, 1)

)
=
{
X × X, {1} × X

}
,

ϑ∩
(
(1, 2)

)
= {X × X,X × {2}, {1} × X, {1} × {2}}, ϑ∩

(
(2, 1)

)
= {X ×

× X}, ϑ∩
(
(2, 2)

)
= {X × X,X × {2}}. For A = {1}, we have cl∗ψ A = X and

cl∗ϕ A = {1}, so cl∗ψ A× cl∗ϕ A = X× {1}. However cl∗ϑ∩(A× A) = X× X.
The following result is clear by Lemma 2.1 (a), Proposition 5.4 and 5.5.

Corollary 5.7. Let µk be a strongly GT on Xk, ψk = ψµk and Ak ⊂ Xk for
k ∈ K. If η = Pk∈Kµk and A =

∏
k∈K Ak, then we have

(a) iηA ⊂
∏

k∈K iµkAk.
(b) iηA =

∏
k∈K iµkAk for a finite index set K.

(c) cηA =
∏

k∈K cµkAk.

Lemma 5.8. If each ψk is a weak GNS, so is ϑ∩.

Proof. Let U,V ∈ ψ(x). Then U =
∏

k∈KUk where Uk ∈ ψk(xk) for each k ∈
∈ K and Uk ̸= Xk for a finite subset I ⊂ K and V =

∏
k∈K Vk where Vk ∈ ψk(xk)

for each k ∈ K and Vk ̸= Xk for a finite subset J ⊂ K. Thus U∩V =
∏

k∈K(Uk ∩
∩ Vk) where Uk ∩ Vk ∈ ψk(xk) for each k ∈ K and Uk ∩ Vk ̸= Xk for the finite
subset I ∪ J ⊂ K. Hence U ∩ V ∈ ψ(x).

Therefore we can give the following result.

Theorem 5.9. If each ψk is a weak GNS, then ϑ∩ is the coarsest GNS on the
product set X for which the projections pk are gn-continuous.

Proof. Let ϕ be a weak GNS on the product set X for which the projections
pk are gn-continuous and ϕ(x) ⊂ ϑ∩(x) for each x ∈ X. If V ∈ ϑ∩(x), then
V =

∏
k∈K Vk = ∩k∈Jp−1

k (Vk) since Vk ∈ ψk(xk) for each k ∈ K and Vk ̸= Xk
for a finite subset J ⊂ K. On the other hand, p−1

k (Vk) ∈ ϕ(x) for each k ∈ K.
Thus V ∈ ϕ(x). Hence ϕ(x) = ψ(x) for each x ∈ X.

Theorem 5.10. Let (Z, ϕ) be a strongly gn-space and f : (Z, ϕ) → (X, ϑ∩),
f(z) = (xk)k∈K be a mapping. If ϕ is a weak GNS, then f is gn-continuous iff
fk = pk ◦ f is gn-continuous for each k ∈ K.
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Proof. If f is gn-continuous, then clearly fk = pk ◦ f is gn-continuous. Con-
versely, let a ∈ Z and V ∈ ϑ∩(f(a)) for f(a) = (fk(a))k∈K. Then V =

∏
k∈K Vk

where Vk ∈ ψk(fk(a)) for each k ∈ K and Vk ̸= Xk for a finite subset J ⊂
⊂ K. Thus f−1

k (Vk) ∈ ϕ(a) for each k ∈ K and f−1
k (Vk) = Z for k ∈

∈ K − J. Therefore f−1(V) = f−1 (∏
k∈K Vk

)
= f−1 (∩k∈Kp−1

k (Vk)
)

= ∩
∩k∈Jf−1 (p−1

k (Vk)
)

= ∩k∈J(pk ◦ f)−1(Vk) = ∩k∈Jf−1
k (Vk). Hence f−1(V) ∈

∈ ϕ(a).

Corollary 5.11. Let (Zk)k∈K be a family of nonempty sets and ϕ denotes the
initial generalized neighbourhood structure on Z =

∏
k∈K Zk, induced by the

collection of strongly gn-spaces
{
(Zk, ϕk) : k ∈ K

}
and the projections {pk : k ∈

∈ K}, where pk : Z → Zk. If (fk)k∈K be a collection of mappings from Zk into Xk
and (ϕk)k∈K be a collection of weak GNSs , then the product mapping

f : (Z, ϕ∩) → (X, ϑ∩)
z = (zk)k∈K → f(z) = (fk(zk))k∈K

is gn-continuous iff fk is gn-continuous for each k ∈ K.

Proof. Let a = (ak)k∈K ∈ X be a fixed point and Bj = Zj ×
∏

k∈K−J{ak} for
each j ∈ K. Now for each k ∈ K define ϕak : {ak} → exp(exp{ak}), ϕak(ak) ={
{ak}

}
. Therefore ϕaj = ϕj × Pk∈K−{j}ϕ

ak is a weak GNS for each j ∈ K. Now
consider the mappings hj : (Zj, ϕj) → (Bj, ϕaj ), hj(zj) = {zj}×

∏
k∈K−J{ak} and

the restriction f/Bjof f to Bj for j ∈ K. hj is gn-continuous since the mappings
(hj)k : (Zj, ϕj) → (Zk, ϕk) such that (hj)k(zj) = zj for k = j and (hj)k(zj) = ak
for k ̸= j are gn-continuous for each k ∈ K. In addition, let z ∈ Bj and V ∈
∈ ϑ∩(f/Bj(z)), then f−1

/Bj(V) = f−1(V) ∩ Bj. We have f−1(V) ∈ ϕ∩(z) since f is
gn-continuous. Therefore f−1(V) =

∏
k∈KUk where Uk ∈ ϕk(zk) for k = j and

Uk ∈ ϕk(ak) for k ̸= j and Uk ̸= Zk only finitely many times. Thus f−1(V) ∩
∩Bj = Uj×

∏
k∈K−J{ak}, so f

−1
/Bj(V) ∈ ϕaj (z). This implies the gn-continuity of

f/Bj . Hence fj = pj ◦ f/Bj ◦ hj is gn-continuous for each j ∈ K. Conversely; gn-
continuity of the mappings hk = fk ◦ pk implies the gn-continuity of the product
mapping f by Theorem 5.10.

Anyone can obtain similar results for (ψ,ψ′)-continuity.
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GENERALIZED ABSOLUTE CONVERGENCE
OF FOURIER SERIES
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R. G. VYAS

(Received June 1, 2012)

Abstract. Here, sufficiency conditions are obtain for the convergence of the
Fourier series of the form

∑
k∈Zϖ|k|(φ(|̂f(nk)|)), where f̂(nk) are Fourier coefficients of

f, {ϖn} is a certain sequence of positive numbers,φ(u) (u ≥ 0) is an increasing concave
function and {nk}∞k=1 is an increasing sequence of natural numbers with n−k = −nk for
all k.

1. Introduction

Let f be a 2π-periodic real function in L1[0, 2π] and

(1) f(x) ∼ 1
2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) ≡
∑
k∈Z

f̂(k)eikx,

be the Fourier series of f, wherein an, bn are Fourier coefficients of f and f̂(k) =
a|k|−ib|k|sgn(k)

2 , (k ∈ Z).
Generalizing the concept of β-absolute convergence of Fourier series [4],

for f ∈ Lp([0, 2π]) (1 < p ≤ 2) L. Leindler [2] obtained sufficiency condition
for the convergence of the series

(2)
∑
k∈Z

ϖ|k|(φ(|̂f(k)|)),

where φ(u) (u ≥ 0, φ(0) = 0) is an increasing and concave function, ϖ0 = 0
and {ϖn}∞n=1 is a certain sequence of positive numbers. For ϖn = n0, ∀n and
φ(x) = xβ (0 < β ≤ 1), one gets β-absolute convergence of Fourier series.

AMS Subject Classification (2000): 42A28, 42A16
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Here, we have generalized non-lacunary analogue of Ogata result [3, Theo-
rem 1] and also generalize the results [5, Theorem 1 and Theorem 2] by obtaining
certain sufficiency conditions for the convergence of series

(3)
∑
k∈Z

ϖ|k|(φ(|̂f(nk)|)),

where {nk}∞k=1 is an increasing sequence of natural numbers with n−k = −nk
for all k. Here, for nk = k, for all k, (3) reduces to (2).

Definition 1.1. A sequence γ := {γn} of positive terms is quasi β-power
monotone increasing (decreasing) if there exists a constant K := K(β, γ) ≥ 1
such that

(4) Knβγn ≥ mβγm (nβγn ≤ Kmβγm)

holds for any n ≥ m, m = 1, 2, . . ..

Definition 1.2. Given an interval I, a sequence of non-decreasing positive real
numbers Λ = {λm} (m = 1, 2, . . .) such that

∑
m

1
λm

diverges and nonnegative
convex function ϕ(x) defined on [0,∞) such that ϕ(x)x → 0 as x → 0. We say
that f∈ ϕΛBV(I) (that is f is a function of ϕΛ-bounded variation over (I)) if

VΛϕ(f, I) = sup
{Im}

{VΛϕ({Im}, f, I)} <∞,

where

VΛϕ({Im}, f, I) =
∑
m

(
ϕ(| f(bm)− f(am) |)

λm

)
,

and {Im} is a sequence of non-overlapping subintervals Im = [am, bm] ⊂ I =
[a, b].

Here, ϕ is said to have property ∆2 if there is a constant d (d ≥ 2) so that
ϕ(2x) ≤ dϕ(x) for all x ≥ 0.

In the above definition, for ϕ(x) = xp (1 ≤ p < ∞) one gets the class
ΛBV(p)(I) and for λm ≡ 1, for all m, one gets the class ϕBV.

To formulate the theorems we need following notations. Let the quadratic-
integral modulus of continuity of f over [0, 2π] of higher differences of order
l ≥ 1 with a weight function α is defined as

ω
(2)
l (δ, f, α) = sup

0≤h≤δ

(∫ 2π

0
|△l

hf(x)|2α(x)dx
)1/2

,
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where

△l
hf(x) =

l∑
i=0

(−1)i
(
l
i

)
f(x+ (l− i)h).

In the above notation, for α(x) = 1, omit writing α, we get ω(2)
l (δ, f). Similarly,

for l = 1 we omit writing l. Let

R(2)
n+1(f, α) :=

(∫ 2π

0
|f(x)− Sn(x)|2α(x)dx

)1/2

,

where
Sn(x) :=

∑
|k|≤n

f̂(k)eikx.

Theorem 1.3. Let {αk}k∈N be a sequence of non-negative functions satisfying∫ 2π
0 αk(x)dx = 1 and lim

M→∞

∑∞
m=M |α̂k(m)|2σ(m) = 0, uniformly in k, φ(u)

(u ≥ 0, φ(0) = 0) be an increasing and concave function and ϖ := {ϖn} be a
quasi η-power-monotone decreasing sequence of positove numbers with some
negative η. Here α̂k(m) = 0 whenever σ(m) = ∞. If

∞∑
k=1

ϖkφ

ω(2)
l ( πnk , f, αk)√

k

 <∞

and
∞∑
k=1

ϖkφ

(
1√
k nlk

)
<∞

or
∞∑
k=1

ϖkφ

(
R(2)
nk (f, αk)√

k

)
<∞,

then (3) holds.

Theorem 1.4. Let ϖ and φ be as in Theorem 1.1. If f ∈ ΛBV(p)([0, 2π]), 1 ≤
≤ p < 2r, 1 < r <∞ and

∞∑
k=1

ϖkφ

((ω((2−p)s+p)( 1
nk , f))

2−p/r

k(Σnk
j=1(

1
λj
))1/r

)1/2
 <∞,

where 1
r +

1
s = 1, then (3) holds.

In the above theorem, for ωn = 1, for all n, and φ(u) = uβ one gets result
[5, Theorem 1, for 0 < β ≤ 1] as a particular case.
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Theorem 1.5. Let ϖ and φ be as in Theorem 1.1. If ϕ satisfies ∆2 property,
f ∈ ϕΛBV([0, 2π]), 1 ≤ p < 2r 1 < r <∞, and

∞∑
k=1

ϖkφ

(ϕ−1(ω((2−p)s+p)( 1
nk , f))

2−p/r

k(Σnk
j=1(

1
λj
))1/r

)1/2
 <∞,

where 1
r +

1
s = 1, then (3) holds.

Theorem 1.3, with ωn = 1, for all n, and φ(u) = uβ gives the result [5,
Theorem 2, for 0 < β ≤ 1] as a particular case.

We need the following lemmas to prove the results.

Lemma 1.6. ([2, Lemma 2]) Let 1 < p ≤ 2,ϖ and φ be as in Theorem 1.1,m be
an arbitrary natural number and {αn} be a monotone non-increasing sequence
of non-negative numbers. Then the conditions

σ(ϖ,m) :=
∞∑
k=1

k
1
m−1ϖ[k1/m]φ(k

1−p
pm αk1/m) <∞

and

σ(ϖ) :=

∞∑
k=1

ϖkφ
(
k
1−p
p αk

)
<∞

are equivalent, wherein [x] denotes the integral part of x.

Lemma 1.7. ([3, Lemma 1]) Put α̂υ(m) = 1
2π
∫ 2π
0 αυ(x)e−imxdx (υ = 1, 2, . . .).

If lim
M→∞

∑∞
m=M |α̂k(m)|2σ(m) = 0, uniformly in k, and α̂k(m) = 0 whenever

σ(m) = ∞, then for a given constant λ > 1 there exists a positive integer µ
which satisfies the following property for

g(x) ∼
k=∞∑
k=−∞

ĝ(nk)einkx,

where

ĝ(nk) =

{
0, |k| < µ,

f̂(nk), otherwise,
we have ∑

|k|≥υ

|ĝ(nk)|2 ≤
λ

2l−1ω
(2)
l (

π

nυ
, g, αυ)2

and ∑
|k|≥υ

|ĝ(nk)|2 ≤ λR(2)
nυ (g, αυ)2.
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Lemma 1.8. ([2, Theorem 1]) Let ϖ and φ be as in Theorem 1.1.
If
∑∞

n=1ϖn φ({1
n
∑

k≥n ρ
2
k}1/2) <∞, where ρn = (a2n + b2n)1/2, then

∞∑
n=1

ϖnφ(ρn) <∞.

Lemma 1.9. Let 1 < p ≤ 2 and ϖ be as in Lemma 1.4 and let f and g be as in
Lemma 1.5.
(i)
∑∞

k=1ϖkφ(k
1−p
p ω

(2)
l ( πnk , f, αk)) <∞ and

∑∞
k=1ϖkφ(k

1−p
p n−l

k ) <∞,⇒

∞∑
k=1

ϖkφ

(
k
1−p
p ω

(2)
l

(
π

nk
, g, αk

))
<∞.

(ii)
∑∞

k=1ϖkφ
(
k
1−p
p R(2)

nk (f, αk)
)
<∞ ⇒

∞∑
k=1

ϖkφ
(
k
1−p
p R(2)

nk (g, αk)
)
<∞.

Lemma 1.7 can be proved in a similar way to the corresponding Lemma [3,
Lemma 3].
Proof of Theorem 1.1. In order to simplify writing we shall write k1/m instead
of [k1/m].

Let m > −η+ 1. From Abel rearrangement and Jensen inequality, we have

∞∑
|j|=1

ϖ|j|φ(|ĝ(nj)|) =
∞∑

|j|=1

 |j|m∑
k=1

ϖ|j| φ(|ĝ(nj)|

|j|m

 ≤

≤
∞∑
k=1

 ∞∑
|j|=k1/m

ϖ|j|φ(|ĝ(nj)|

|j|m

 ≤

≤
∞∑
k=1

 ∞∑
|j|=k1/m

ϖ|j|

|j|m

φ

(∑∞
|j|=k1/m ϖ|j||j|−m|ĝ(nj)|∑∞

|j|=k1/m ϖ|j| |j|−m

)
=: S1.

Since n+η > 1 and the sequenceϖ is quasi η-power monotone decreasing,
we have

∞∑
n=µ

ϖn n−m =

∞∑
n=µ

ϖnnη n−m−η ≤ Kϖµµ
η

∞∑
n=µ

n−m−η ≤ K1ϖµµ
1−m.
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Thus, from Lemmas 1.4, 1.5 and 1.7 we have
j=∞∑
j=−∞

ϖjφ(|ĝ(nj)|) ≤

≤
∞∑
k=1

ϖ
k
1
m
k

1
m−1φ


(∑∞

|j|=k1/m ϖ
2
|j||j|

−2m
)1/2 (∑∞

|j|=k1/m |ĝ(nj)|
2
)1/2∑∞

|j|=k1/m ϖ|j| |j|−m

 ≤

≤
∞∑
k=1

ϖ
k
1
m
k

1
m−1φ

k
−1
2m

 ∞∑
|j|=k1/m

|ĝ(nj)|2
1/2

 <∞.

Hence, we obtain
∑j=∞

j=−∞ϖjφ(|ĝ(nj)|) <∞, which is equivalent to

j=∞∑
j=−∞

ϖjφ(|̂f(nj)|) <∞.

This completes the proof of the Theorem 1.1.

Proof of Theorem 1.2. Proceeding as in the proof of result [5, Theorem 1,
with nk = k, for all k], we get

RnM =
∑

|nk|≥nM

|̂f(nk)|2 = O

( Ω1/nM∑nM
j=1

1
λj

)1/r
 ,

where Ωh = (ω(2−p)s+p(h, f))2r−p. Therefore, we have

∞∑
|k|=1

ω|k|φ({
1
k
Rnk}

1/2) = O

 ∞∑
k=1

ωkφ

(1
k
(

Ω1/nk∑nk
j=1

1
λj

)1/r

)1/2
 .

In view of f ∈ ϕΛBV([0, 2π]) ⇒ f is bounded ⇒ f ∈ L2[0, 2π], the result
follows from Lemma 1.6.

Similarly, we can prove the Theorem 1.3.
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Abstract. The purpose of the present paper is to introduce the concept of gen-
eralized α-closed sets in isotonic spaces and study their fundamental properties. The
generalized closed sets are then used to define generalized α-continuous functions and
investigate some of their characterizations.

1. Introduction

Closure spaces and (more generally) isotonic spaces have already been stud-
ied by Hausdorff [8], Day [1], Hammer [6,7], Gnilka [2,3,4], Stadler [10, 11],
and Habil and Elzenati [5].

A function µ from the power set P(X) of a nonempty set X into itself is
called a generalized closure operator (briefly GCO) on X and the pair (X, µ) is
said to be generalized closure space (briefly GCS). Generalized closure spaces, a
strong generalization of topological spaces, have application in several branches
of pure and appliedmathematics, as lattice theory, logic, general topology, digital
topology and convex geometry. In 1993 Maki et al [9] introduced the notion
of generalized α-closed sets in topology. For each result known in topological
spaces it is interesting to find out which are the minimal assumption that allow
its extension to generalized closure spaces.

As in topological spaces, there are many hereditary properties that hold in
isotonic spaces, and we note that not every property which holds in topological
spacesmust hold in isotonic spaces. However, since every topological space is an
isotonic space, we note that if a property does not hold in a topological space, it
must not hold in any isotonic space either. In this paper, we introduced the notion
of generalized α-closed sets in (X, µ) and study some of its basic properties.

AMS Subject Classification (2000): 54A05, 54D10
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2. Preliminaries

Let X be a set, P(X) its power set and µ : P(X) → P(X) be an arbitrary
set-valued set-function, called a closure function. We call cl(A), A ⊆ X, the
closure of A, and we call the pair (X, µ) a generalized closure space. Consider
the following axioms of the closure function for all A,B,Aλ ∈ P(X) and λ ∈ Λ:
(K0) cl(ϕ) = ϕ.
(Kl) A ⊆ B implies cl(A) ⊆ cl(B) (isotonic).
(K2) A ⊆ cl(A) (expanding).
(K3) cl(A ∪ B) ⊆ cl(A) ∪ cl(B) (sub-additive).
(K4) cl(cl(A)) = cl(A) (idempotent).
(K5) ∪λ∈Λ cl(Aλ) ⊆ cl(∪λ∈ΛA) (additive).

The dual of a closure function is the interior function Int : P(X) → P(X) which
is defined by

Int(A) := X− cl(X− A)
Given the interior function Int : P(X) → P(X), the closure function is recovered
by

cl(A) := X− Int(X− A)
for all A ∈ P(X). A set A ∈ P(X) is closed in the generalized closure space (X, µ)
if cl(A) = A holds. It is open if its complement X− A is closed or equivalently
A = Int(A).

Definitions 2.1. (i) The space (X, µ) is said to be isotonic if µ is grounded
and isotonic.

(ii) The space (X, µ) is said to be a neighborhood space if µ is grounded,
expansive and isotonic.

(iii) The space (X, µ) is said to be a closure space if µ is grounded, expansive,
and isotonic and idempotent.

(iv) The space (X, µ) is said to be a Cech closure space if µ is grounded,
expansive, isotonic and additive.

(v) A subsetA ofX is said to be closed ifµA = A. It is open if its complement
is closed.

(vi) The empty set and the whole space are both open and closed.

Definition 2.2 ([10]). Let (X, µ) and (Y, ν) be isotonic spaces. A function
f : (X, µ) → (Y, ν) is said to be continuous if µf−1(B) ⊆ f−1(νB) for all B ∈
∈ P(Y).

Definition 2.3 ([10]). Let (X, µ) and (Y, ν) be isotonic spaces. A function
f : (X, µ) → (Y, ν) is said to be closure preserving if µf(A) ⊆ νf(A) for all
A ∈ P(X).

Theorem 2.4 ([10]). Let (X, µ) and (Y, ν) be isotonic spaces and let
f : (X, µ) → (Y, ν) be a function. Then the following properties are equivalent:
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(i) f is continuous.
(ii) f is closure preserving.
(iii) f(A) ⊆ B implies f(µA) ⊆ νB for all A ∈ P(X) and B ∈ P(Y).
Let (X, µ) and (Y, ν) be isotonic spaces and let f : (X, µ) → (Y, ν) be a

function. If f is closure preserving, then f−1(G) is an open subset of (X, µ) for
every open subset G of (Y, ν). Let (X, µ) and (Y, ν) be isotonic spaces.

A function f : (X, µ) → (Y, ν) is said to be closed (resp. open) if f(F) is a
closed (resp. open) subset of (Y, ν) whenever F is a closed (resp. open) subset
of (X, ν).

Lemma 2.5. Let (A, µA) be a closed subspace of (X, µ). If G is an open subset
of (A, µA), then G is an open subset of (X, µ).

Definition 2.6. A set A in (X, µ) is said to be αµ-open (resp. semi-open) if A ⊆
⊆ Int(µ(Int(A))) (resp. A ⊆ µ(Int(A))). The complement of an αµ-open (resp.
semi-open) set is αµ-closed (resp. semiµ-closed).

3. Generalized α-closed sets and generalized α-open sets

In this section, we introduce generalized α-closed sets in isotonic spaces
and study some of its fundamental properties.

Definition 3.1. Let (X, µ) be an isotonic space. A subset A ⊆ X is called a
generalized α-closed set (briefly gα-closed) set, if αµ(A) ⊆ G whenever G is
an open subset of (X, µ) with A ⊆ G. A subset A ⊆ X is called a generalized
α-open set, (briefly gα-open) set, if its complement is gα-closed.

Remark 3.2. Every closed set is gα-closed. The converse is not true as can be
seen from the following example.

Example 3.3. Let X = {1, 2} and define an isotonic operator µ on X by µϕ = ϕ
and µ{1} = µ{2} = µX = X. The closed sets are {X, ϕ} and the gα-closed sets
are {X, ϕ, {1}}. Then {1} is gα-closed but it is not closed.
Theorem 3.4. Let (X, µ) be an isotonic space and let µ be additive. If A and B
are gα-closed subsets of (X, µ), then A ∪ B is gα-closed.

Proof. LetG be an open subset of (X, µ) such that A∪B ⊆ G. Then A ⊆ G and
B ⊆ G. Since A and B are gα-closed, αµA ⊆ G and αµB ⊆ G. Consequently,
αµ(A ∪ B) = αµ(A) ∪ αµ(B) ⊆ G. Therefore, A ∪ B is gα-closed.

The intersection of two gα-closed sets need not be a gα-closed set as can
be seen from the following example.
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Example 3.5. Let X = {1, 2, 3} and define an isotonic operator µ on X by
µϕ = ϕ and µ{1} = {1, 2}, µ{2} = µ{3} = µ{2, 3} = {2, 3} and
µ{1, 2} = µ{1, 3} = µX = X. Then {1, 2} and {1, 3} are gα-closed but {1, 2}∩
∩ {1, 3} = {1} is not gα-closed.
Theorem 3.6. Let (X, µ) be an isotonic space. If A is gα-closed and F is closed
in (X, µ), then A ∩ F is gα-closed.

Proof. Let G be an open subset of (X, µ) such that A ∩ F ⊆ G. Then A ⊆ G ∪
∪ (X−F) and so αµ(A) ⊆ G∪ (X−F). Then αµ(A)∩F ⊆ G. Since F is closed,
αµ(A ∩ F) ⊆ G. Hence, A ∩ F is gα-closed.

Theorem 3.7. Let (Y, ν) be a closed subspace of (X, µ). If F is a gα-closed
subset of (Y, ν), then F is a gα-closed subset of (X, µ).

Proof. Let G be an open subset of (X, µ) such that F ⊆ G. Then F ⊆ G ∩ Y.
Since F is gα-closed and G∩ Y is open in (Y, ν), αµ(F)∩ Y = αν(F) ⊆ G. But
Y is a closed subset of (X, µ) and αµ(F) ⊆ G. Hence, F is a gα-closed subset
of (X, µ).

The following statement is obviuos:

Theorem 3.8. Let (X, µ) be an isotonic space and let A ⊆ X. If A is both open
and gα-closed, then A is closed.

Theorem 3.9. Let (X, µ) be an isotonic space and let A ⊆ X. If A is a gα-closed,
then αµ(A)− A has no nonempty closed subset.

Proof. Suppose that A is gα-closed. Let F be a closed subset of αµ(A) − A.
Then F ⊆ αµ(A) ∩ (X− A) and so A ⊆ X− F. Consequently, F ⊆ X− αµ(A).
Since F ⊆ αµ(A), F ⊆ αµ(A) ∩ (X − αµ(A)) = ϕ, thus F = ϕ. Therefore,
αµ(A)− A contains no nonempty closed set.

The converse of the previous theorem is not true as can be seen from the
following example.

Example 3.10. Let X = {a, b, c, d} and define an isotonic operator µ on X by
µϕ = ϕ and µ{a} = {a, c}, µ{b} = {b, c}, µ{c} = µ{d} = µ{c, d} = {c, d}
and µ{a, b} = µ{a, c} = µ{a, d} = µ{b, c} = µ{b, d} = µ{a, b, c} =
= µ{a, b, d} = µ{b, c, d} = µ{a, c, d} = µX = X. Then αµ{b} − {b} = {c}
does not contain nonempty closed set. But {b} is not gα-closed.
Corollary 3.11. Let (X, µ) be an isotonic space and let A be a gα-closed subset
of (X, µ). Then A is closed if and only if αµ(A)− A is closed.

Proof. LetA be a gα-closed subset of (X, µ). IfA is closed, thenαµ(A)−A = ϕ.
But ϕ is always closed. Therefore, αµ(A)− A is closed.
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Conversely, suppose that αµ(A) − A is closed. As A is gα-closed,
αµ(A)− A = ϕ by Theorem 3.9. Consequently, αµ(A) = A. Hence, A is
closed.

Theorem 3.12. Let (X, µ) be an isotonic space. A set A ⊆ X is gα-open if and
only if F ⊆ X− αµ(X− A) whenever F is closed and F ⊆ A.

Proof. Suppose that A is gα-open and let F be a closed subset of (X, µ) such
that F ⊆ A. Then X− A ⊆ X− F. But X− A is gα-closed and X− F is open. It
follows that αµ(X− A) ⊆ X− F and hence F ⊆ X− αµ(X− A).

Conversely, let G be an open subset of (X, µ) such that X − A ⊆ G. Then
X − G ⊆ A. Since X − G is closed, X − G ⊆ X − αµ(X − A). Consequently,
αµ(X− A) ⊆ G. Hence, X− A is gα-closed and so A is gα-open.

The union of two gα-open sets need not be a gα-open set as we can see
in Example 3.5: Put A = {2} and B = {3}. Then A and B are gα-open but
A ∪ B = {2, 3} is not gα-open.
Theorem 3.13. Let (X, µ) be an isotonic space. If A is gα-open and B is open
in (X, µ), then A ∪ B is gα-open.

Proof. Let F be a closed subset of (X, µ) such that F ⊆ A ∪ B. Then
X− (A ∪ B) ⊆ X− F. Hence, (X − A) ∩ (X − B) ⊆ X − F. By Theorem 3.6.,
(X − A) ∩ (X − B) is gα-closed. Therefore, αµ((X − A) ∩ (X − B)) ⊆ X − F.
Consequently, F ⊆ X − αµ((X − A) ∩ (X − B)) = X − αµ(X − (A ∪ B)). By
Theorem 3.12., A ∪ B is gα-open.

Theorem 3.14. Let (X, µ) be an isotonic space. If A and B are gα-open subsets
of (X, µ), then A ∩ B is gα-open.

Proof. Let F be a closed subset of (X, µ) such that F ⊆ A ∩ B. Then
X− (A ∩ B) ⊆ X− F. Consequently, (X− A)∪ (X− B) ⊆ X− F. By Theorem
3.6., (X − A) ∪ (X − B) is gα-closed. Thus, αµ((X − A) ∪ (X − B)) ⊆ X − F.
Consequently, F ⊆ X − αµ((X − A) ∪ (X − B)) = X − αµ(X − (A ∩ B)). By
Theorem 3.12., A ∩ B is gα-open.

Theorem 3.15. Let (X, µ) be an isotonic space. If A is a gα-open subset of
(X, µ), then G = X whenever G is open and (X− αµ(X− A)) ∪ (X− A) ⊆ G.

Proof. Suppose that A is gα-open. Let G be an open subset of (X, µ) such that
(X−αµ(X−A))∪(X−A) ⊆ G. Then X−G ⊆ X−((X−αµ(X−A))∪(X−A)).
Therefore,X−G ⊆ αµ(X−A)∩A or, equivalently,X−G ⊆ αµ(X−A)−(X−A).
But X−G is closed and X−A is gα-closed. Thus, by Theorem 3.9., X−G = ϕ.
Consequently, X = G.
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The converse of this proposition is not true as can be seen from Example
3.10: Put A = {a, c, d}. Then A is not gα-open and (X−αµ(X−A))∪(X−A) =
= {a, d} ∪ {b} ⊆ G gives G = X. But A is not gα-open.

Theorem 3.16. Let (X, µ) be an isotonic space and let A ⊆ X. If A is a gα-
closed, then αµ(A)− A is gα-open.
Proof. Suppose that A is gα-open. Let F be a closed subset of (X, µ)
such that F ⊆ αµ(A) − A. By Theorem 3.9., F = ϕ and hence
F ⊆ X− αµ(X− (αµ(X)− A)). By Theorem 3.12., αµ(A)− A is gα-open.

The converse of this result is not true as can be seen from Example 3.10:
Put A = {b}. Then αµ{b} − {b} = {c} which is gα-open. But {b} is not
gα-closed.
Definition 3.17. An isotonic space (X, µ) is said to be a Tgα-space if every
gα-closed subset of (X, µ) is closed.
Theorem 3.18. Let (X, µ) be an isotonic space. Then

(i) If (X, µ) is a Tgα-space then every singleton subset of X is either closed
or open.

(ii) If every singleton subset of X is a closed subset of (X, µ), then (X, µ) is
a Tgα-space.

Proof. (i) Suppose that (X, µ) is a Tgα-space. Let x ∈ X and assume that {x} is
not closed. Then X−{x} is not open. Since X is the only open set which contains
X− {x} this implies X− {x} is gα-closed. Since (X, µ) is a Tgα-space, X− {x}
is closed or equivalently {x} is open.

(ii) Let A be a gα-closed subset of (X, µ). To prove: A is closed. Suppose
that x ∈ A. Then {x} ∈ X − {x}. Since A is gα-closed and X − {x} is open,
αµ(A) ∈ X− {x},(i.e) {x} ∈ X− αµ(A). Hence x ∈ αµ(A) and thus αµ(A) ∈
∈ A. Therefore A is closed subset of (X, µ). Hence (X, µ) is a Tgα-space.

4. Generalized continuous functions

In this section, we introduce concept of generalized α-continuous functions
by using the notion of generalized α-closed sets and investigate some of their
characterizations.

Definition 4.1. Let (X, µ) and (Y, ν) be isotonic spaces. A function f : (X, µ) →
→ (Y, ν) is said to be generalized α-continuous (briefly gα-continuous) if
f−1(F) is a gα-closed subset of (X, µ) for every closed subset F of (Y, ν).

Clearly, if f : (X, µ) → (Y, ν) is gα-continuous, then f−1(G) is a gα-open
subset of (X, µ) for every open subset G of (Y, ν).
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Remark 4.2. Every continuous map is gα-continuous. The converse is not true
as can be seen from the following example.

Example 4.3. Let X = {1, 2, 3} = Y and define an isotonic operator µ on X
by µϕ = ϕ, µ{1} = µ{2} = µ{1, 2} = {1, 2}, µ{3} = {3} and µ{1, 3} =
= µ{2, 3} = µX = X. Define an isotonic operator ν on Y by νϕ = ϕ, ν{1} =
{1, 2}, ν{2} = {2}, ν{3} = {3}, ν{1, 2} = {1, 2}, ν{2, 3} = {2, 3} and
ν{1, 3} = νY = Y. Let φ : (X, µ) → (Y, ν) be defined by φ(1) = 1, φ(2) = 3,
φ(3) = 2. It easy to see that φ is gα-continuous but not closure preserving
because φ(µ{1, 3}) * µ(φ{1, 3}). Therefore, φ is not continuous.

Regarding the restriction f|H of a map f : (X, µ) → (Y, ν) to a subset H of
X, we have the following:

Theorem 4.4. Let (X, µ), (Y, ν) be isotonic space and let (H, µH) be a closed
subspace of (X, µ). If f : (X, µ) → (Y, ν) is gα-continuous, then the restriction
f|H : (H, µH) → (Y, ν) is gα-continuous.

Proof. Let F be a closed subset of (Y, ν). Then the set M = (f|H)−1(F) =

f−1(F)∩H is a gα-closed subset of (X, µ) by Theorem 3.6. Since (f|H)−1(F) =
M, it is sufficient to show that M is a gα-closed subset of (H, µH). Let G be an
open subset of (H, µH) such that M ⊆ G. Then G is an open subset of (X, µ)
by Lemma 2.5. Since M is gα-closed and H is a gα-closed subset of (X, µ),
µH(M) = µM ∩ H = µM ⊆ G. Therefore, (f|H)−1(F) is a gα-closed subset of
(H, µH). Hence, f|H is gα-continuous.

In Theorem 4.4., the assumption of closedness of H cannot be removed as
can be seen from the following example.

Example 4.5. Let X = {1, 2, 3} and define an isotonic operator µ on X by µϕ =
ϕ, µ{2} = {1, 2} and µ{1} = µ{3} = µ{1, 3} = µ{1, 2} = µ{2, 3} = µX =
X. Let Y = {a, b} and define an isotonic operator ν on Y by νϕ = ϕ, ν{a} = {a}
and ν{b} = νY = Y. Let f : (X, µ) → (Y, ν) be defined by f(1) = f(3) = a
and f(2) = b. Then H = {2, 3} is not a closed subset of (X, µ) and f is gα-
continuous. But the restriction f|H is not gα-continuous.

Theorem 4.6. Let (X, µ) and(Y, ν) be isotonic spaces and let µ be additive. Let
A and B be closed subsets of (X, µ) such that X = A∪B. Let f : (A, µA) → (Y, ν)
and g : (B, µB) → (Y, ν) be gα-continuous maps such that f(x) = g(x) for every
x ∈ A ∩ B. Let h : (X, µ) → (Y, ν) be defined by h(x) = f(x) if x ∈ A and
h(x) = g(x) if x ∈ B. Then h : (X, µ) → (Y, ν) is gα-continuous.

Proof. Let F be a closed subset of (Y, ν). Clearly, h−1(F) = f−1(F)∪ g−1(F).
Since f : (A, µA) → (Y, ν) and g : (B, µB) → (Y, ν) are gα-continuous, f−1(F)
and g−1(F) are gα-closed subset of (A, µA) and (B, µB), respectively. As A is
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a closed subset of (X, µ), f−1(F) is a gα-closed subset of (X, µ) by Theorem
3.6. Similarly, g−1(F) is a gα-closed subset of (X, µ). By Theorem 3.4., f1(F)∪
∪g−1(F) is a gα-closed subset of (X, µ). Therefore, h−1(F) is a gα-closed subset
of (X, µ). Hence, h is gα-continuous.

The following statement is obvious:

Theorem 4.7. Let (X, µ), (Y, ν) and (Z, ρ) be isotonic spaces. If f : (X, µ) →
→ (Y, ν) is gα-continuous and g : (Y, ν) → (Z, ρ) is closure preserving, then
g ◦ f : (X, µ) → (Z, ρ) is gα-continuous.
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By
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Abstract. The object of the present paper is to introduce a new type of Riemannian
manifold called mixed quasi-Einstein manifolds M(QE)n and prove the existence The-
orem of a mixed quasi-Einstein manifold. Some geometric properties of mixed quasi-
Einstein manifolds have been studied. The totally umbilical hypersurfaces of M(QE)n
are also studied. The existence of a mixed quasi-Einstein manifold have been proved by
two non-trivial examples.

1. Introduction

A Riemannian manifold (Mn, g), n = dimM ≥ 2, is said to be an Einstein
manifold if the following condition

(1) S =
r
n
g

holds on M, where S and r denote the Ricci tensor and the scalar curvature of
(Mn, g) respectively. According to ([1],p.432), (1) is called the Einstein metric
condition. Einstein manifolds play an important role in Riemannian Geometry
as well as in general theory of relativity. Also Einstein manifolds form a natural
subclass of various classes of Riemannian manifolds by a curvature condition
impossed on their Ricci tensor ([1],p.432–433). For instance, every Einstein
manifold belongs to the class of Riemannian manifolds (Mn, g) realizing the
following relation:

(2) S(X,Y) = ag(X,Y) + bA(X)A(Y),

where a, b ∈ R and A is a non-zero 1-form such that

(3) g(X,U) = A(X),

AMS Subject Classification (2000): 53C25
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for all vector fields X. Moreover, different structures on Einstein manifolds have
been studied by several authors. In 1993, Tamassay andBinh [26] studiedweakly
symmetric structures on Einstein manifolds.

A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition (2).

It is to be noted that Chaki andMaity [2] also introduced the notoin of quasi-
Einstein manifolds in a different way. They have taken a, b are scalars and the
vector field U metrically equivalent to the 1-form A as a unit vector field. Such
an n-dimensional manifold is denoted by (QE)n. Quasi-Einstein manifolds have
been studied by several authors such as De and Ghosh [8], De and De [9] and
De, Ghosh and Binh [10] and many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the
Einstein field equations as well as during considerations of quasi-umbilical
hypersurfaces of semi-Euclidean spaces. For instance, the Robertson-Walker
spacetimes are quasi-Einstein manifolds. Also, quasi-Einstein manifold can be
taken as a model of the perfect fluid spacetime in general relativity [7]. So quasi-
Einstein manifolds have some importance in the general theory of relativity.

Quasi-Einstein manifolds have been generalized by several authors in sev-
eral ways such as generalized quasi-Einstein manifolds ([3, 11, 12, 18, 22]), su-
per quasi-Einstein manifolds ([4, 13, 20]), pseudo quasi-Einstein manifolds [23],
N(k)-quasi-Einstein manifolds ([19, 24, 25]) and many others.

In a recent paper [21] Nagaraja generalizes the quasi-Einstein manifold as
follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called mixed quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition

(4) S(X,Y) = ag(X,Y) + bA(X)B(Y) + cB(X)A(Y),

where a, b and c are smooth functions and A and B are non-zero 1-forms such
that g(X,U) = A(X) and g(X,V) = B(X) for all vector fields X and U and V
being the orthogonal unit vector fields called the generator of the manifold.

From (4), it follows that

(5) S(Y,X) = ag(Y,X) + bA(Y)B(X) + cB(Y)A(X).

From (4) and (5), it follows that

(b− c)[A(X)B(Y)− A(Y)B(X)] = 0.

This shows that either b = c or, A(X)B(Y) = A(Y)B(X).Motivated by this result
we give the following definition:
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A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called mixed quasi-
Einstein manifold if its Ricci tensor S of type (0, 2) is not identically zero and
satisfies the condition:

(6) S(X,Y) = ag(X,Y) + b[A(X)B(Y) + A(Y)B(X)],

where a, b are scalars of which b ̸= 0 and A and B are non-zero 1-forms such
that

g(X,U) = A(X), g(X,V) = B(X), g(U,V) = 0,
where U, V are unit vector fields. In such a case A, B are called associated 1-
forms andU, V are called the generators of the manifold. Such an n-dimensional
manifold is denoted by the symbolM(QE)n.

If b = 0, then the manifold becomes an Einstein manifold. If A = B, then
the manifold reduces to a quasi-Einstein manifold. This justifies the name mixed
quasi-Einstein manifold.

A Riemannian manifold of quasi-constant curvature was given by Chen and
Yano [6] as a conformally flat manifold with the curvature tensor Ŕ of type (0, 4)
satisfied the condition

Ŕ(X,Y,Z,W) = a[g(Y,Z)g(X,W)− g(X,Z)g(Y,W)]+

+ b[g(X,W)A(Y)A(Z)− g(X,Z)A(Y)A(W)+

+ g(Y,Z)A(X)A(W)− g(Y,W)A(X)A(Z)],(7)

where Ŕ(X,Y,Z,W) = g(R(X,Y)Z,W), R is the curvature tensor of type (1, 3),
a, b are scalar functions of which b ̸= 0 and A is a non-zero 1-form defined by

(8) g(X,U) = A(X),

for all X and U being a unit vector field.
It can be easily seen that if the curvature tensor Ŕ of the form (7), then the

manifold is conformally flat. On the other hand, Gh. Vranceanu [27] defined the
notion of almost constant curvature by the same expression (7). Later A. L. Mo-
canu [17] pointed out that the manifold introduced by Chen and Yano and the
manifold introduced by Gh.Vranceanu are same. Hence a Riemannian manifold
is said to be of quasi-constant curvature if the curvature tensor Ŕ satisfied the
relation (7).

A generalization of a manifold of quasi-constant curvature, called a mani-
fold of mixed quasi-constant curvature is needed for the study of a M(QE)n.
Such a manifold is denoted by the symbolM(QC)n and is defined as follows:

A non-flat Riemannian manifold (Mn, g) (n ≥ 3) is called a manifold of
mixed quasi-constant curvature if its curvature tensor Ŕ of type (0, 4) satisfies
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the condition

Ŕ(X,Y,Z,W) = p[g(Y,Z)g(X,W)− g(X,Z)g(Y,W)]

+ q[g(Y,Z){A(X)B(W) + B(X)A(W)}
+ g(X,W){A(Y)B(Z) + B(Y)A(Z)}
− g(X,Z){A(Y)B(W) + A(W)B(Y)}
− g(Y,W){A(X)B(Z) + A(Z)B(X)}],(9)

where Ŕ(X,Y,Z,W) = g(R(X,Y)Z,W) and p, q are scalars and A, B are non-
zero 1-forms. If the 1-forms A and B are equal, then the manifold reduces to a
manifold of quasi-constant curvature.

A. Gray [16] introduced two classes of Riemannian manifolds determined
by the covariant differentiation of Ricci tensor. The class A consisting of all
Riemannian manifolds whose Ricci tensor S is a Codazzi type tensor,

i.e., (∇XS)(Y,Z) = (∇YS)(X,Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic
parallel,

i.e., (∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0.

The present paper is organised as follows:
Section 2 contains the proof of a theorem which proves the existence of a

M(QE)n. In Section 3, we prove that a conformally flat M(QE)n is a M(QC)n.
In the next section we study sectional curvatures at a point of a conformally flat
M(QE)n. In Section 5, we prove that M(QE)n reduces to (QE)n under certain
conditions and also prove that the associated scalar b is less than 1√

2d, where d
is the length of the Ricci tensor S. Section 6 is devoted to study the nature of the
associated 1-forms of aM(QE)n. Section 7 deals with the study of aM(QE)n sat-
isfying cyclic parallel Ricci tensor under certain conditions. In the next Section
we study totally umbilical hypersurfaces of aM(QE)n. Finally, we construct two
non-trivial examples of aM(QE)n.

2. Existence theorem of a mixed quasi-Einstein manifold

In this sectionwe enquire under what condition amixed quasi-Einsteinman-
ifold exists.
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Theorem 2.1. If the Ricci tensor S of a Riemannian manifold satisfies the rela-
tion

(10) S(X,W)S(Y,Z)− g(X,W)g(Y,Z) = µ[g(X,Z)S(Y,W) + g(Y,W)S(X,Z],

where µ is a non-zero scalar, then the manifold is a mixed quasi-Einstein mani-
fold.

Proof. Let U be a vector field defined by g(X,U) = A(X), ∀X ∈ TM.
Putting X = W = U in (10), we obtain

(11) tS(Y,Z)− |U|2g(Y,Z) = µ[A(Z)A(LY) + A(Y)A(LZ)],

where S(U,U) = t and g(U,U) = |U|2 and L is the symmetric endomor-
phism of the tangent space at each point corresponding to the Ricci tensor S,
and g(LX,Y) = S(X,Y), ∀X,Y ∈ χ(M).

That is,

(12) S(Y,Z) = ag(Y,Z) + b[A(Y)B(Z) + A(Z)B(Y)],

where a = |U|2
t , b = µ

t and B(X) = A(LX).
This shows that the manifold is a mixed quasi-Einstein manifold.

3. Conformally flat M(QE)n (n > 3)

AnM(QE)n (n > 3) is not, in general aM(QC)n. In this section we consider
a conformally flatM(QE)n (n > 3) and show that such aM(QE)n is a M(QC)n.

It is known [28] that in a conformally flat Riemannian manifold (Mn, g)
(n > 3) the curvature tensor Ŕ of type (0, 4) has the following form:

Ŕ(X,Y,Z,W) =
1

n− 2
[g(Y,Z)S(X,W)− g(X,Z)S(Y,W)+

+ g(X,W)S(Y,Z)− g(Y,W)S(X,Z)]−

− r
(n− 1)(n− 2)

[g(Y,Z)g(X,W)− g(X,Z)g(Y,W)].(13)
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Using (6 in (13), we obtain

Ŕ(X,Y,Z,W) =
2a(n− 1)− r
(n− 1)(n− 2)

[g(Y,Z)g(X,W)− g(X,Z)g(Y,W)]+

+
b

n− 2
[g(Y,Z){A(X)B(W) + B(X)A(W)}+

+ g(X,W){A(Y)B(Z) + A(Z)B(Y)}−
− g(X,Z){A(Y)B(W) + A(W)B(Y)}−
− g(Y,W){A(X)B(Z) + B(X)A(Z)}].(14)

Thus we can state the theorem:

Theorem 3.1. Every conformally flatM(QE)n is aM(QC)n.

Remark. For n = 3, the conformal curvature tensor vanishes identically. Hence
a three-dimensionalM(QE)n is a M(QC)n.

4. Sectional curvatures at a point of a conformally flat M(QE)n
(n > 3)

Let U⊥ denote the (n − 1)-dimensional distribution in a conformally flat
M(QE)n (n ≥ 3) orthogonal to U. Then for all X ∈ U⊥, g(X,U) = 0 i.e.,
A(X) = 0.

In this section we shall determine sectional curvature K at the plane deter-
mined by the vectors X,Y ∈ U⊥ or by X, U.

Putting Z = Y andW = X in (14) we get

Ŕ(X,Y,Y,X) =
2a(n− 1)− r
(n− 1)(n− 2)

[g(X,X)g(Y,Y)− {g(X,Y)}2](15)

Then,

K(X,Y) =
2a(n− 1)− r
(n− 1)(n− 2)

(16)

From (6) on contraction we get r = an, where r is the scalar curvature of the
manifold.

Using r = an in (16) we obtain K(X,Y) = a
n−1 .

Again we have

(17) K(X,U) =
Ŕ(X,U,U,X)

g(X,X)g(U,U)− {g(X,U)}2
,



ON MIXED QUASI-EINSTEIN MANIFOLDS 65

and

(18) Ŕ(X,U,U,X) =
2a(n− 1)− r
(n− 1)(n− 2)

g(U,U)g(X,X).

Using the relations (17) and (18) and r = an, we obtain K(X,U) = a
n−1 .

Thus we can state the following:

Theorem 4.1. In a conformally flat M(QE)n (n > 3), the sectional curvature
of the plane determined by two vectors X,Y ∈ U⊥ is a

n−1 , while the sectional
curvature of the plane determined by two vectors X,U is also a

n−1 .

5. Some geometric properties of M(QE)n

At first we suppose that U and V are parallel vector fields in aM(QE)n.
Then ∇XU = 0 and ∇XV = 0, which implies that R(X,Y)U = 0 and

R(X,Y)V = 0. Hence it follows that S(X,U) = 0 and S(X,V) = 0.
Thus from (6) we obtain

aA(X) + bB(X) = 0(19)
bA(X) + aB(X) = 0(20)

From (19) we get

B(X) = −a
b
A(X).

Hence from (6) we obtain

(21) S(X,Y) = ag(X,Y) + k1A(X)A(Y),

where k1 = −a
b .

Again from (20) we get

B(X) = −b
a
A(X).

Hence from (6) we obtain

(22) S(X,Y) = ag(X,Y) + k2A(X)A(Y),

where k2 = −b
a .

Thus we can state the following:

Theorem 5.1. In aM(QE)n if the vector fieldsU andV are parallel, thenM(QE)n
reduces to a (QE)n.
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Again, from (6) we have

S(U,U) = a,(23)
S(V,V) = a,(24)
S(U,V) = b.(25)

If X is a unit vector field, then S(X,X) is the Ricci curvature in the direction of X.
Hence, from (23) and (24), it can be stated that a is the Ricci curvature in the
directions of both U and V.

Let L be the symmetric endomorphism of the tangent space at each point
corresponding to the Ricci tensor S.

Then,

(26) S(X,Y) = g(LX,Y), ∀X,Y ∈ TM

Let d2 denote the square of the length of the Ricci tensor S.
Then,

(27) d2 = S(Lei, ei),

where {ei}, (i = 1, 2, . . . , n) is an orthonormal basis of the tangent space at each
point of M(QE)n.

From (6) we have

(28) S(Lei, ei) = na2 + 2b2 > 0

Therefore
d2 > 2b2,

which means that
b <

1√
2
d.

Thus we can state the following:

Theorem 5.2. In aM(QE)n, the associated scalar a is the Ricci curvature in the
directions of both the generators U and V and the associated scalar b is less than
1√
2d, where d is the length of the Ricci tensor S.

6. Nature of the associated 1-forms of a M(QE)n

A Riemannian manifold is said to satisfy Codazzi type of Ricci tensor [15]
if its Ricci tensor S satisfies the following condition

(29) (∇XS)(Y,Z) = (∇YS)(X,Z).



ON MIXED QUASI-EINSTEIN MANIFOLDS 67

Let us suppose that the manifold under consideration satisfies Codazzi type of
Ricci tensor and the associated scalars are constant. Then from (6) we obtain

(∇XS)(Y,Z) = b[(∇XA)(Y)B(Z) + (∇XB)(Z)A(Y)+
+ (∇XB)(Y)A(Z) + (∇XA)(Z)B(Y)].(30)

Hence from (29) and (30) we have

(∇XA)(Y)B(Z) + (∇XB)(Z)A(Y) + (∇XB)(Y)A(Z)+
+ (∇XA)(Z)B(Y)− (∇YA)(X)B(Z)− (∇YB)(Z)A(X)−
− (∇YB)(X)A(Z)− (∇YA)(Z)B(X) = 0.(31)

Putting Z = U in (31) and using (∇XA)(U) = 0 and (∇XB)(U) = 0, since U is
a unit vector, we get

(∇XB)(Y)− (∇YB)(X) = 0
i.e., dB(X,Y) = 0.

Again, putting Z = V and using (∇XA)(V) = 0 and (∇XB)(V) = 0, since V is a
unit vector, we get

(∇XA)(Y)− (∇YA)(X) = 0
i.e., dA(X,Y) = 0.

Thus we can state the following:

Theorem 6.1. If a M(QE)n satisfies Codazzi type of Ricci tensor and the asso-
ciated scalars are constant, then the associated 1-forms A and B are closed.

7. Generators U and V as Killing vector fields

In this section let us consider the generators U and V of the manifold under
consideration are Killing vector fields. We also suppose the associated scalars of
themanifold are constant. Then we have (£Ug)(X,Y) = 0 and (£Vg)(X,Y) = 0,
where £ denotes the Lie derivative.

Thus we get

(32) g(∇XU,Y) + g(X,∇YU) = 0

and

(33) g(∇XV,Y) + g(X,∇YV) = 0.
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Again, since g(∇XU,Y) = (∇XA)(Y) and g(∇XV,Y) = (∇XB)(Y), we obtain
from (32) and (33)

(34) (∇XA)(Y) + (∇YA)(X) = 0

and

(35) (∇XB)(Y) + (∇YB)(X) = 0,

for all X, Y.
Similarly, we have

(∇XA)(Z) + (∇ZA)(X) = 0,(36)
(∇XB)(Z) + (∇ZB)(X) = 0,(37)
(∇YA)(Z) + (∇ZA)(Y) = 0,(38)
(∇YB)(Z) + (∇ZB)(Y) = 0,(39)

for all X, Y, Z.
Now from (6) and using the relations (34), (35), (36), (37), (38) and (39) we

have
(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0.

Thus we can state the following:

Theorem 7.1. If the generators of a M(QE)n are Killing vector fields and the
associated scalars are constant, then the manifold satisfies cyclic parallel Ricci
tensor.

8. Totally umbilical hypersurfaces ofM(QE)n

Let (V̄, ḡ) be an (n+1)-dimensional Riemannian manifold covered by a sys-
tem of coordinate neighbourhoods {U, yα}. Let (V, g) be a hypersurface of (V̄, ḡ)
defined in a local coordinate system by means of a system of parametric equa-
tion yα = yα(xi), where Greek indices take values 1, 2, . . . , n and Latin indices
take the values 1,2,…,(n+1). Let Nα be the components of a local unit normal to
(V, g). Then we have

gij = ḡαβyαi y
β
j ,(40)

ḡαβNαyβj = 0, ḡαβNαNβ = 1,(41)

yαi y
β
j g

ij = ḡαβ − NαNβ, yαi =
∂yα

∂xi
.(42)
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The hypersurface (V, g) is called a totally umbilical hypersurface ([5, 14]) of
(V̄, ḡ) if its second fundamental form Ωij satisfies
(43) Ωij = Hgij, yαi,j = gijHNα,

where the scalar function H is called the mean curvature of (V, g) given by

H =
1
n
ΣgijΩij.

If, in particular, H = 0, i.e.,
(44) Ωij = 0,
then the totally umbilical hypersurface is called a totally geodesic hypersurface
of (V̄, ḡ).

The equation of Weingarten for (V, g) can be written as Nα,j = −H
n y
α
j .

The structure equations of Gauss and Codazzi ([5, 14]) for (V, g) and (V̄, ḡ)
are respectively given by

Rijkl = R̄αγδFαβγδijkl + H2Gijkl,(45)

R̄αβγδFαβγijk Nδ = H,igjk − H,jgik,(46)

where Rijkl and R̄αβγδ are curvature tensors of (V, g) and (V̄, ḡ) respectively, and

Fαβγδijkl = Fαi F
β
j F

γ
kF

δ
l , Fαi = yαi , Gijkl = gilgjk − gikgjl.

Also we have ([5, 14])

S̄αδFαi Fδj = Sij − (n− 1)H2gij,(47)

S̄αδNαFδi = (n− 1)H,i,(48)

r̄ = r− n(n− 1)H2,(49)

where Sij and S̄αδ are the Ricci tensors of (V, g) and (V̄, ḡ) respectively and r
and r̄ are the scalar curvatures of (V, g) and (V̄, ḡ) respectively.

In terms of local coordinates the relation (6) can be written as
(50) Sij = agij + b[AiBj + AjBi].
Let (V̄, ḡ) be a M(QE)n. Then we get
(51) S̄αβ = aḡαβ + b[AαBβ + AβBα].

Multiplying both sides of (51) by Fαβij and then using (47) and (50), we obtain
H = 0, which implies that the manifold is a totally geodesic hypersurface.

Conversely, we now consider that the manifold (V, g) is totally geodesic
hypersurface, i.e.,
(52) H = 0.
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In view of (52), (47) yeilds

(53) S̄αδFαi Fδj = Sij.

Using (53) in (51), we have the relation (50). Thus we can state the following:

Theorem 8.1. The totally umbilical hypersurface of a M(QE)n is a M(QE)n if
and only if the manifold is a totally geodesic hypersurface.

9. Examples of aM(QE)n

Example 1.We consider a Riemannianmanifold (M4, g) endowedwith themet-
ric g given by

(54) ds2 = gijdxidxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 + (dx4)2,

i, j = 1, 2, 3, 4.
The only non-vanishing components of Christoffel symbols, the curvature

tensor and the Ricci tensor are

Γ1
22 = −x1, Γ2

33 = − x2

(x1)2
, Γ2

12 =
1
x1
, Γ3

23 =
1
x2
,

R1332 = −x2

x1
, S12 = − 1

x1x2
.

It can be easily shown that the scalar curvature of the manifold is zero. Therefore
R4 with the considered metric is a Riemannian manifold (M4, g) of vanishing
scalar curvature. We shall now show that thisM4 is aM(QE)4 i.e., it satisfies the
defining relation (6).

We take the associated scalars as follows:

a =
1

x1(x2)2
, b = − 2

(x1)2x2
.

We choose the 1-forms as follows:

Ai(x) =
{

x1, for i = 2
0, for i = 1, 3, 4

and

Bi(x) =


1
2 , for i = 1
31/2x2
2 , for i = 3

0, for i = 2, 4
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at any point x ∈ M. In our (M4, g), (6) reduces with these associated scalars and
1-forms to the following equation:
(55) S12 = ag12 + b[A1B2 + A2B1]
It can be easily proved that the equation (55) is true.

We shall now show that the 1-forms are unit and orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.
So, the manifold under consideration is aM(QE)4.

Example 2.We consider a Riemannian manifold (R4, g) endowedwith the met-
ric g given by

(56) ds2 = gijdxidxj = (dx1)2 + (x1)2(dx2)2 + (x1 sin x2)2(dx3)2 + (dx4)2,

where x1 ̸= 0 and 0 < x2 < π
2 . Then the non-vanishing components of the

Christoffel symbols and the curvature tensor are

Γ1
22 = −x1, Γ1

33 = −x1(sin x2)2, Γ2
12 = Γ3

13 =
1
x1
,

Γ3
23 = cot x2, Γ2

33 = − sin x2 cos x2, R2332 = −(x1 sin x2)2,
and the components which can be obtained from these by the symmetry prop-
erties. Using the above relations, we can find the non-vanishing components of
Ricci tensor as follows:

S22 = −1, S33 = −(sin x2)2.
Also it can be easily found that the scalar curvature of the manifold is non-
constant and is equal to − 2

(x1)2 ̸= 0.

We take the associated scalars as follows:

a = − 1
(x1)2

, b = x1x2.

We choose the 1-forms as follows:

Ai(x) =
{

x1 sin x2, for i = 3
0, for i = 1, 2, 4

and
Bi(x) =

{
x1, for i = 2
0, for i = 1, 3, 4

at any point x ∈ M. In our (M4, g), (6) reduces with these associated scalars and
1-forms to the following equations:
(57) S22 = ag22 + b[A2B2 + A2B2],
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(58) S33 = ag33 + b[A3B3 + A3B3].

It can be easily proved that the equations (57) and (58) are true.
We shall now show that the 1-forms are unit and orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So, the manifold under consideration is aM(QE)4.
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A LIE ALGEBRA APPROACH TO DIFFERENCE SETS:
HOMAGE TO YAHYA OULD HAMIDOUNE

By
GYULA KÁROLYI

(Received March 19, 2013)

Abstract. We demonstrate how the adjoint representation of the general linear Lie
algebra over a finite dimensional vector space may be used in the study of difference
sets. This approach extends quite naturally to a purely matrix algebraic proof of the
Cauchy–Davenport theorem given previously in the language of tensor algebra by Dias
da Silva and Hamidoune.

1. Introduction

Given an abelian group G ̸= 0, let p(G) denote the smallest possible order
of a nontrivial subgroup in G. In case G = F+ is the additive group of a field F,
we simply write p(F). Thus, p(F) equals the characteristic of the field F if it is
positive, otherwise p(F) = ∞.

For subsets A,B ⊆ G, their sumset is defined as

A+ B := {a+ b | a ∈ A, b ∈ B}.

In the special case when B = −A := {−a | a ∈ A} we simply write A − A
instead ofA+(−A). A classical result of Cauchy [2] and Davenport [3] can be
phrased as follows.

Theorem 1. Let A,B be nonempty subsets of an abelian group G. Then

|A+ B| ≥ min{|A|+ |B| − 1, p(G)}.
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This theorem is originally claimed for the case when G is the group of integers
modulo a prime, but the combinatorial proof carries over to the general case
without any difficulty, see [7]. As a particular case we have

Theorem 2. Let A be a nonempty subset of a field F. Then

|A − A| ≥ min{2|A| − 1, p(F)}.

The aim of this short note is twofold. One is to disseminate the knowledge
that difference sets arise naturally as spectra of the adjoint representation of di-
agonal matrices. We make use of this fact to give a proof of Theorem 2 in Sec-
tion 2. Initiated by the seminal paper of Olson [10], various algebraic tools have
been introduced to obtain finite addition theorems, ranging from polynomial and
multilinear algebra through group extensions to group algebras, representation
theory and even algebraic topology. To the best of our knowledge, a Lie algebra
approach to additive combinatorics has never been investigated before. Thus we
hope this idea might eventually lead to some novel developments.

Our other intention is to bring the masterpiece [5] of Dias da Silva and
Hamidoune closer to the heart of the combinatorics community. The material of
this note was presented at the Additive Combinatorics conference held in Paris
dedicated to the memory of Yahya Ould Hamidoune, followed by an expressed
interest in a written exposition. Our proof of Theorem 2 does not really rely on
the Lie algebra structure. We find that a slight modification allows one to give
a proof of Theorem 1, at least when G = F+, in purely matrix algebraic terms.
This is the content of Section 3. In retrospect, it is only a somewhat simplified
version of the proof of the Cauchy–Davenport theorem found by Dias da Silva
and Hamidoune [4]; see the first remark at the end of the present paper. While
the polynomial method, probably because of its relative simplicity, became very
successful after the appearance of Alon’s Nullstellensatz [1], the multilinear and
in particular the exterior algebra method remained less exploited. We feel that
there is still a lot of potential in these methods and hope that this writing together
with [9] will make them more accessible to the readers interested in additive
combinatorics.

Some argue that the polynomial and multilinear approaches to set addition
are fundamentally the same, even though this similarity only seems to materi-
alize in certain coefficients which apparently encode some combinatorial infor-
mation. It would be very interesting to obtain a deeper understanding of this
coincidence.
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2. Difference Sets

Let A = {a1, . . . , an}. (We assume that the ai are pairwise different.)
Consider the general linear Lie algebra L = gl(n,F), that is, the vector space
Fn×n of n × n matrices over F equipped with the binary operation (X,Y) →
→ [XY] = XY − YX. The elements of L act on the vector space V = Fn the
usual way. Then in the standard basis e1, . . . , en the action of the diagonal matrix
A = diag(a1, . . . , an) is described by

A(α1e1 + · · ·+ αnen) = α1a1e1 + · · ·+ αnanen.

Thus, the spectrum of A is A and its minimal polynomial mA ∈ F[x] is given by

mA(x) = (x− a1)(x− a2) . . . (x− an). (2.1)

For any X ∈ L the map adX : L → L defined by adX(Y) = [XY] is an
endomorphism of L; the adjoint representation of L is obtained by the map L →
→ End(L) sending X to adX. The key observation (see [6, Exercise 1.6]) is that
the spectrum of

φ = adA ∈ End(L)

is the difference set A−A. More precisely, consider the matrix Eij ∈ L whose
ijth entry is 1 and all other entries are 0. Thanks to

φ(Eij) = AEij − EijA = (ai − aj)Eij,

each matrix Eij (1 ≤ i, j ≤ n) is an eigenvector of φ. Since these matrices form
a basis of L, A − A is indeed the set of all eigenvalues of φ. Moreover φ is a
diagonal map, therefore

degmφ = | Spec(φ)| = |A − A|.

In summary, in order to prove Theorem 2 it is enough to control the degree of
mφ. The statement is obvious if p(F) = 2, and in case p(F) = 2k− 1 < 2n− 1
there exists A′ ⊂ A with |A′| = k. Since A′ ⊂ A implies A′ −A′ ⊂ A−A, we
may readily assume that p(F) ≥ 2n− 1. Accordingly, it will be enough to prove
that the maps idL, φ, φ2, . . . , φ2n−2 are linearly independent in End(L). This is
done by exhibiting a matrix X ∈ L such that

X, φ(X), φ2(X), . . . , φ2n−2(X)

are independent in L. To find such an X, first consider the vector

v = e1 + · · ·+ en ∈ V.
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Then Aiv = ai1e1 + · · · + ainen and therefore the matrix formed by the column
vectors v,Av,A2v, . . . ,An−1v ∈ Fn is a Vandermonde matrix whose determinant∏

i<j
(aj − ai)

is different from zero. It follows that v,Av,A2v, . . . ,An−1v form a basis of V.
Consequently the matrices (Aiv)(Ajv)⊤ (0 ≤ i, j ≤ n− 1) form a basis of L. We
refer to the quantity i+ j as the height of the basis element (Aiv)(Ajv)⊤.

Now consider the matrix X = vv⊤ all whose elements are 1. A simple in-
duction reveals that

φk(X) =
k∑

i=0

(−1)i
(
k
i

)
Ak−iXAi

=
k∑

i=0

(−1)i
(
k
i

)
(Ak−iv)(Aiv)⊤

(2.2)

holds for every nonnegative integer k. Here (Ak−iv)(Aiv)⊤ is a basis element of
height k if and only if both i and k− i are smaller than n. Otherwise it is a linear
combination of basis elements of height less than k, for (2.1) implies the relation

Anv =
n∑

i=1

(−1)i−1σi(A)An−iv, (2.3)

where σi(A) stands for the ith elementary symmetric polynomial of the elements
of A. Note that any relation

c0X+ c1φ(X) + c2φ2(X) + · · ·+ crφr(X) = 0

with r ≤ 2n − 2, ci ∈ F, cr ̸= 0 allows φ2n−2(X) to be expressed as a linear
combination of the matrices φi(X), i = 0, 1, . . . , 2n− 3. Therefore to complete
the proof of Theorem 2 it is enough to show that φ2n−2(X) is not in the linear
span of

{φi(X) | i = 0, 1, . . . , 2n− 3}.
Suppose that on the contrary

φ2n−2(X) =
2n−3∑
k=0

αkφ
k(X) (2.4)

holds with some coefficients αk ∈ F. In view of (2.2), the right hand side can be
expressed as a linear combination of basis elements (Aiv)(Ajv)⊤ of height less



A LIE ALGEBRA APPROACH TO DIFFERENCE SETS 79

than 2n− 2. On the other hand,

φ2n−2(X) = (−1)n−1
(
2n− 2
n− 1

)
(An−1v)(An−1v)⊤ + . . . ,

where . . . represents a linear combination of basis elements of height less than
2n − 2. Given that p(F) > 2n − 2, the coefficient of (An−1v)(An−1v)⊤ is not
zero, which contradicts (2.4).

3. The Cauchy–Davenport Theorem

We obtain a proof of Theorem 1 for the additive group G of a field F with
a slight modification of the above argument as follows. Keeping some notation
from the previous section, let B = {b1, . . . , bm} and B = diag(b1, . . . , bm) ∈
∈ Fm×m. Then the spectrum of B is the set B and its minimal polynomial is

mB(x) = (x− b1)(x− b2) . . . (x− bm). (3.1)

Consider the vector space V = Fn×m and the linear map φ ∈ End(V) defined
by φ(X) = AX + XB. Thanks to φ(Eij) = (ai + bj)Eij, this is a diagonal map
whose spectrum is A + B. That is, |A + B| = degmφ. Since we may assume
that p(G) ≥ n+ m− 1, it will be enough to find a matrix X ∈ V such that

X, φ(X), φ2(X), . . . , φn+m−2(X)

are linearly independent in V. Denote by f1, . . . , fm the standard basis of U =
Fm, and let u = f1 + · · · + fm. Then u,Bu,B2u, . . . ,Bm−1u form a basis of U,
therefore the matrices (Aiv)(Bju)⊤ for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1 form a
basis of V. Let X = vu⊤, the n× m all 1 matrix. Then

φk(X) =
k∑

i=0

(
k
i

)
(Ak−iv)(Biu)⊤ (3.2)

holds for every nonnegative integer k. Thanks to (2.3) and the relation

Bmu =
m∑
i=1

(−1)i−1σi(B)Bm−iu

implied by (3.1), each (Ak−iv)(Biu)⊤ which is not a basis element can be ex-
pressed as a linear combination of basis elements of height less than k. Thus to
check that φn+m−2(X) is not in the linear span of

{φi(X) | i = 0, 1, . . . , n+ m− 3}
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one only has to observe that

φn+m−2(X) =
(
n+ m− 2
m− 1

)
(An−1v)(Bm−1u)⊤ + terms of lower height,

where the coefficient
(n+m−2

m−1
)
is not zero due to the assumption p(F) = p(G) ≥

≥ n+ m− 1.

4. Concluding Remarks

1. Tensor products: a different language. The vector spaceV = Fn×m is
isomorphic to the tensor product V⊗U = Fn⊗Fm in a natural way, the matrices
Eij = eif⊤j corresponding to the elements ei⊗fj. In general, matrices of the form
ab⊤ represent elements a⊗b, thus the matrix X belongs to v⊗u. Finally, the map
φ ∈ End(V) can be understood as the Kronecker sum φA⊗ idU+ idV⊗φB of the
linear mapsφA ∈ End(V) andφB ∈ End(U), which denote left multiplication by
A and B respectively. The independence of the vectors v,Av, . . . ,An−1v means
that the cyclic space of φA generated by v is the whole vector space V. Rewriting
the previous section in this language we arrive at a somewhat simplified version
of the proof given in [4]. In particular, the result is obtained by bounding the
dimension of the cyclic space of the Kronecker sum generated by v⊗ u.

2. Restricted set addition. Consider the vector space W of all skew sym-
metric n×nmatrices over F. ThenW ∼= V∧V. A standard basis forW is the set
of matrices Eij − Eji (1 ≤ i < j ≤ n), which correspond to the elements ei ∧ ej.
The map φ ∈ End(W) defined by φ(X) = AX+XA can be understood as the de-
rivative ofφA on V∧V given byDφA = φA∧idV+idV∧φA. The spectrum of this
map is the restricted sumsetA+̇A := {a+a′ | a, a′ ∈ A, a ̸= a′}. Working with
the matrix X = (vv⊤)A − A(vv⊤) corresponding to v ∧ Av, the argument gives
the m = 2 case of the Dias da Silva–Hamidoune theorem as presented in [9] in
the language of wedge products; namely that |A+̇A| ≥ min{p(F), 2|A| − 3}.

3. Towards structural results. Consider the proof of Theorem 2. Suppose
that p(F) > |A − A| = 2n− 1. This means that φ2n−1(X) is a linear combina-
tion of the matrices X, φ(X), . . . , φ2n−2(X) with some coefficients in F. In view
of the relations (2.2) and (2.3) this implies a system of polynomial equations
connecting the numbers σi(A) and these coefficients. Eliminating the latter and
assuming that F is algebraically closed it can be seen that the elements ofAmust
form an arithmetic progression. This way we recover a special case of Vosper’s
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inverse theorem [11]. We do not elaborate on the heavy details here, see [8] for
more substantial inverse theorems obtained using this idea.
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By
TAKASHI NOIRI AND VALERIU POPA
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Abstract. We introduce the notion of (i, j)mIT-open sets determined by operators
mi
X-Int and mi

X-Cl (i = 1, 2) on a bi-m-space (X,m1
X,m2

X). By using (i, j)mIT-open sets,
we introduce and investigate a function f : (X,m1

X,m2
X) → (Y, σ1, σ2) called (i, j)mIT-

continuous. As a special case of (i, j)mIT-continuous functions, we obtain (i, j)-m-
precontinuous functions due to Carpintero et al. [7].

1. Introduction

The concepts of minimal structures (briefly m-structures) and minimal
spaces (briefly m-spaces) are introduced by the present authors in [27] and
[28]. In these papers, they introducedM-continuous functions andm-continuous
functions and obtained their basic properties. Moreover, in [21] and [24], they
extended the study of continuity between bitopological spaces to the study of
m-continuity and M-continuity beteen minimal stuructures. Quite recently, in
[14]-[18], Min and Kim introduced the notions of m-semi-open sets, m-preopen
sets, m-α-open sets and m-β-open sets which are generalizations of semi-open
sets, preopen sets, α-open sets and β-open sets, respectively. And also, they
introduced the notions of m-semi-continuity, m-precontinuity, m-α-continuity
and m-β-continuity which are generalizations of the notions of semi-continuity,
precontinuity, α-continuity and β-continuity, respectively. In [6], [33] and [34],
the notions of m-semi-open sets, m-preopen sets, m-α-open sets and m-β-open
sets are also introduced and studied. In [26], the present authors introduced the
notions of iterate minimal structures and iterate m-continuity.

AMS Subject Classification (2000): 54C08, 54E55
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A set with two minimal structures is used in Theorems 4.1 and 4.2 of [31],
Theorems 4.2 and 4.3 of [32], Theorems 7.4 and 7.5 of [22], Theorem 4.5 of
[23], Theorems 4.2, 4.3 and 5.2 of [25]. The notion of bi-m-spaces is introduced
in [20]. Quite recently, Carpintero et al. [7] introduced the notions of (i, j)-m-
preopen sets and (i, j)-m-precontinuous functions. In the present paper, we intro-
duce the notions of (i, j)mIT-open sets and (i, j)mIT-continuous functions which
are generalizations of (i, j)-m-preopen sets and (i, j)-m-precontinuous functions.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some
generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be
(1) α-open [19] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [10] if A ⊂ Cl(Int(A)),
(3) preopen [12] if A ⊂ Int(Cl(A)),
(4) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).
The family of all α-open (resp. semi-open, preopen, β-open) sets in (X, τ)

is denoted by α(X) (resp. SO(X), PO(X), β(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be
α-closed [13] (resp. semi-closed [8], preclosed [12], β-closed [1]) if the com-
plement of A is α-open (resp. semi-open, preopen, β-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of X. The
intersection of all α-closed (resp. semi-closed, preclosed, β-closed) sets of X
containing A is called the α-closure [13] (resp. semi-closure [8], preclosure [9],
β-closure [2]) of A and is denoted by αCl(A) (resp. sCl(A), pCl(A), β Cl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset of X. The union
of all α-open (resp. semi-open, preopen, β-open) sets of X contained in A is
called the α-interior [13] (resp. semi-interior [8], preinterior [9], β-interior [2])
of A and is denoted by α Int(A) (resp. sInt(A), pInt(A), β Int(A)).

Definition 2.5. A function f : (X, τ) → (Y, σ) is said to be α-continuous [13]
(resp. semi-continuous [10], precontinuous [12], β-continuous [1]) at x ∈ X if
for each open set V containing f(x), there exists an α-open (resp. semi-open,
preopen, β-open) set U of X containing x such that f(U) ⊂ V. The function f is



ITERATE (i, j)-m-STRUCTURES AND ITERATE (i, j)-m-CONTINUITY 85

said to be α-continuous (resp. semi-continuous, precontinuous, β-continuous) if
it has this property at each point x ∈ X.

3. Minimal structures and m-continuity

Definition 3.1. Let X be a nonempty set and P(X) the power set of X. A sub-
family mX of P(X) is called a minimal structure (briefly m-structure) on X [27],
[28] if ∅ ∈ mX and X ∈ mX.

By (X,mX), we denote a nonempty set X with an m-structure mX on X and
call it an m-space. Each member of mX is said to be mX-open (briefly m-open)
and the complement of anmX-open set is said to bemX-closed (brieflym-closed).

Remark 3.1. Let (X, τ) be a topological space. The families τ , α(X), SO(X),
PO(X) and β(X) are all minimal structures on X.

Definition 3.2. Let X be a nonempty set and mX an m-structure on X. For a
subset A of X, the mX-closure of A and the mX-interior of A are defined in [11]
as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X. If mX = τ
(resp. SO(X), PO(X), α(X), β(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), β Cl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), α Int(A), β Int(A)).

Lemma 3.1 (Maki et al. [11]). Let X be a nonempty set and mX a minimal struc-
ture on X. For subsets A and B of X, the following properties hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X \ A) ∈ mX, then mCl(A) = A and if A ∈ mX, then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2. (Popa and Noiri [27]). Let (X,mX) be an m-space and A a subset of
X. Then x ∈ mCl(A) if and only if U ∩ A ̸= ∅ for each U ∈ mX containing x.

Definition 3.3. Anm-structuremX on a nonempty set X is said to have property
B [11] if the union of any family of subsets belonging to mX belongs to mX.
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Remark 3.3. If (X, τ) is a topological space, then the m-structures SO(X),
PO(X), α(X) and β(X) have property B.

Lemma 3.3 (Popa andNoiri [30]). LetX be a nonempty set andmX anm-structure
on X satisfying property B. For a subset A of X, the following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. A function f : (X,mX) → (Y, σ) is said to be m-continuous at
x ∈ X [28] if for each open set V containing f(x), there existsU ∈ mX containing
x such that f(U) ⊂ V. The function f is m-continuous if it has this property at
each x ∈ X.

Remark 3.4. Let (X, τ) be a topological space. If f : (X,mX) → (Y, σ) is m-
continuous andmX = α(X) (resp. SO(X), PO(X), β(X)), then by Definition 3.4,
we obtain Definition 2.5.

Theorem 3.1 (Popa and Noiri [28]). For a function f : (X,mX) → (Y, σ), the
following properties are e uivalent:

(1) f is m-continuous
(2) f−1(V) = mInt(f−1(V)) for every open set V of Y
(3) f−1(F) = mCl(f−1(F)) for every closed set F of Y
(4) mCl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y
(5) f(mCl(A)) ⊂ Cl(f(A)) for every subset A of X
(6) f−1(Int(B)) ⊂ mInt(f−1(B)) for every subset B of Y.

Corollary 3.1 (Popa and Noiri [28]). For a function f : (X,mX) → (Y, σ),
where mX has property B, the following properties are e uivalent:

(1) f is m-continuous
(2) f−1(V) is m-open in X for every open set V of Y
(3) f−1(F) is m-closed in X for every closed set F of Y.
For a function f : (X,mX) → (Y, σ), we define Dm(f) as follows:

Dm(f) = {x ∈ X : f is not m-continuous at x}.

Theorem 3.2 (Popa and Noiri [29]). For a function f : (X,mX) → (Y, σ), the
following properties hold:

Dm(f) =
∪
G∈σ

{f−1(G) \mInt(f−1(G))}

=
∪

B∈P(Y)

{f−1(Int(B)) \mInt(f−1(B))}
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=
∪

B∈P(Y)

{mCl(f−1(B)) \ f−1(Cl(B))}

=
∪

A∈P(X)

{mCl(A) \ f−1(Cl(f(A)))}

=
∪
F∈F

{mCl(f−1(F)) \ f−1(F)},

where F is the family of closed sets of (Y, σ).

4. Iterate (i, j)-m-structures and iterate (i, j)-m-continuity

Definition 4.1. Let X be a nonempty set and m1
X, m2

X be minimal structures on
X. The triple (X,m1

X,m2
X) is called a bi-minimal space (briefly bi-m-space) [20]

or a biminimal structure space [5].

Definition 4.2. Let (X,m1
X,m2

X) be a bi-m-space. A subset A of X is said to be
(1) (i, j)-m-α-open [4] if A ⊂ mi

X Int(m
j
XCl(mi

X Int(A))), where i ̸= j,
i, j = 1, 2,

(2) (i, j)-m-semiopen [4] if A ⊂ mi
XCl(m

j
X Int(A)), where i ̸= j, i, j = 1, 2,

(3) (i, j)-m-preopen [4], [7] if A ⊂ mi
X Int(m

j
XCl(A)), where i ̸= j,

i, j = 1, 2,
(4) (i, j)-m-β-open [4] if A ⊂ mi

XCl(m
j
X Int(mi

XCl(A))), where i ̸= j,
i, j = 1, 2.

The family of all (i, j)-m-α-open (resp. (i, j)-m-semiopen, (i, j)-m-preopen,
(i, j)-m-β-open) sets in a bi-m-space (X,m1

X,m2
X) is denoted by (i, j)mα(X) (resp.

(i, j)m SO(X), (i, j)mPO(X), (i, j)mβ(X)).
Let (X,m1

X,m2
X) be a bi-m-space. Then (i, j)mα(X), (i, j)m SO(X),

(i, j)mPO(X) and (i, j)mβ(X) are determined by iterating operators mInt and
mCl. Hence, they are called (i, j)-m-iterate structures and are denoted by
(i, j)mIT(X) (briefly (i, j)mIT).

Remark 4.1. (1) If m1
X = m2

X = mX, we obtain the definition of iterate m-
structures in [26].

(2) It follows from Lemma 3.1(3)(4) that (i, j)mα(X), (i, j)m SO(X),
(i, j)mPO(X) and (i, j)mβ(X) are minimal structures with property B. If
(i, j)mIT(X) = (i, j)mPO(X), it is also shown in Theorem 3.7 of [7].
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Since (i, j)mIT(X) is a minimal structure on X, we can define the (i, j)mIT-
closure and (i, j)mIT-interior of a subset A of X as in Definition 3.2:

(1) (i, j)mITCl(A) = ∩{F : A ⊂ F,X \ F ∈ (i, j)mIT(X)},
(2) (i, j)mIT Int(A) = ∪{U : U ⊂ A,U ∈ (i, j)mIT(X)}.

Remark 4.2. Let (X,m1
X,m2

X) be a bi-m-space and (i, j)mIT(X) an (i, j)-m-
iterate structure on X. If (i, j)mIT(X) = (i, j)mα(X) (resp. (i, j)m SO(X),
(i, j)mPO(X), (i, j)mβ(X)), then we have

(1) (i, j)mITCl(A) = (i, j)mαCl(A) (resp. (i, j)msCl(A), (i, j)mpCl(A),
(i, j)mβ Cl(A)),

(2) (i, j)mIT Int(A)= (i, j)mα Int(A) (resp. (i, j)ms Int(A), (i, j)mp Int(A),
(i, j)mβ Int(A)).

Remark 4.3. (1) If (i, j)mIT(X) = (i, j)mPO(X), then by Lemmas 3.1 and
3.2, we obtain the results established in Theorem 3.12 (i)-(v) and Theorem 3.14
(i)-(v) of [7].

(2) By Lemma 3.1(1), we obtain Theorem 3.15 of [7].

Definition 4.3. A function f : (X,m1
X,m2

X) → (Y, σ1, σ2), where (Y, σ1, σ2) is a
bitopological space, is said to be (i, j)-m-precontinuous [7] at x ∈ X if for eachσi-
open set V containing f(x), there exists an (i, j)-m-preopen set U of X containing
x such that f(U) ⊂ V. The function f is said to be (i, j)-m-precontinuous if it has
this property at each x ∈ X.

Definition 4.4. Let (X,m1
X,m2

X) be a bi-m-space and (Y, σ1, σ2) a bitopological
space. A function f : (X,m1

X,m2
X) → (Y, σ1, σ2) is said to be (i, j)mIT-continuous

at x ∈ X (on X) if f : (X, (i, j)mIT(X)) → (Y, σi) ism-continuous at x ∈ X (on X).
Hence, f : (X,m1

X,m2
X) → (Y, σ1, σ2) is said to be (i, j)mIT-continuous

at x ∈ X if for each σi-open set V of Y containing f(x), there exists U ∈
∈ (i, j)mIT(X) containing x such that f(U) ⊂ V. The function f is (i, j)mIT-
continuous if it has this property at each x ∈ X.

Remark 4.4. (1) Since (i, j)mIT(X) has property B, by Definition 4.4 we ob-
tain Definition 4.3. Similarly, we can define (i, j)-m-semi-continuity, (i, j)-m-α-
continuity and (i, j)-m-β-continuity.

(2) Ifm1
X = m2

X = mX, we obtain the definition ofmIT-continuous functions
in [26].

Since (i, j)mIT(X) has property B, by Theorems 3.1 and 3.2 and Corollary
3.1 we have the following theorems and corollaries.

Theorem 4.1. For a function f : (X,m1
X,m2

X) → (Y, σ1, σ2), the following prop-
erties are e uivalent:
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(1) f is (i, j)mIT-continuous
(2) f−1(V) is (i, j)mIT-open for every σi-open set V of Y
(3) f−1(F) is (i, j)mIT-closed for every σi-closed set F of Y
(4) (i, j)mITCl(f−1(B)) ⊂ f−1(σi-Cl(B)) for every subset B of Y
(5) f((i, j)mITCl(A)) ⊂ σi-Cl(f(A)) for every subset A of X
(6) f−1(σi- Int(B)) ⊂ (i, j)mIT Int(f−1(B)) for every subset B of Y.

Remark 4.5. (1) If (i, j)mIT(X) = (i, j)mPO(X), then by Theorem 4.1 we
obtain Theorem 4.4 of [7].

(2) If (i, j)mIT(X) = (i, j)mSO(X), (i, j)mα(X) or (i, j)mβ(X), then we
obtain the similar results. For example, if (i, j)mIT(X) = (i, j)m SO(X), we
obtain the following corollary.

Corollary 4.1. For a function f : (X,m1
X,m2

X) → (Y, σ1, σ2), the following
properties are e uivalent:

(1) f is (i, j)-m-semi-continuous
(2) f−1(V) is (i, j)-m-semi-open for every σi-open set V of Y
(3) f−1(F) is (i, j)-m-semi-closed for every σi-closed set F of Y
(4) (i, j)msCl(f−1(B)) ⊂ f−1(σi-Cl(B)) for every subset B of Y
(5) f((i, j)msCl(A)) ⊂ σi-Cl(f(A)) for every subset A of X
(6) f−1(σi- Int(B)) ⊂ (i, j)ms Int(f−1(B)) for every subset B of Y.
For a function f : (X,m1

X,m2
X) → (Y, σ1, σ2), we define D(i,j)mIT(f) as fol-

lows:
D(i,j)mIT(f) = {x ∈ X : f is not (i, j)mIT-continuous at x}.

By Theorem 3.2, we obtain Theorem 4.2.

Theorem 4.2. For a function f : (X,m1
X,m2

X) → (Y, σ1, σ2), the following prop-
erties hold:

D(i,j)mIT(f) =
∪
G∈σi

{f−1(G) \ (i, j)mIT Int(f−1(G))}

=
∪

B∈P(Y)

{f−1(σi- Int(B)) \ (i, j)mIT Int(f−1(B))}

=
∪

B∈P(Y)

{(i, j)mITCl(f−1(B)) \ f−1(σi-Cl(B))}

=
∪

A∈P(X)

{(i, j)mITCl(A) \ f−1(σi-Cl(f(A)))}

=
∪
F∈F

{(i, j)mITCl(f−1(F)) \ f−1(F)},
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where F is the family of σi-closed sets of (Y, σi).
If (i, j)mIT(X) = (i, j)mPO(X), then we obtain the following corollary.

For a function f : (X,m1
X,m2

X) → (Y, σ1, σ2), we define D(i,j)mp(f) as follows:

D(i,j)mp(f) = {x ∈ X : f is not (i, j)-m-precontinuous at x}.

Corollary 4.2. For a function f : (X,m1
X,m2

X) → (Y, σ1, σ2), the following
properties hold:

D(i,j)mp(f) =
∪
G∈σi

{f−1(G) \ (i, j)mp Int(f−1(G))}

=
∪

B∈P(Y)

{f−1(σi- Int(B)) \ (i, j)mp Int(f−1(B))}

=
∪

B∈P(Y)

{(i, j)mpCl(f−1(B)) \ f−1(σi-Cl(B))}

=
∪

A∈P(X)

{(i, j)mpCl(A) \ f−1(σi-Cl(f(A)))}

=
∪
F∈F

{(i, j)mpCl(f−1(F)) \ f−1(F)},

where F is the family of σi-closed sets of (Y, σi).

5. Some properties of (i, j)mIT-continuous functions

Since the study of (i, j)mIT-continuity is reduced from the study of m-
continuity, the properties of (i, j)mIT-continuous functions follow from the prop-
erties of m-continuous functions in [28].

Definition 5.1. Anm-space (X,mX) is said to bem-T2 if for each distinct points
x, y ∈ X, there exist U,V ∈ mX containing x and y, respectively, such that
U ∩ V = ∅.

Definition 5.2. A bi-m-space (X,m1
X,m2

X) is said to be (i, j)mIT-T2 if an m-
space (X, (i, j)mIT(X)) is m-T2 [28].

Hence, a bi-m-space (X,m1
X,m2

X) is (i, j)mIT-T2 if for each distinct points
x, y ∈ X, there exist U,V ∈ (i, j)mIT(X) containing x and y, respectively, such
that U ∩ V = ∅.
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Remark 5.1. Let (X,m1
X,m2

X) be a bi-m-space. If (i, j)mIT(X) = (i, j)mPO(X),
then by Definition 5.2 we obtain the definition of (i, j)-m-pre-T2-spaces in [7].

Lemma 5.1 (Popa and Noiri [28]). If f : (X,mX) → (Y, σ) is an m-continuous
injection and (Y, σ) is a Hausdorff space, then (X,mX) is m-T2.

Theorem 5.1. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)mIT-continuous injec-
tion and (Y, σi) is a Hausdorff space, then (X,m1

X,m2
X) is (i, j)mIT-T2.

Proof. The proof follows from Definition 5.2 and Lemma 5.1.

Remark 5.2. Let (X,m1
X,m2

X) be a bi-m-space. If (i, j)mIT(X) = (i, j)mPO(X),
then by Theorem 5.1 we obtain Theorem 4.9 in [7].

Definition 5.3. Anm-space (X,mX) is said to bem-compact [28] if every cover
of X by mX-open sets of X has a finite subcover.

A subsetK of anm-space (X,mX) is said to bem-compact [28] if every cover
of K by mX-open sets of X has a finite subcover.

Definition 5.4. A bi-m-space (X,m1
X,m2

X) is said to be (i, j)mIT-compact if the
m-space (X, (i, j)mIT(X)) is m-compact.

A subset K of a bi-m-space (X,m1
X,m2

X) is said to be (i, j)mIT-compact if
every cover of K by (i, j)mIT-open sets of X has a finite subcover.

Lemma 5.2 (Popa and Noiri [28]). Let f : (X,mX) → (Y, σ) be an m-continuous
function. If K is an m-compact set of X, then f(K) is compact.

Theorem 5.2. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)mIT-continuous func-
tion and K is an (i, j)mIT-compact set of X, then f(K) is σi-compact.

Proof. The proof follows from Definition 5.4 and Lemma 5.2.
If (i, j)mIT(X) = (i, j)mPO(X), then by Theorem 5.2 we obtain the fol-

lowing corollary.

Corollary 5.1. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)-m-precontinuous
function and K is an (i, j)-m-precompact set of X, then f(K) is σi-compact.

Definition 5.5. A function f : (X,mX) → (Y, σ) is said to have a strongly m-
closed graph (resp. m-closed graph) [28] if for each (x, y) ∈ (X × Y) − G(f),
there exist U ∈ mX containing x and an open set V of Y containing y such that
[U× Cl(V)] ∩G(f) = ∅ (resp. [U× V] ∩ G(f) = ∅).

Definition 5.6. A function f : (X,m1
X,m2

X) → (Y, σ1, σ2) is said to have
a strongly (i, j)mIT-closed graph (resp. (i, j)mIT-closed graph) if a function
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f : (X, (i, j)mIT(X)) → (Y, σi) has a strongly m-closed graph (resp. m-closed
graph).

Hence, a function f : (X,m1
X,m2

X) → (Y, σ1, σ2) has a strongly (i, j)mIT-
closed graph (resp. (i, j)mIT-closed graph) if for each (x, y) ∈ (X × Y) − G(f),
there exist U ∈ (i, j)mIT(X) containing x and a σi-open set V of Y containing y
such that [U× σi-Cl(V)] ∩ G(f) = ∅ (resp. [U× V] ∩ G(f) = ∅).

Remark 5.3. Let (X,m1
X,m2

X) be a bi-m-space. If (i, j)mIT(X) = (i, j)mPO(X),
then by Definition 5.6 we obtain Definition 4.5 of [7].

Lemma 5.3. (Popa and Noiri [28]) If f : (X,mX) → (Y, σ) is an m-continuous
function and (Y, σ) is a Hausdorff space, then f has a strongly m-closed graph.

Theorem 5.3. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)mIT-continuous func-
tion and (Y, σi) is a Hausdorff space, then G(f) is strongly (i, j)mIT-closed.

Proof. The proof follows from Definition 5.6 and Lemma 5.3.
If (i, j)mIT(X) = (i, j)mPO(X), then by Theorem 5.3 we obtain the fol-

lowing corollary which is an improvement of Theorem 4.7 of [7].

Corollary 5.2. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)-m-precontinuous
function and (Y, σi) is a Hausdorff space, thenG(f) is strongly (i, j)-m-preclosed.

Lemma 5.4 (Popa and Noiri [28]). If f : (X,mX) → (Y, σ) is a surjective function
with a strongly m-closed graph, then (Y, σ) is Hausdorff.

Theorem 5.4. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is a surjective function with a
strongly (i, j)mIT-closed graph, then (Y, σi) is Hausdorff.

Proof. The proof follows from Definition 5.6 and Lemma 5.4.
If (i, j)mIT(X) = (i, j)mPO(X), then by Theorem 5.4 we obtain the fol-

lowing corollary.

Corollary 5.3. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is a surjective function with a
strongly (i, j)-m-preclosed graph, then (Y, σi) is Hausdorff.

Lemma 5.5 (Popa and Noiri [28]). Let (X,mX) be anm-space andmX have prop-
erty B. If f : (X,mX) → (Y, σ) is an injective m-continuous function with an
m-closed graph, then X is m-T2.

Theorem 5.5. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an injective (i, j)mIT-
continuous function with an (i, j)mIT-closed graph, then X is (i, j)mIT-T2.

Proof. Since (i, j)mIT(X) has property B, the proof follows from Definition
5.6 and Lemma 5.5.
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Remark 5.4. Let (X,m1
X,m2

X) be a bi-m-space. If (i, j)mIT(X) = (i, j)mPO(X),
then by Theorem 5.5 we obtain Theorem 4.10 of [7].

Definition 5.7. An m-space (X,mX) is said to be m-connected [28] if X cannot
be written as the union of two nonempty disjoint sets of mX.

Definition 5.8. A bi-m-space (X,m1
X,m2

X) is said to be (i, j)mIT-connected if
an m-space (X, (i, j)mIT(X)) is m-connected.

Hence, a bi-m-space (X,m1
X,m2

X) is (i, j)mIT-connected if X cannot be writ-
ten as the union of two nonempty disjoint sets of (i, j)mIT(X).

Lemma 5.6. Let f : (X,mX) → (Y, σ) be a function, where mX has property B.
If f is an m-continuous surjection and (X,mX) is m-connected, then (Y, σ) is
connected.

Theorem 5.6. If f : (X,m1
X,m2

X) → (Y, σ1, σ2) is an (i, j)mIT-continuous surjec-
tion and (X,m1

X,m2
X) is (i, j)mIT-connected, then (Y, σi) is connected.

Proof. The proof follows from Definition 5.8, Lemma 5.6 and the fact that
(i, j)mIT(X) has property B.
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Abstract. We introduce six forms of connected sets on a generalized topological
space with a hereditary class and investigate their relations and also their unified prop-
erties.

1. Introduction

The notion of ideal topological spaces was studied by Kuratowski [9] and
Vaidyanathswamy [14]. The notion was further investigated by Janković and
Hamlett [7]. Recently, the notion of ∗-connected ideal topological spaces has
been introduced and studied in [6, 13, 10].

Császár [5] introduced the notion of a generalized topological space with
hereditary class. This is a generalization of an ideal topological space. In this
paper, we introduce six forms of connected sets on a generalized topological
space with a hereditary class and investigate their relations and also their unified
properties.

2. Preliminaries

Let X be a nonempty set and P(X) the power set of X. A subset µ of P(X) is
called a generalized topology (GT) [1, 2, 3] if ∅ ∈ µ and the arbitrary union of
members of µ is in µ. A generalized topology µ is called a quasi-topology [4]
on X if U, V ∈ µ implies U ∩ V ∈ µ. A nonempty subset H of P(X) is called a
hereditary class [5] of X if A ⊂ B, B ∈ H implies A ∈ H. For each subset A of
X, a subset A∗(H) (briefly A∗) of X is defined in [5] as follows: A∗(H) = {x ∈
∈ X : U ∩ A /∈ H for every U ∈ µ containing x}. If cµ∗(A) = A ∪ A∗ for each
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subset A of X, then µ∗ = {A ⊂ X : cµ∗(X − A) = X − A} is a generalized
topology on X finer than µ [5].

Let us recall some properties established in [5].

Lemma 2.1. [5] For a subset A of X, the following properties hold:
(1) A ⊂ B implies A∗ ⊂ B∗,
(2) A∗ is a µ-closed, that is, X− A∗ ∈ µ,
(3) A∗ ⊂ cµ(A), where cµ(A) =

∩
{F ⊂ X : A ⊂ F, X− F ∈ µ}.

Lemma 2.2. [5] The family B= {M− H : M ∈ µ, H ∈ H} is a base for µ∗.
In the sequel, a generalized topological space (X, µ) with a hereditary class

H is dented by (X, µ,H) and is called a GTSH. Let (X, µ,H) be a GTSH. The
closure of a subset A of X in (X, µ∗) is denoted by cµ∗(A).

3. Mixed separated sets

Definition 3.1. Let (X, µ,H) be a generalized topological space with a hered-
itary class H. Nonempty disjoint subsets A, B of (X, µ,H) are said to be

(1) cµ-cµ∗-separated if cµ(A) ∩ cµ∗(B) = ∅ = cµ∗(A) ∩ cµ(A),
(2) cµ-I-separated if cµ(A) ∩ B = ∅ = A ∩ cµ(B),
(3) cµ∗-I-separated if cµ∗(A) ∩ B = ∅ = A ∩ cµ∗(B),
(4) cµ-∗-separated if cµ(A) ∩ B∗ = ∅ = A∗ ∩ cµ(B),
(5) cµ∗-∗-separated if cµ∗(A) ∩ B∗ = ∅ = A∗ ∩ cµ∗(B),
(6) ∗-I-separated if A∗ ∩ B = ∅ = A ∩ B∗.

Theorem 3.2. For a subset of (X, µ,H), the following implications hold:

cµ-cµ∗- separated +3

��

cµ-I- separated +3 cµ∗-I- separated

��
cµ-∗- separated +3 cµ∗-∗- separated +3 ∗-I- separated

Proof. Since µ ⊂ µ∗, A ∪ A∗ = cµ∗(A) ⊂ cµ(A) for every subset A of X.
For converse implications we shall discuss in the following example. It is

also shown in (1) and (2) that “cµ-I-separated” and “cµ∗-∗-separated” are inde-
pendent.
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Examples.

(1) Let X = {a, b, c}, µ = {∅, {a}, {c}, {a, c},X} and H = {∅}. Then µ-
closed sets are: X, {b, c}, {a, b}, ∅ and {b}. Now cµ({a}) ∩ ({c}) = ({a, b}) ∩
∩ ({c}) = ∅ = ({a}) ∩ ({b, c}) = ({a}) ∩ cµ({c}) and hence {a} and {c}
are cµ-I-separated. Further ({a})∗ = {a, c}, ({b})∗ = {b, c} and ({a})∗ ∩
∩ ({c}) = ∅ = ({a})∩ ({c})∗. But cµ({a})∩ cµ∗({c}) = ({a, b})∩ ({b, c}) ̸=
̸= ∅ and ({a})∗ ∩ cµ∗({c}) = {a, c} ∩ {b, c} = {c} ̸= ∅. Therefore, {a}
and {c} are neither cµ-cµ∗-separated nor cµ∗-∗-separated but cµ-I-separated and
∗-I-separated.

(2) Let X = {a, b, c}, µ = {∅, {a, b},X}, H = {∅, {a}, {b}, {a, b}}. Now
({c})∗ = {c}; cµ({a, b}) = X. Therefore, {c} and {a, b} are neither cµ-∗-
separated nor cµ-I-separated. Again ({c})∗∩ cµ∗({a, b}) = {c}∩{a, b} = ∅ =
cµ∗({c}) ∩ ({a, b})∗ = {c} ∩ ∅ = ∅ (since ({a, b})∗ = ∅). Here {c} and {a, b}
are cµ∗-∗-separated.

(3) Let X = {a, b, c, d}, µ = {∅,X, {a}, {a, b}, {a, c, d}} and H =
{∅, {a}, {b}, {a, b}}. Now ({a})∗ = ∅, and cµ∗({a}) ∩ ({b, c, d}) = {a} ∩
∩ {b, c, d} = ∅ = ({a}) ∩ cµ∗({b, c, d}). Then {a} and {b, c, d} are cµ∗-I-
separated but not cµ-I-separated.

(4) Let X = {a, b}, µ = {∅,X, {a}}, H = {∅, {a}, {b}}. Now ({a})∗ =
∅, ({b})∗ = ∅. Therefore {a} and {b} are cµ-∗-separated. Again {a} and {b}
are not cµ-I-separated and hence not cµ-cµ∗-separated, because cµ({a}) = X.

Theorem 3.3. Let A, B be nonempty disjoint subsets of (X, µ,H). Then A and
B are cµ∗-I-separated if and only if they are ∗-I-separated.

Proof. LetA andB be ∗-I-separated. ThenA∗∩B = ∅ = A∩B∗. Hence cµ∗(A)∩
∩B = (A∗∪A)∩B = (A∗∩B)∪(A∩B) = ∅. Similarly,A∩cµ∗(B) = ∅. Therefore,
A and B are cµ∗-I-separated. The converse is obvious by Theorem 3.2.

Theorem 3.4. Let A and B be cµ-I-separated (resp. cµ-cµ∗-separated, cµ-∗-
separated, cµ∗-∗-separated, ∗-I-separated, cµ∗-I-separated) in a GTSH (X, µ,H).
If C ⊂ A and D ⊂ B, then C and D are also cµ-I-separated (resp. cµ-cµ∗-
separated, cµ-∗-separated, cµ∗-∗-separated, ∗-I-separated, cµ∗-I-separated).

Proof. The proof is obvious from the fact that cµ, cµ∗ and ()∗ are enlarging
operators [3].

Theorem 3.5. Let (X, µ,H) be a GTSH. If A and B are nonempty disjoint µ-
open sets, then A and B are cµ-I-separated and hence they are ∗-I-separated.

Proof. The proof is obvious from Theorem 3.2 and the following facts:
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cµ(A)∩B = ∅ since cµ(A) ⊂ cµ(X−B) and similarly cµ(B)∩A = ∅ since
cµ(B) ⊂ cµ(X− A).

Theorem 3.6. Let (X, µ,H) be a GTSH. If A and B are nonempty disjoint µ∗-
open sets, then A and B are cµ∗-I-separated and hence they are ∗-I-separated.

Proof. The proof is obvious from Theorem 3.2 and the following facts:
cµ∗(A) ∩ B = ∅ since cµ∗(A) ⊂ cµ∗(X − B) and similarly cµ∗(B) ∩ A = ∅

since cµ∗(B) ⊂ cµ∗(X− A).

Lemma 3.7. Let (X, µ,H) be a GTSH with a quasi-topology µ. If U ∈ µ and
V ∈ µ∗, then U ∩ V ∈ µ∗.

Proof. Let x ∈ U ∩ V. Then x ∈ U and x ∈ V ∈ µ∗. By Lemma 2.2, there
exist M ∈ µ and H ∈ H such that x ∈ M − H ⊂ V. Then, we have x ∈ U ∩
∩ (M − H) = U ∩ M ∩ (X − H) = (U ∩ M) ∩ (U ∩ (X − H)) = (U ∩ M) ∩
∩ (U−H) = (U∩M)∩ (U− (U∩H)) = (U∩M)− (U∩H), where U∩M ∈ µ
and U ∩ H ∈ H. Since x ∈ (U ∩M)− (U ∩ H) ⊂ U ∩ V, U ∩ V ∈ µ∗.

Theorem 3.8. Let (X, µ,H) be a GTSH with a qusi-topology µ. If A and B are
cµ-I-separated (resp. cµ∗-I-separated, cµ-cµ∗-separated) of X and A∪B ∈ µ, then
A, B ∈ µ∗.

Proof. We prove this theorem for cµ∗-I-separated sets.
Since A and B are cµ∗-I-separated, then B = (A∪ B)∩ (X− cµ∗(A)). Since

A ∪ B ∈ µ and cµ∗(A) is µ∗-closed in X, by Lemma 3.7 B is µ∗-open. By the
similar way, we obtain that A is µ∗-open.

For the next theorem, we define the following:

Definition 3.9. A subset A of a GTSH (X, µ,H) is called µ∗-dense-in-itself if
A = A∗.

Theorem 3.10. Let (X, µ,H) be a GTSH with a quasi-topology µ. If A and B
are cµ-∗-separated (resp. ∗-I-separated, cµ∗-∗-separated) sets of X, µ∗-dense-in-
itself and A ∪ B ∈ µ, then A and B are µ∗-open.

Proof. We shall prove the theorem for the case of cµ∗-∗-separated sets.
Since A and B are cµ∗-∗-separated, then A = (A ∪ B) ∩ (X − B∗). Since

A ∪ B ∈ µ and X − B∗ is µ-open in X, then A is µ-open and hence µ∗-open.
Again from B = (A ∪ B) ∩ (X− cµ∗(A)), by Lemma 3.7 B is also µ∗-open.



MIXED CONNECTEDNESS IN GTS VIA HEREDITARY CLASSES 101

4. Mixed connectedness

Definition 4.1. A subset A of a GTSH (X, µ,H) is said to be P-Q-connected if
A is not the union of two P-Q-separated sets in (X, µ,H), where P and Q denote
the operations in Definition 3.1.

For example, in case P = cµ∗ and Q = ∗, (X, µ,H) is said to be cµ∗-∗-
connected if X cannot be written as the disjoint union of two nonempty cµ∗-∗-
separated sets.

Theorem 4.2. For a subset of (X, µ,H), the following implications hold:

cµ-cµ∗- connected ks
KS

cµ-I- connected ks cµ∗-I- connectedKS

��
cµ-∗- connected ks cµ∗-∗- connected ks ∗-I- connected

Proof. This is an immediate consequence of Theorem 3.2 and Theorem 3.3.
From Example (2), we have every cµ-∗-connected space need not be

a cµ∗-∗-connected space in general. From Example (3), we get every cµ-I-
connected space need not be a cµ∗-I-connected space in general. Again from
Example (4), every cµ-cµ∗-connected space need not be a cµ-∗-connected space.
Further from Example (1), every cµ-cµ∗-connected space need not be a cµ-I-
connected space. By Examples (1) and (2), cµ-I-connectedness and cµ∗-∗-
connectedness are independent.

Theorem 4.3. Let (X, µ,H) be a GTSH. If A is a cµ-I-connected (resp. cµ-cµ∗-
connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-connected, cµ∗-I-connected)
subset of X andH, G are cµ-I-separated (resp. cµ-cµ∗-separated, cµ-∗-separated,
cµ∗-∗-separated, ∗-I-separated, cµ∗-I-separated) subsets of X with A ⊂ H ∪ G,
then either A ⊂ H or A ⊂ G.

Proof. We shall prove this theorem only for cµ∗-∗-connectedness.
Let A be a cµ∗-∗-connected set. Let A ⊂ H∪G. Since A = (A∩H)∪(A∩G),

then cµ∗(A ∩ G) ∩ (A ∩ H)∗ ⊂ cµ∗(G) ∩ H∗ = ∅. By the similar way, we have
(A∩G)∗∩cµ∗(A∩H) = ∅. Suppose A∩H and A∩G are nonempty. Then A is not
cµ∗-∗-connected. This is a contradiction. Thus, either A ∩ H = ∅ or A ∩ G = ∅.
This implies that A ⊂ H or A ⊂ G.

Theorem 4.4. If A and B are cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-
connected, cµ∗-∗-connected, ∗-I-connected, cµ∗-I-connected) sets of a GTSH
(X, µ,H) such that none of them is cµ-I-separated (resp. cµ-cµ∗-separated,
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cµ-∗-separated, cµ∗-∗-separated, ∗-I-separated, cµ∗-I-separated), then A ∪ B is
cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-
connected, cµ∗-I-connected).

Proof. LetA andB be cµ-I-connected inX. SupposeA∪B is not cµ-I-connected.
Then, there exist two nonempty disjoint cµ-I-separated sets G and H such that
A ∪ B = G ∪ H. Since A and B are cµ-I-connected, by Theorem 4.3, either A ⊂
⊂ G and B ⊂ H or B ⊂ G and A ⊂ H. Now if A ⊂ G and B ⊂ H, then
A ∩ H = B ∩ G = ∅. Therefore, (A ∪ B) ∩ G = (A ∩ G) ∪ (B ∩ G) = (A ∩
∩G) ∪ ∅ = A ∩G = A. Also, (A ∪ B) ∩H = (A ∩H) ∪ (B ∩H) = B ∩H = B.
Now, B ∩ cµ(A) = ((A ∪ B) ∩ H) ∩ cµ((A ∪ B) ∩ G) = H ∩ cµ(G) = ∅ and
cµ(B)∩A = cµ((A∪B)∩H)∩ ((A∪B)∩G) = cµ(H)∩G = ∅. Thus, A and B
are cµ-I-separated, which is a contradiction. Hence, A ∪ B is cµ-I-connected.

The proof of other connectedness are obvious from the fact that cµ, ()∗ and
cµ∗ are enlarging operator.

Theorem 4.5. If {Mi : i ∈ I} is a nonempty family of cµ-I-connected (resp.
cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-connected, cµ∗-I-
connected) sets of a GTSH (X, µ,H) with ∩i∈IMi ̸= ∅, then ∪i∈IMi is
cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-
connected, cµ∗-I-connected).

Proof. We shall prove this theorem only for cµ-cµ∗-connectedness.
Suppose ∪i∈IMi is not cµ-cµ∗-connected. Then we have ∪i∈IMi = H ∪ G,

whereH andG are cµ-cµ∗-separated sets in X. Since∩i∈IMi ̸= ∅, we have a point
x ∈ ∩i∈IMi. Since x ∈ ∪i∈IMi, either x ∈ H or x ∈ G. Suppose that x ∈ H. Since
x ∈ Mi for each i ∈ I, then Mi and H intersect for each i ∈ I. By Theorem 4.3,
Mi ⊂ H or Mi ⊂ G. Since H and G are disjoint, Mi ⊂ H for all i ∈ I and hence
∪i∈IMi ⊂ H. This implies that G is empty. This is a contradiction. Suppose that
x ∈ G. By the similar way, we have that H is empty. This is a contradiction.
Thus, ∪i∈IMi is cµ-cµ∗-connected.

Theorem 4.6. Let (X, µ,H) be a GTSH, {Aα : α ∈ △} be a family of
cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-
connected, cµ∗-I-connected) sets and A be a cµ-I-connected (resp. cµ-cµ∗-
connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-connected, cµ∗-I-connected)
set. If A ∩ Aα ̸= ∅ for every α ∈ △, then A ∪ (∪α∈△Aα) is
cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-
connected, cµ∗-I-connected).
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Proof. We shall prove the theorem for only ∗-I-connected sets. Since A∩Aα ̸=
̸= ∅ for each α ∈ △, by Theorem 4.3, A ∪ Aα is ∗-I-connected for each α ∈ △.
Moreover, A∪ (∪Aα) = ∪(A∪Aα) and ∩(A∪Aα) ⊃ A ̸= ∅. Thus by Theorem
4.5, A ∪ (∪Aα) is ∗-I-connected.

Theorem 4.7. If A is a cµ-cµ∗-connected subset of (X, µ,H) and A ⊂ B ⊂
⊂ cµ∗(A), then B is also a cµ-cµ∗-connected subset of X.

Proof. Suppose B is not a cµ-cµ∗-connected subset of (X, µ,H) then there exist
cµ-cµ∗-separated sets H and G such that B = H ∪ G. This implies that H and
G are nonempty and cµ(G) ∩ cµ∗(H) = ∅ = G ∩ H. By Theorem 4.3, we have
that either A ⊂ H or A ⊂ G. Suppose that A ⊂ H. Then cµ∗(A) ⊂ cµ∗(H) and
G ∩ cµ∗(A) ⊂ cµ(G) ∩ cµ∗(H) = ∅. This implies that G ⊂ B ⊂ cµ∗(A) and
G = cµ∗(A) ∩ G = ∅. Thus G is an empty set. Since G is nonempty, this is a
contradiction. Hence, B is cµ-cµ∗-connected.

Corollary 4.8. If A is a cµ∗-I-connected subset of (X, µ,H) and A ⊂ B ⊂
⊂ cµ∗(A), then B is also a cµ∗-I-connected subset of X.

Theorem 4.9. If A is a cµ-I-connected subset of (X, µ,H) and A ⊂ B ⊂ cµ(A),
then B is also a cµ-I-connected subset of X.

Proof. The proof is similar with Theorem 4.4.

Theorem 4.10. If A is a cµ-∗-connected (resp. cµ∗-∗-connected, ∗-I-connected)
subset of (X, µ,H) and A ⊂ B ⊂ A∗, then B is also a cµ-∗-connected (resp.
cµ∗-∗-connected, ∗-I-connected) subset of X.

Proof. We shall prove this theorem only for cµ-∗-connectedness.
Suppose B is not a cµ-∗-connected subset of (X, µ,H) then there exist cµ-∗-
separated sets H and G such that B = H ∪ G. This implies that H and G are
nonempty and cµ(G) ∩ H∗ = ∅ = G∗ ∩ cµ(H) = G ∩ H. By Theorem 4.3,
we have that either A ⊂ H or A ⊂ G. Suppose that A ⊂ H. Then A∗ ⊂ H∗.
This implies that G ⊂ B ⊂ A∗ and cµ(G) = cµ(A∗) ∩ cµ(G) = A∗ ∩ cµ(G) ⊂
⊂ H∗ ∩ cµ(G) = ∅. Thus G is an empty set. Since G is nonempty, this is a
contradiction. Hence, B is cµ-∗-connected.

Corollary 4.11. Let (X, µ,H) be a GTSH. For a subset A of X, the following
properties hold:

(1) If A is cµ-I-connected, then cµ(A) is cµ-I-connected.
(2) If A is cµ∗-I-connected, then cµ∗(A) is cµ∗-I-connected.
(3) If A is cµ-cµ∗-connected, then cµ∗(A) is cµ-cµ∗-connected.
(4) If A is cµ-∗-connected and A ∩ A∗ ̸= ∅, then cµ∗(A) is cµ-∗-connected.
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(5) If A is cµ∗-∗-connected and A∩A∗ ̸= ∅, then cµ∗(A) is cµ∗-∗-connected.
(6) If A is ∗-I-connected and A ∩ A∗ ̸= ∅, then cµ∗(A) is ∗-I-connected.

5. Mixed components

Definition 5.1. Let (X, µ,H) be a GTSH and x ∈ X. Then union of all
cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-connected, ∗-I-
connected, cµ∗-I-connected) subsets of X containing x is called the cµ-I-
component (resp. cµ-cµ∗-component, cµ-∗-component, cµ∗-∗-component, ∗-I-
component, cµ∗-I-component) of X containing x.

Theorem 5.2. Each cµ-I-component (resp. cµ-cµ∗-component, cµ-∗-component,
cµ∗-∗-component, ∗-I-component, cµ∗-I-component) of a GTSH (X, µ,H) is
a maximal cµ-I-connected (resp. cµ-cµ∗-connected, cµ-∗-connected, cµ∗-∗-
connected, ∗-I-connected, cµ∗-I-connected) set of X.

Theorem 5.3. The set of all distinct cµ-I-components (resp. cµ-cµ∗-components,
cµ-∗-components, cµ∗-∗-components, ∗-I-components, cµ∗-I-components)
forms a partition of X.

Theorem 5.4. Each cµ-cµ∗-component (resp. cµ-∗-component, cµ∗-∗-compo-
nent, ∗-I-component, cµ∗-I-component) of a GTSH is µ∗-closed in X.

Proof. The proof follows from Corollary 4.11.

Conclusions
If µ andH in GTSH (X, µ,H) are replaced by the topology τ and the ideal

I in an ideal topological space (X, µ, I), then we obtain the following:
(1) cµ-I-connectedness coincides with connectedness in (X, τ),
(2) cµ-∗-connectedness coincides with ∗-Cl-connectedness in [10],
(3) cµ∗-∗-connectedness coincides with ∗-Cl∗-connectedness in [10],
(4) ∗-I-connectedness coincides with ∗∗-connectedness in [10],
(5) cµ∗-I-connectedness coincides with connectedness of (X, τ∗(I)).
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Abstract. The object of the present paper is to study weakly-Q-symmetric mani-
folds (WQS)n. At first some geometric properties of (WQS)n (n > 2) have been studied.
Next we consider the decomposability of (WQS)n. Finally, we give two examples of the
(WQS)4.

1. Introduction

As is well known, symmetric spaces play an important role in differential
geometry. The study of Riemannian symmetric spaces was initiated in the late
twenties by Cartan [4], who, in particular, obtained a classification of those
spaces. Let (Mn, g), (n = dimM) be a Riemannian manifold, i.e., a manifold
M with the Riemannian metric g, and let ∇ be the Levi-Civita connection of
(Mn, g). A Riemannian manifold is called locally symmetric [4] if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, g). This condition of local
symmetry is equivalent to the fact that at every point P ∈ M, the local geo-
desic symmetry F(P) is an isometry [18] . The class of Riemannian symmetric
manifolds is very natural generalization of the class of manifolds of constant
curvature. During the last six decades the notion of locally symmetric manifolds
have been weakened by many authors in several ways to different extent such
as conformally symmetric manifolds by Chaki and Gupta [5], recurrent mani-
folds introduced by Walker [25], conformally recurrent manifolds by Adati and
Miyazawa [1], pseudo symmetric manifolds by Chaki [6], weakly symmetric
manifolds by Tamássy and Binh [23] etc.

AMS Subject Classification (2000): 53C25
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A non-flat Riemannian manifold (Mn, g) (n > 2) is called weakly symmet-
ric [23] if the curvature tensor R of type (0,4) satisfies the condition

(∇XR)(Y,Z,U,V) = A(X)R(Y,Z,U,V) + B(Y)R(X,Z,U,V)+
+C(Z)R(Y,X,U,V) + D(U)R(Y,Z,X,V) + E(V)R(Y,Z,U,X),

(1.1)

where R(Y,Z,U,V) = g(R(Y,Z)U,V), R is the curvature tensor of type (1,3)
and A,B,C,D and E are 1-forms respectively which are non-zero simultane-
ously. Such a manifold is denoted by (WS)n. It was proved in [8] that the 1-forms
must be related as B = C and D = E.

That is, the weakly symmetric manifold is characterized by the condition
(∇XR)(Y,Z,U,V) = A(X)R(Y,Z,U,V) + B(Y)R(X,Z,U,V)+
+B(Z)R(Y,X,U,V) + D(U)R(Y,Z,X,V) + D(V)R(Y,Z,U,X).

(1.2)

The 1-forms A,B andD are called the associated 1-forms. If in (1.2) the 1-form A
is replaced by 2A; B and D are replaced by A, then the manifold (Mn, g) reduces
to a pseudo symmetric manifold in the sense of Chaki [6].

Again if A = B = D = 0, the manifold defined by (1.2) reduces to a
symmetric manifold in the sense of Cartan. The existence of a (WS)n was proved
by Prvanović [21] and a concrete example is given by De and Bandyopadhyay
([8], [9]).

Weakly symmetric manifolds have been studied by several authors ([2], [3],
[7], [10], [11], [13], [14], [15], [16], [19], [20]) and many others.

Let ρ1, ρ2 and ρ3 are the basic vectors corresponding to the 1-forms A, B
and D respectively, that is

g(X, ρ1) = A(X), g(X, ρ2) = B(X) and g(X, ρ3) = D(X) for all X. (1.3)
A. Gray [12] introduced the notion of cyclic parallel Ricci tensor and Co-

dazzi type of Ricci tensor. A Riemannian manifold is said to satisfy cyclic par-
allel Ricci tensor if its Ricci tensor S of type (0,2) is non-zero and satisfy the
condition

(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0. (1.4)
Again a Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if
its Ricci tensor S of type (0,2) is non-zero and satisfy the following condition

(∇XS)(Y,Z) = (∇YS)(X,Z). (1.5)
In a recent paper Mantica and Suh [17] introduced a new curvature tensor

of type (1,3) in an n-dimensional Riemannian manifold (Mn, g) (n > 2) denoted
by Q and defined by

Q(X,Y)W = R(X,Y)W− ψ

(n− 1)
[g(Y,W)X− g(X,W)Y], (1.6)
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where ψ is an arbitrary scalar function. Such a tensorQ is known asQ-curvature
tensor. The notion of Q tensor is also suitable to reinterpret some differential
structures on a Riemannian manifold.

Now (1.6) can be expressed as

Q(X,Y,W,U) =

= R(X,Y,W,U)− ψ

(n− 1)
[g(Y,W)g(X,U)− g(X,W)g(Y,U)],

(1.7)

where Q(X,Y,W,U) = g(Q(X,Y)W,U). Since the Q-curvature tensor satisfies
the properties of the Riemannian curvature tensor, therefore in a similar way as
in [8] we can prove that weakly-Q-symmetric manifolds is characterized by the
condition

(∇XQ)(Y,W,U,V) = A(X)Q(Y,W,U,V) + B(Y)Q(X,W,U,V)+
+B(W)Q(Y,X,U,V) + D(U)Q(Y,W,X,V) + D(V)Q(Y,W,U,X),

(1.8)

where the 1-forms A,B and D are non-zero simultaneously. Such a manifold is
denoted by (WQS)n. If ψ = 0, then the (WQS)n reduces to a (WS)n. Recently,
Mantica and Molinari [14] have studied weakly-Z-symmetric manifolds. On the
otherhand, Mantica and Suh ([15], [17]) have studied pseudo-Z-symmetric Rie-
mannian manifolds with harmonic curvature tensors, pseudo-Q-symmetric Rie-
mannian manifolds. Motivated by the above studies in the present paper we have
studied a type of non-flat Riemannian manifold defined by (1.8).

We also have a very useful lemma as follows:

Walker's Lemma [25]. If aij, bi are numbers satisfying aij = aji, and aijbk +
+ ajkbi + akibj = 0, for i, j, k = 1, 2, . . . , n, then either all aij = 0 or all bi are
zero.

The paper is organized as follows:
After preliminaries, in Section 3, some curvature properties of (WQS)n have

been studied. Among others it is proved that if a (WQS)n (n > 2) is also a (WS)n,
then the sum of the associated 1-forms is closed, provided ψ ̸= 0. Moreover, if
ψ is a non-zero constant, then the sum of the associated 1-forms is zero. Next we
prove that if in a (WQS)n (n > 2), the tensor Q̃ defined by (2.5) is cyclic parallel,
then the manifold is either an Einstein manifold or the sum of the associated 1-
forms is zero. Section 4 is devoted to study decomposability of (WQS)n (n > 2).
In this section we obtain the nature of the decomposable spaces. Also we prove
that if (Mn, g) is a Riemannian manifold such that M = Mp

1 ×Mn−p
2 , (2 ≤ p ≤

≤ n − 2) and M is a (WQS)n with non-vanishing ψ, then both decomposable
spaces are Q-recurrent. Finally, we give two examples of the (WQS)4.
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2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature
respectively and L denotes the symmetric endomorphism of the tangent space at
each point corresponding to the Ricci tensor S, that is,

g(LX,Y) = S(X,Y). (2.1)

In this section, some formulas are derived, which will be useful to the study of
(WQS)n. Let {ei} be an orthonormal basis of the tangent space at each point of
the manifold where 1 ≤ i ≤ n.

From (1.6) we can easily verify that the tensor Q satisfies the following
properties:

i) Q(Y,W)U = −Q(W,Y)U,
ii) Q(Y,W)U+Q(W,U)Y+Q(U,Y)W = 0. (2.2)

Also from (1.7) we have

Σn
i=1Q(X,Y, ei, ei) = 0 = Σn

i=1Q(ei, ei,W,U) (2.3)

and
Σn
i=1Q(ei,Y,W, ei) = Σn

i=1Q(Y, ei, ei,W) =

= S(Y,W)− ψg(Y,W),
(2.4)

where r = Σn
i=1S(ei, ei) is the scalar curvature.

Let

Q̃(Y,W) = S(Y,W)− ψg(Y,W). (2.5)

Therefore,

Q̃(ei, ei) = r− nψ. (2.6)

From (1.7) and (2.2) it follows that

(i) Q(X,Y,W,U) = −Q(Y,X,W,U),
(ii) Q(X,Y,W,U) = −Q(X,Y,U,W),

(iii) Q(X,Y,W,U) = Q(W,U,X,Y),
(iv) Q(X,Y,W,U) + Q(Y,W,X,U) + Q(W,X,Y,U) = 0,

(2.7)

where Q(X,Y,W,U) = g(Q(X,Y)W,U).
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3. Some curvature properties of (WQS)n (n > 2)

In general, the Q-curvature tensor Q(Y,W,U,V) does not satisfy Bianchi’s
2nd identity

(∇XQ)(Y,W,U,V) + (∇YQ)(X,W,U,V) + (∇WQ)(X,Y,U,V) = 0. (3.1)

We suppose that the condition (3.1) holds in the investigated weakly-Q-
symmetric manifolds.

Now using (2.2), (2.7) and (3.1) we get from (1.8)

G(X)Q(Y,W,U,V) + G(Y)Q(W,X,U,V) + G(W)Q(X,Y,U,V) = 0, (3.2)

where G(X) = A(X)− 2B(X) and ρ is a vector field defined by
g(X, ρ) = G(X). (3.3)

Contracting (3.2) over Y and V we get
G(X)[S(W,U)− ψg(W,U)] + G(Q(W,X)U)−

−G(W)[S(X,U)− ψg(X,U)] = 0.
(3.4)

Again contractingW, U in (3.4) we get

G(X)(r− nψ)− 2[G(LX)− ψG(X)] = 0.

or,

G(LX) =
r− nψ + 2ψ

2
G(X). (3.5)

or,

S(X, ρ) =
r− nψ + 2ψ

2
g(X, ρ). (3.6)

Thus we can state the following theorem.

Theorem 3.1. If the Q-curvature tensor of a (WQS)n satisfies Bianchi s 2nd
identity, then the Ricci tensor S in (WQS)n has eigen value (r−nψ+2ψ)

2 corre-
sponding to the eigen vector ρ defined by (3.3).

If in particular ψ = r
n , then we have the following corollary from (3.6).

Corollary 3.1. If the Q-curvature tensor of a (WQS)n satisfies Bianchi s 2nd
identity, then the Ricci tensor S in (WQS)n has eigen value r

n corresponding to
the eigen vector ρ defined by (3.3) provided ψ = r

n .
Contracting (1.8) over Y and V we get

(∇XQ̃)(W,U) = {A(X)Q̃(W,U) + B(W)Q̃(X,U)+

+D(U)Q̃(W,X)}+ B(Q(X,W)U)− D(Q(U,X)W).
(3.7)
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Again contracting (3.7) over W and U we get

A(X)(r− nψ) + 2{Q̃(X, ρ2) + Q̃(X, ρ3)} = 0. (3.8)

Now using (2.5) in (3.8) we get
A(X)(r− nψ) + 2[{S(X, ρ2) + S(X, ρ3)}−

−ψ{g(X, ρ2) + g(X, ρ3)}] = 0.
(3.9)

Since, in a (WQS)n, A(X) ̸= 0 so, if ψ = r
n then from (3.9) we get

S(X, ρ̄) = ψg(X, ρ̄), (3.10)

where
g(X, ρ̄) = F(X) = B(X) + D(X), ρ̄ = ρ2 + ρ3. (3.11)

Thus we can state the following theorem.

Theorem 3.2. In a (WQS)n, the Ricci tensor S has eigen value ψ corresponding
to the eigen vector ρ̄ defined by (3.11) provided ψ = r

n .
From (1.7) we get

(∇XQ)(Y,W,U,V) = (∇XR)(Y,W,U,V)−

− (Xψ)
(n− 1)

[g(W,U)g(Y,V)− g(Y,U)g(W,V)].
(3.12)

Using (3.12) in (1.8) we get

(∇XR)(Y,W,U,V)−
(Xψ)
(n− 1)

[g(W,U)g(Y,V)− g(Y,U)g(W,V)] =

= A(X)Q(Y,W,U,V) + B(Y)Q(X,W,U,V) + B(W)Q(Y,X,U,V)+
+D(U)Q(Y,W,X,V) + D(V)Q(Y,W,U,X).

(3.13)

Using (1.7) in (3.13) we get

(∇XR)(Y,W,U,V)−
(Xψ)
(n− 1)

[g(W,U)g(Y,V)− g(Y,U)g(W,V)] =

= A(X)R(Y,W,U,V) + B(Y)R(X,W,U,V) + B(W)R(Y,X,U,V)+

+D(U)R(Y,W,X,V) + D(V)R(Y,W,U,X)− ψ

(n− 1)
[{g(W,U)g(Y,V)−

−g(Y,U)g(W,V)}A(X) + {g(W,U)g(X,V)− g(X,U)g(W,V)}B(Y)+
+{g(X,U)g(Y,V)− g(Y,U)g(X,V)}B(W) + {g(W,X)g(Y,V)−

−g(Y,X)g(W,V)}D(U) + {g(W,U)g(Y,X)− g(Y,U)g(W,X)}D(V)].
(3.14)
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If a (WQS)n is also (WS)n, then using (1.2) in (3.14) we get

− (Xψ)
(n− 1)

[g(W,U)g(Y,V)− g(Y,U)g(W,V)] =

= − ψ

(n− 1)
[{g(W,U)g(Y,V)− g(Y,U)g(W,V)}A(X)+

+{g(W,U)g(X,V)− g(X,U)g(W,V)}B(Y)+
+{g(X,U)g(Y,V)− g(Y,U)g(X,V)}B(W)+

+{g(W,X)g(Y,V)− g(Y,X)g(W,V)}D(U)+
+{g(W,U)g(Y,X)− g(Y,U)g(W,X)}D(V)].

(3.15)

Now contracting (3.15) over Y and V we get

−(Xψ)g(W,U) = − ψ

(n− 1)
[(n− 1)A(X)g(W,U)+

+B(X)g(W,U)− B(W)g(X,U) + (n− 1)B(W)g(X,U)+
+(n− 1)D(U)g(W,X) + D(X)g(W,U)− D(U)g(W,X)].

(3.16)

Again contracting (3.16) overW and U we get

− n(Xψ) = −ψ[nA(X) + 2B(X) + 2D(X)]. (3.17)

Similarly, contracting (3.16) over X and W we get

− (Uψ) = −ψ[A(U) + B(U) + (n− 1)D(U)]. (3.18)

Replacing U by X in (3.18) we get

− (Xψ) = −ψ[A(X) + B(X) + (n− 1)D(X)]. (3.19)

Again contracting (3.16) over X and U we get

− (Wψ) = −ψ[A(W) + (n− 1)B(W) + D(W)]. (3.20)

ReplacingW by X in (3.20) we get

− (Xψ) = −ψ[A(X) + (n− 1)B(X) + D(X)]. (3.21)

Now adding (3.17), (3.19) and (3.21) we get

(n+ 2)(Xψ) = (n+ 2)ψ[A(X) + B(X) + D(X)]. (3.22)

Since n > 2 so we have from (3.22)

(Xψ) = ψ[A(X) + B(X) + D(X)], (3.23)

which implies that the sum of the associated 1-forms is closed, provided ψ ̸= 0.
However if ψ is a non-zero constant, then the sum of the associated 1-forms is
zero.



114 PRAJJWAL PAL, U. C. DE

Hence we have the following theorem.

Theorem 3.3. If a (WQS)n (n > 2) is also a (WS)n, then the sum of the associ-
ated 1-forms is closed, provided ψ ̸= 0. Moreover, if ψ is a non-zero constant,
then the sum of the associated 1-forms is zero.

Now writing (3.7) cyclically and adding we obtain

[(∇XQ̃)(W,U) + (∇WQ̃)(U,X) + (∇UQ̃)(X,W)] =

= {A(X) + B(X) + D(X)}Q̃(W,U)+
+ {A(W) + B(W) + D(W)}Q̃(X,U)+
+ {A(U) + B(U) + D(U)}Q̃(W,X)+
+ {B(Q(X,W)U) + B(Q(W,U)X) + B(Q(U,X)W)}−
− {D(Q(X,W)U) + D(Q(W,U)X) + D(Q(U,X)W)}].

(3.24)

Using (2.2) and (2.7) in (3.24) we get

(∇XQ̃)(W,U) + (∇WQ̃)(U,X) + (∇UQ̃)(X,W) =

= E(X)Q̃(W,U) + E(W)Q̃(U,X) + E(U)Q̃(X,W),
(3.25)

where
E(X) = A(X) + B(X) + D(X). (3.26)

Now if the (WQS)n has Q̃-cyclic parallel tensor, then we have

(∇XQ̃)(W,U) + (∇WQ̃)(U,X) + (∇UQ̃)(X,W) = 0. (3.27)

Also we have from (2.5)
Q̃(X,Y) = Q̃(Y,X). (3.28)

Using (3.27) in (3.25) we get

E(X)Q̃(W,U) + E(W)Q̃(U,X) + E(U)Q̃(X,W) = 0. (3.29)

Then by Walker’s lemma we can see that either, E(X) = 0 or, Q̃(W,U) = 0 for
all X,W, U.

Thus we have either,

A(X) + B(X) + D(X) = 0 (3.30)

or,
S(X,W) = ψg(X,W). (3.31)

Thus we can state the following:
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Theorem 3.4. If in a (WQS)n (n > 2), the tensor Q̃ defined by (2.5) is cyclic
parallel, then the manifold is either an Einstein manifold or the sum of the asso-
ciated 1-forms is zero.

4. Decomposable (WQS)n

A Riemannian manifold (Mn, g) is said to be decomposable or a product
manifold ([22], [24]) if it can be expressed as Mp

1 ×Mn−p
2 for 2 ≤ p ≤ (n− 2),

that is, in some coordinate neighbourhood of the Riemannian manifold (Mn, g),
the metric can be expressed as

ds2 = gijdxidxj = ḡabdxadxb + g∗αβdx
αdxβ, (4.1)

where ḡab are functions of x1, x2, . . . , xp denoted by x̄ and g∗αβ are functions of
xp+1, xp+2, . . . , xn denoted by x∗; a, b, c, . . . run from 1 to p and α, β, γ, . . . run
from p+ 1 to n.

The two parts of (4.1) are the metrics of Mp
1 (p ≥ 2) and Mn−p

2 (n− p ≥ 2)
which are called the components of the decomposable manifold Mn = Mp

1 ×
×Mn−p

2 (2 ≤ p ≤ n− 2).
Let (Mn, g) be a Riemannian manifold such that Mp

1 (p ≥ 2) and Mn−p
2

(n− p ≥ 2) are two components of this manifold. Here throughout this section
each object denoted by a ‘bar’ is assumed to be fromM1 and each object denoted
by ‘star’ is assumed to be from M2.

Let X̄, Ȳ, Z̄, Ū, V̄ ∈ χ(M1) and X∗,Y∗,Z∗,U∗,V∗ ∈ χ(M2). Then in a de-
composable Riemannian manifold Mn = Mp

1 × Mn−p
2 (2 ≤ p ≤ n − 2), the

following relations hold [26]:
R(X∗, Ȳ, Z̄, Ū) = 0 = R(X̄,Y∗, Z̄,U∗) = R(X̄,Y∗,Z∗,U∗),
(∇X∗R)(Ȳ, Z̄, Ū, V̄) = 0 = (∇X̄R)(Ȳ,Z∗, Ū,V∗) = (∇X∗R)(Ȳ,Z∗, Ū,V∗),
R(X̄, Ȳ, Z̄, Ū) = R̄(X̄, Ȳ, Z̄, Ū); R(X∗,Y∗,Z∗,U∗) = R∗(X∗,Y∗,Z∗,U∗),
S(X̄, Ȳ) = S̄(X̄, Ȳ); S(X∗,Y∗) = S∗(X∗,Y∗),
(∇X̄S)(Ȳ, Z̄) = (∇̄X̄S)(Ȳ, Z̄); (∇X∗S)(Y∗,Z∗) = (∇∗

X∗S)(Y∗,Z∗),
and r = r̄+ r∗,
where r, r̄ and r∗ are scalar curvatures of M,M1 and M2 respectively.
Let us consider a Riemannian manifold (Mn, g), which is a decomposable

(WQS)n.
ThenMn = Mp

1 ×Mn−p
2 (2 ≤ p ≤ n− 2).



116 PRAJJWAL PAL, U. C. DE

Now from (1.7), we get

Q(Y∗, Z̄, Ū, V̄) = 0 = Q(Ȳ,Z∗,U∗,V∗) =

= Q(Ȳ,Z∗, Ū, V̄) = Q(Ȳ, Z̄,U∗, V̄),
(4.2)

Q(Y∗, Z̄, Ū,V∗) = − ψ

(n− 1)
[g(Z̄, Ū)g(Y∗,V∗)], (4.3)

Q(Y∗,Z∗, Ū, V̄) = 0 = Q(Ȳ, Z̄,U∗,V∗), (4.4)

and

Q(Y∗, Z̄,U∗, V̄) =
ψ

(n− 1)
[g(Y∗,U∗)g(Z̄, V̄)], (4.5)

Again from (1.8), we get

(∇X̄Q)(Ȳ, Z̄, Ū, V̄) = A(X̄)Q(Ȳ, Z̄, Ū, V̄) + B(Ȳ)Q(X̄, Z̄, Ū, V̄)+
+B(Z̄)Q(Ȳ, X̄, Ū, V̄) + D(Ū)Q(Ȳ, Z̄, X̄, V̄) + D(V̄)Q(Ȳ, Z̄, Ū, X̄),

(4.6)

Replacing X̄ by X∗ in (4.6) we get

A(X∗)Q(Ȳ, Z̄, Ū, V̄) = 0. (4.7)

Similarly we have

B(Y∗)Q(X̄, Z̄, Ū, V̄) = 0, (4.8)
D(U∗)Q(Ȳ, Z̄, X̄, V̄) = 0, (4.9)

Now putting X̄ = X∗, Ȳ = Y∗ in (4.6) we get

ψ[D(Ū)g(Z̄, V̄)− D(V̄)g(Z̄, Ū)] = 0. (4.10)

Similarly putting X̄ = X∗, Ū = U∗ in (4.6) we obtain

ψ[B(Ȳ)g(Z̄, V̄)− B(Z̄)g(Ȳ, V̄)] = 0. (4.11)

Also putting Ȳ = Y∗, Z̄ = Z∗ and Ū = U∗ in (4.6) we have

ψ[B(Z∗)g(Y∗,U∗)− B(Y∗)g(Z∗,U∗)] = 0. (4.12)

In the similar way, from (4.6) we have the following

ψ[D(U∗)g(Z∗,V∗)− D(V∗)g(Z∗,U∗)] = 0. (4.13)

Also from (1.8), we obtain

(∇X∗Q)(Y∗,Z∗,U∗,V∗) = A(X∗)Q(Y∗,Z∗,U∗,V∗)+

+B(Y∗)Q(X∗,Z∗,U∗,V∗) + B(Z∗)Q(Y∗,X∗,U∗,V∗)+

+D(U∗)Q(Y∗,Z∗,X∗,V∗) + D(V∗)Q(Y∗,Z∗,U∗,X∗),

(4.14)
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From (4.14), it follows that

A(X̄)Q(Y∗,Z∗,U∗,V∗) = 0, (4.15)
B(Ȳ)Q(X∗,Z∗,U∗,V∗) = 0, (4.16)
D(Ū)Q(Y∗,Z∗,X∗,V∗) = 0. (4.17)

From (4.7)to (4.9) we have two cases, namely,
I) A = B = D = 0 on M2,
II) M1 is Q-flat.
Firstly, we consider the case (I). Then from (4.14), it follows that

(∇X∗Q)(Y∗,Z∗,U∗,V∗) = 0,

that is,
(∇X∗R)(Y∗,Z∗,U∗,V∗)−

− (X∗ψ)

(n− 1)
[g(Z∗,U∗)g(Y∗,V∗)− g(Y∗,U∗)g(Z∗,V∗)] = 0.

(4.18)

Setting Z∗ = U∗ = e∗α in (4.18) and taking summation over α, p+ 1 ≤ α ≤ n,
we obtain

(∇X∗S)(Y∗,V∗)− (X∗ψ)

n− 1
[(n− p− 1)g(Y∗,V∗)] = 0, (4.19)

since r = r̄+ r∗ and if we take (X∗ψ) = 0 in M2, then from (4.19) we have

(∇X∗S)(Y∗,V∗) = 0.

This implies thatM2 is Ricci symmetric manifold if ψ is constant inM2.
Secondly, we discuss the case (II). SinceM1 is Q-flat, therefore it is a mani-

fold of constant curvature provided that ψ = constant inM2. Hence we can state
the following:

Theorem 4.1. Let (Mn, g) be a Riemannian manifold such thatM = Mp
1×Mn−p

2 ,
(2 ≤ p ≤ n− 2). If M is a (WQS)n then the following holds:

(I) In the case of A = B = D = 0 on M2, then the manifold M2 is Ricci
symmetric, provided that ψ = constant inM2.

(II) When M1 is Q-flat and ψ = constant in M1, then M1 is a manifold of
constant curvature.

Similarly, from (4.15) to (4.17) we get

Theorem 4.2. Let (Mn, g) be a Riemannian manifold such thatM = Mp
1×Mn−p

2 ,
(2 ≤ p ≤ n− 2). If M is a (WQS)n then the following holds:

(I) In the case of A = B = D = 0 on M1, then the manifold M1 is Ricci
symmetric, provided that ψ = constant in M1.
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(II) When M2 is Q-flat and ψ = constant in M2, then M2 is a manifold of
constant curvature.

Next we consider the contraction with respect to Z̄ and V̄ in (4.10) and obtain

(p− 1)ψD(Ū) = 0.

Since p ≥ 2. we have
ψD(Ū) = 0. (4.20)

If ψ is non-vanishing scalar, then (4.20) yields

D(Ū) = 0 for all Ū ∈ χ(M1). (4.21)

Similarly, from (4.11) we have

B(Ȳ) = 0 for all Ȳ ∈ χ(M1), (4.22)

provided ψ is non-vanishing scalar.
Thus if ψ ̸= 0, then from (4.21) and (4.22) we have B = 0 and D = 0 on

M1 and hence from (4.6) we get

(∇X̄Q)(Ȳ, Z̄, Ū, V̄) = A(X̄)Q(Ȳ, Z̄, Ū, V̄). (4.23)

Again if we consider the contraction with respect to Y∗ and U∗ in (4.12), then
we obtain

ψ(n− p− 1)B(Z∗) = 0.

Since (n− p) ≥ 2. we have
ψB(Z∗) = 0. (4.24)

If ψ is non-zero, then from (4.24) we have

B(Z∗) = 0 for all Z∗ ∈ χ(M2). (4.25)

Similarly, if ψ ̸= 0 from (4.13) we get

D(U∗) = 0 for all U∗ ∈ χ(M2), (4.26)

and hence from (4.14) we get

(∇X∗Q)(Y∗,Z∗,U∗,V∗) = A(X∗)Q(Y∗,Z∗,U∗,V∗). (4.27)

Hence from (4.23) and (4.27) we can state the following:

Theorem 4.3. Let (Mn, g) be a Riemannian manifold such thatM = Mp
1×Mn−p

2 ,
(2 ≤ p ≤ n− 2). IfM is a (WQS)n with non-vanishing ψ, then both the decom-
positions are Q-recurrent.
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5. Example of a (WQS)4

In this section we give an example of (WQS)n, with the non-zero scalar
curvature.

Example 5.1. [10] Let (R4, g) be a 4-dimensional Riemannian manifold en-
dowed with the Riemannian metric g given by

ds2 = gijdxidxj = (1+ 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (5.1)

where (i, j = 1, 2, 3, 4), q = ex
1

k2 and k is a non-zero constant. Here the only non-
vanishing components of the Christoffel symbols and the curvature tensors are
respectively:

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 =
q

1+ 2q
, Γ1

22 = Γ1
33 = Γ1

44 = − q
1+ 2q

,

R1221 = R1331 = R1441 =
q

1+ 2q
, R2332 = R2442 = R3443 =

q2

1+ 2q

and the components obtained by the symmetry properties. The non-vanishing
components of the Ricci tensors are:

R11 =
3q

(1+ 2q)2
, R22 = R33 = R44 =

q
1+ 2q

,

It can be easily shown that the scalar curvature r of this (R4, g) is 6q(1+q)
(1+2q)3 , which

is non-vanishing and non-constant. Let us choose the arbitrary scalar function,
ψ = 3

(1+2q)3 . Therefore the non-vanishing components of theQ-curvature tensor
and their covariant derivatives are respectively:

Q1221 = Q1331 = Q1441 =
q− 1
1+ 2q

;

Q2332 = Q2442 = Q3443 =
q2 − 1
1+ 2q

;

Q1221,1 = Q1331,1 = Q1441,1 =
3q

(1+ 2q)2
;

Q2332,1 = Q2442,1 = Q3443,1 =
2q(1+ q+ q2)

(1+ 2q)2
.
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Let us choose the associated 1-forms as follows:

Ai(x) =

{
2q(1+q+q2)
(q2−1)(1+2q) for i = 1
0 otherwise,

(5.2)

Bi(x) =

{
q

1+q for i = 1
0 otherwise,

(5.3)

Di(x) =

{
−2q
1+q for i = 1
0 otherwise,

(5.4)

at any point x ∈ R4. Now the equation (1.8) reduces to the equations

Q1221,1 = A1Q1221 + B1Q1221 + B2Q1121 + D2Q1211 + D1Q1221, (5.5)
Q1331,1 = A1Q1331 + B1Q1331 + B3Q1131 + D3Q1311 + D1Q1331, (5.6)
Q2332,1 = A1Q2332 + B2Q1332 + B3Q2132 + D3Q2312 + D2Q2331, (5.7)
Q1441,1 = A1Q1441 + B1Q1441 + B4Q1141 + D4Q1411 + D1Q1441, (5.8)
Q2442,1 = A1Q2442 + B2Q1442 + B4Q2142 + D4Q2412 + D2Q2441, (5.9)
Q3443,1 = A1Q3443 + B3Q1443 + B4Q3143 + D4Q3413 + D3Q3441, (5.10)

since, for the other cases (1.8) holds trivially.
By (5.2), (5.3) and (5.4) we get the following relation for the right hand

side(R.H.S.) and the left hand side(L.H.S.) of (5.5)

R.H.S. of (5.5) = A1Q1221 + B1Q1221 + B2Q1121 + D2Q1211 + D1Q1221

= [A1 + B1 + D1]Q1221

= { 3q(q+ 1)
(q2 − 1)(1+ 2q)

} (q− 1)
(1+ 2q)

=
3q

(1+ 2q)2
= Q1221,1

= L.H.S. of (5.5).

By similar argument it can be shown that (5.6), (5.7), (5.8), (5.9) and (5.10) are
true. So, R4 is a (WQS)n whose scalar curvature is non-zero and non-constant
and the manifold (R4, g) is neither Q-flat nor Q-symmetric.

Example 5.2.We define a Riemannian metric on the 4-dimensional real number
space R4 by the formula

ds2 = gijdxidxj = (x1)2[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (5.11)
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where i, j = 1, 2, . . . , 4; and x1 > 0.
Then the non-vanishing components of the Christoffel symbols, the curva-

ture tensor and the Ricci tensor are respectively:

Γ1
11 = −Γ1

22 = −Γ1
33 = −Γ1

44 = Γ2
12 = Γ3

13 = Γ4
14 =

1
x1
,

R1221 = R1331 = R1441 = −1, R2332 = R2442 = R3443 = 1,

R11 = − 3
(x1)2

, R22 = R33 = R44 =
1

(x1)2

and the components which can be obtained from these by the symmetric proper-
ties. It can be easily shown that the scalar curvature r of this (R4, g) is zero. Let
us choose the arbitrary scalar function, ψ = 1

(x1)3 . Therefore the non-vanishing
components of theQ-curvature tensor and their covariant derivatives are respec-
tively:

Q1221 = Q1331 = Q1441 = −1− x1

3
;

Q2332 = Q2442 = Q3443 = 1− x1

3
;

Q1221,1 = Q1331,1 = Q1441,1 = 1+
4
x1
;

Q2332,1 = Q2442,1 = Q3443,1 = 1− 4
x1
;

Q1223,3 = Q1224,4 = Q1332,2 = Q1334,4 = Q1442,2 = Q1443,3 = − 2
x1
.

Let us choose the associated 1-forms as follows:

Ai(x) =

{
3(x1−4)
x1(3−x1) for i = 1
0 otherwise,

. (5.12)

Bi(x) =

{
− 6

x1(3−x1) for i = 1
0 otherwise,

(5.13)

Di(x) =

{
6(2x1+3)

x1{9−(x1)2} for i = 1
0 otherwise,

(5.14)
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at any point x ∈ R4. Now the equation (1.8) reduces to the equations

Q1221,1 = A1Q1221 + B1Q1221 + B2Q1121 + D2Q1211 + D1Q1221, (5.15)
Q1331,1 = A1Q1331 + B1Q1331 + B3Q1131 + D3Q1311 + D1Q1331, (5.16)
Q1441,1 = A1Q1441 + B1Q1441 + B4Q1141 + D4Q1411 + D1Q1441, (5.17)
Q2332,1 = A1Q2332 + B2Q1332 + B3Q2132 + D3Q2312 + D2Q2331, (5.18)
Q2442,1 = A1Q2442 + B2Q1442 + B4Q2142 + D4Q2412 + D2Q2441, (5.19)
Q3443,1 = A1Q3443 + B3Q1443 + B4Q3143 + D4Q3413 + D3Q3441, (5.20)
Q1223,3 = A3Q1223 + B1Q3223 + B2Q1323 + D2Q1233 + D3Q1223, (5.21)
Q1224,4 = A4Q1224 + B1Q4224 + B2Q1424 + D2Q1244 + D4Q1224, (5.22)
Q1332,2 = A2Q1332 + B1Q2332 + B3Q1232 + D3Q1322 + D2Q1332, (5.23)
Q1334,4 = A4Q1334 + B1Q4334 + B3Q1434 + D3Q1344 + D4Q1334, (5.24)
Q1442,2 = A2Q1442 + B1Q2442 + B4Q1242 + D4Q1422 + D2Q1442, (5.25)
Q1443,3 = A3Q1443 + B1Q3443 + B4Q1343 + D4Q1433 + D3Q1443, (5.26)

since, for the other cases (1.8) holds trivially.
By (5.12), (5.13) and (5.14) we get the following relation for the right hand

side(R.H.S.) and the left hand side(L.H.S.) of (5.15)

R.H.S. of (5.15) = A1Q1221 + B1Q1221 + B2Q1121 + D2Q1211 + D1Q1221

= [A1 + B1 + D1]Q1221

= {− 3(x1 + 4)
x1(3+ x1)

}[−1− x1

3
]

= {− 3(x1 + 4)
x1(3+ x1)

}[−(3+ x1)
3

]

=
(x1 + 4)

x1

= 1+
4
x1

= Q1221,1

= L.H.S. of (5.15).

By similar argument it can be shown that the relations from (5.16) to (5.26) are
true. So,R4 is a (WQS)n whose scalar curvature is zero and the manifold (R4, g)
is neither Q-flat nor Q-symmetric.
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SUFFICIENT CONDITIONS
FOR SUPRA β-CONTINUITY

By
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Abstract. We give two sufficient conditions for functions to be supra β-
continuous. A notion of a new generalized derivative is introduced. The methods pre-
sented here can be used also for other kinds of generalized continuity.

1. Introduction

In this paper we give two sufficient conditions for functions to be supra β-
continuous. One of the ways how we can see, that an object (e.g. a function)
has some nice property is to compare it with another object with the same prop-
erty. We do this kind of a comparison more often than we think. For example a
differentiable real function is continuous, because the identity function id from
R to R is continuous. Indeed – when differentiating, we are “comparing” small
differences of the type f(x + h) − f(x) and (x + h) − (x) = id(x + h) − id(x)
by calculating their quotient. And – in a way – every differentiable function f
will “inherit” the continuity of the identity function. Two sufficient conditions,
presented in this paper, are based on this idea of comparison.

The classical notion of relative derivative replaces the identity function
id : R → R by a function g : R → R (e.g. in [1] or [8]). In this paper we are
going to define a new notion of a generalized relative derivative.

AMS Subject Classification (2000): Primary 54C08; Secondary 00A05, 26A06
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2. Generalized Derivative

In this paper we will use these notions: a net of points, a limit of a net (see
e. g. [2] or [4]). When we say “a field”, we mean the spaces R or C. Now we
define the notion of generalized derivative.

Definition 2.1. Let (X,T) be a topological space, let A ⊂ X. Let a be a limit
point of A. Let Y be a linear topological space defined over a field F. Let f : X →
→ Y and g : X → F be functions. We say that f has a g-derivative (or generalized
derivative with respect to g) at a on A if there exists an element l of Y such that

l = lim
x∈A,x→a

(f(x)− f(a))(g(x)− g(a))−1.

We denote such a limit by the symbol g/Af′(a). If A = X we write gf′(a)
instead of g/Xf′(a).

In this article the set A will be always the whole space X, because we are
interested in global continuity of functions. F will be always R. Moreover, since
we want to compare the behavior of two functions, we will use a special kind of
topology on X.

Remark 2.2.Wewill use expressions f(x)−f(a)
g(x)−g(a) instead of expressions of the type

(f(x)− f(a))(g(x)− g(a))−1.
This is our definition when using nets: g/Af′(a) exists if there exists a vec-

tor l ∈ Y such that for every net {xγ}γ∈Γ of points of A − {a} converg-
ing to a the net

{
f(xγ)−f(a)
g(xγ)−g(a)

}
γ∈Γ

converges to l. We note this fact by writing

limγ∈Γ
f(xγ)−f(a)
g(xγ)−g(a) = l.

It is easy to see that this new kind of derivative is a linear operator. When
X = A = Y = F = R and g(x) ≡ x we obtain the classical definition of the
derivative. In general a function f can have a g-derivative also when f and g are
not continuous.

3. Sufficient Conditions for supra β-continuity

Be X a set. A subcollection µ ⊂ 2X is called a supra topology [9] on X if
X ∈ µ and µ is closed under arbitrary union. (X, µ) is called a supra topological
space. The elements of µ are called supra open in (X, µ). The complement of a
supra open set is called a supra closed set. The supra interior of a set A ⊂ X,
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denoted by Intµ(A), is the union of the supra open sets included in A. The supra
closure of a set A ⊂ X, denoted by Clµ(A) is the intersection of the supra closed
sets including A. A set A is called supra α-open [9] if A ⊆ Intµ(Clµ(Intµ(A))).
In [6] Jafari and Tahiliani defined the notion of a supra β-open set. A set A is
supra β-open if A ⊆ Clµ(Intµ(Clµ(A))). If (X,T) is a topological space, the
supra topology µ on X is associated with the topology T if T ⊂ µ. Let (X,T) and
(Y, S) be two topological spaces and µ be an associated supra topology with T.
A map f : (X,T) → (Y, S) is called supra β-continuous [6] (supra α-continuous
[3]) if the inverse image of each open set in Y is supra β-open in X (is supra
α-open in X).

In our theorems we are going to deal with the supra β-continuity.
In our first theorem we are going to use a concrete type of the generalized

relative derivative. Let us define it.

Definition 3.1. Let (X,T) be a topological space. Let f : X → R and g : X →
→ R be functions. Denote Tf = {f−1(V);V open in R}. We say that g has an
rf-derivative at a point x from X if there exists a real number l such that

l = lim
t→x

(g(t)− g(x))(f(t)− f(x))−1

where the limit is taken with respect to the topology Tf. We denote this by

rfg′(x) = l.

Remark 3.2. In other words: we say that g has an rf-derivative at a point x if
there exists a real number l such that for every net {xγ}γ∈Γ of points of X−{x}
converging to x in the topology Tf the net

{
f(xγ)−f(a)
g(xγ)−g(a)

}
γ∈Γ

converges to l in R.

Theorem 3.3. Let (X,T) be a topological space and µ be an associated supra
topology with T. Let f : X → R and g : X → R be functions. Let for each x from
X there exist a finite rfg′(x). Let f be supra β-continuous on X. Then g is supra
β-continuous on X too.

Proof. Denote Tf = {f−1(V);V open in R}. Since f is supra β-continuous, we
have Tf ⊂ SBO where SBO is the set of all supra β-open subsets of X. Note that
the set Tf is a topology on X. Therefore to prove the supra β-continuity of g it
suffices to show that g : (X,Tf) → R is continuous.

Take an arbitrary point x in X. To prove the continuity of g at x (with respect
to the topology Tf) it suffices to prove

(∗) for every ε positive there exists an open neighborhood O ∈ Tf of x such
that for all t from O|g(t)− g(x)| < ε.
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We will prove (∗) by contradiction. Suppose (∗) is not true. Then for every
neighborhood V of x there exists a point xV such that |g(xV) − g(x)| ≥ ε. This
is equivalent with the fact that there exists a net {xγ}γ∈Γ converging to x such,
that for all γ from Γ the inequality |g(xγ)− g(x)| ≥ ε holds.

But since rfg′(x) exists, we have

lim
γ∈Γ

(g(xγ)− g(x)) =

= lim
γ∈Γ

(g(xγ)− g(x))
f(xγ)− f(x)

· (f(xγ)− f(x)) =

= rfg′(x) · lim
γ∈Γ

(f(xγ)− f(x)) = 0.

Of course, f : (X,Tf) → R is continuous at x, so we have

lim
γ∈Γ

(f(xγ) = f(x)).

The equalities above imply that limγ∈Γ(g(xγ)− g(x)) = 0. We have obtained a
contradiction.

We have just proved that (∗) is true. Since xwas na arbitrary point and εwas
an arbitrary positive number, we have just proved that the function g : (X,Tf) →
→ R is continuous. So, as we have mentioned above, g : (X,T) → R is supra
β-continuous. This ends the proof.

Theorem 3.4. Let (X,T) be a topological space and µ be an associated supra
topology with T. Let (Y, d) and (Z, ϱ) be metric spaces. Let f : X → Y and
g : X → Z be functions. Let f be supra β-continuous on X. Let there exist a
positive real number K such that the following is true:

∀x, y ∈ X ϱ(g(x), g(y)) ≤ K · d(f(x), f(y))(**)

Then g is supra β-continuous on X too.

Proof. The set Tf = {f−1(V);V open in R}. is a subset of all supra β-open
subsets of X. Since the set Tf is a topology on X, to prove the supra β-continuity
of g it suffices to show that g : (X,Tf) → R is continuous.

Take an arbitrary point x in X. Take an arbirtrary net {xγ}γ∈Γ converging to
x. Since f : (X,Tf) → R is continuous, the net {f(xγ)}γ∈Γ convereges to f(x).
This means that

lim
γ∈Γ

K · d(f(xγ), f(x)) = 0.

Because of (∗∗) we obtain that

lim
γ∈Γ

K · ϱ(g(xγ), g(x)) = 0
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too. But this is equivalent to the assertion
lim
γ∈Γ

g(xγ) = g(x))

which was to be proved.

Remark 3.5. The methods presented here can be used also for other kinds of
generalized continuity. For example for supra continuity or supra α-continuity,
(for definitions, see [6]), or even quasicontinuity (for a definition see [7]).
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Abstract. We introduce the notion of mIT-structures determined by operators
mInt andmCl on anm-space (X,mX). By usingmIT-structures, we introduce and inves-
tigate a multifunction F : (X,mX) → (Y, σ) called upper/lower almost mIT-continuous.
As special cases of upper/lower almost mIT-continuity, we obtain upper/lower almost
γ-M continuity [36] and upper/lower almost δ-M-precontinuity [37].

1. Introduction

Semi-open sets, preopen sets, α-open sets, β-open sets, γ-open sets and δ-
open sets play an important role in the researches of generalizations of continuity
in topological spaces. By using these sets, several authors introduced and studied
various types of weak forms of continuity for functions and multifunctions. In
1968, Singal and Singal [33] introduced the notion of almost continuous func-
tions. In 1982, Popa [24] introduced the concepts of upper/lower almost contin-
uous multifunctions. In [9], [21], [25], [29], [31] and other papers, other forms
of almost continuous multifunctions are introduced and investigated.

In [26] and [27], the present authors introduced and studied the notions of
minimal structures, m-spaces, m-continuity, M-continuity and other notions. In
[28], the notion of almostm-continuous functions is introduced and studied. Re-
cently, in [23], a unified theory of almost continuity for multifunctions is ob-
tained.

Quite recently, in [15], [16], [17], [18], and [19], Min and Kim introduced
the notions of m-semi-open sets, m-preopen sets, m-α-open sets and m-β-open
sets which generalize the notions of semi-open sets, preopen sets, α-open sets
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and β-open sets, respectively. In [6], [7], [9] and [34], the notions of m-semi-
open sets, m-preopen sets, m-α-open sets and m-β-open sets are also intro-
duced and studied. Quite recently, in [36] and [37], upper/lower almost γ-M-
continuous multifunctions and upper/lower almost δ-M-precontinuous multi-
functions, respectively, are initiated and studied.

In the present paper, we introduce the notions of iterate m-structures and
iterate upper/lower almost m-continuous multifunctions which generalize the
notions of upper/lower almost γ-M continuous multifunctions and upper/lower
almost δ-M-precontinuous multifunctions. We obtain several characterizations
of such multifunctions by generalizing the results established in [36] and [37].

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A
of X is said to be regular open (resp. regular closed) if A = Int(Cl(A)) (resp.
A = Cl(Int(A)). We denote by RO(X) (resp. RC(X)) the family of all regular
open (resp. regular closed) sets of X.

A point x ∈ X is called a δ-cluster point of a subset A if Int(Cl((U))∩A ̸= ∅
for every open set U containing x. The set of all δ-cluster points of A is called
the δ-closure of A and is denoted by Clδ(A). If A = Clδ(A), then A is said to be
δ-closed [35]. The complement of a δ-closed set is said to be δ-open. The union
of all δ-open sets contained in A is called the δ-interior of A and is denoted by
Intδ(A).

We recall some generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be
(1) α-open [20] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [11] if A ⊂ Cl(Int(A)),
(3) preopen [13] if A ⊂ Int(Cl(A)),
(4) b-open [5] or γ-open [3] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),
(5) β-open [1] or semi-preopen [4] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, γ-open, β-open) sets
in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), γ(X), β(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be
α-closed [14] (resp. semi-closed [8], preclosed [13], γ-closed [3], β-closed [1])
if the complement of A is α-open (resp. semi-open, preopen, γ-open, β-open).
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Definition 2.3. Let (X, τ) be a topological space and A a subset of X. The in-
tersection of all α-closed (resp. semi-closed, preclosed, γ-closed, β-closed) sets
of X containing A is called the α-closure [14] (resp. semi-closure [8], preclosure
[10], γ-closure [3], β-closure [2]) of A and is denoted by αCl(A) (resp. sCl(A),
pCl(A), γ Cl(A), β Cl(A)).

Definition 2.4. Let (X, τ) be a topological space and A a subset of X. The
union of all α-open (resp. semi-open, preopen, γ-open, β-open) sets of X con-
tained in A is called the α-interior [14] (resp. semi-interior [8], preinterior [10],
γ-interior [3], β-interior [2]) of A and is denoted by α Int(A) (resp. sInt(A),
pInt(A), γ Int(A), β Int(A)).

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) always
denote topological spaces and F : (X, τ) → (Y, σ) presents a multivalued func-
tion. For a multifunction F : X → Y, we shall denote the upper and lower inverse
of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X : F(x) ⊂ B} and F−(B) = {x ∈ X : F(x) ∩ B ̸= ∅}.

Definition 2.5. A multifunction f : (X, τ) → (Y, σ) is said to be
(1) upper almost continuous [24] (resp. upper almost quasicontinuous [25], up-

per almost precontinuous [31], upper almost α-continuous [29], upper al-
most β-continuous [21], upper almost γ-continuous [9]) at x ∈ X if for each
open set V of Y containing F(x), there exists an open (resp. semi-open, pre-
open, α-open, β-open, γ-open) set U of X containing x such that F(U) ⊂
⊂ Int(Cl(V)),

(2) lower almost continuous [24] (resp. lower almost quasicontinuous [25],
lower almost precontinuous [31], lower almost α-continuous [29], lower
almost β-continuous [21], lower almost γ-continuous [9]) at x ∈ X if for
each open set V of Y such that F(x) ∩ V ̸= ∅, there exists an open (resp.
semi-open, preopen, α-open, β-open, γ-open) set U of X containing x such
that F(u) ∩ Int(Cl(V)) ̸= ∅ for each u ∈ U,

(3) upper/lower almost continuous [24] (resp. upper/lower almost quasicontin-
uous [25], upper/lower almost precontinuous [31], upper/lower almost α-
continuous [29], upper/lower almost β-continuous [21], upper/lower almost
γ-continuous [9]) if it has the property at each point x ∈ X.
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3. m-structures and upper/lower almost m-continuity

Definition 3.1. Let X be a nonempty set and P(X) the power set of X. A sub-
family mX of P(X) is called a minimal structure (briefly m-structure) on X [26],
[27] if ∅ ∈ mX and X ∈ mX.

By (X,mX), we denote a nonempty set X with an m-structure mX on X and
call it an m-space. Each member of mX is said to be mX-open (briefly m-open)
and the complement of anmX-open set is said to bemX-closed (brieflym-closed).

Remark 3.1. Let (X, τ) be a topological space. The families τ , SO(X), PO(X),
α(X), β(X) and γ(X) are all minimal structures on X.

Definition 3.2. Let X be a nonempty set and mX an m-structure on X. For a
subset A of X, the mX-closure of A and the mX-interior of A are defined in [12]
as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X. If mX = τ
(resp. SO(X), PO(X), α(X), β(X), γ(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), β Cl(A), γ Cl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), α Int(A), β Int(A), γ Int(A)).

Lemma 3.1 (Maki et al. [12]). Let X be a nonempty set and mX a minimal struc-
ture on X. For subsets A and B of X, the following properties hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X \ A) ∈ mX, then mCl(A) = A and if A ∈ mX, then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2 (Popa and Noiri [26]). Let (X,mX) be an m-space and A a subset of
X. Then x ∈ mCl(A) if and only if U ∩ A ̸= ∅ for each U ∈ mX containing x.

Definition 3.3. A minimal structure mX on a nonempty set X is said to have
property B [12] if the union of any family of subsets belonging to mX belongs to
mX.

Remark 3.3. If (X, τ) is a topological space, then SO(X), PO(X), α(X), γ(X)
and β(X) have property B.
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Lemma 3.3 (Popa andNoiri [30]). LetX be a nonempty set andmX anm-structure
on X satisfying property B. For a subset A of X, the following properties hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. Let (X,mX) be an m-space and (Y, σ) a topological space.
A multifunction F : (X,mX) → (Y, σ) is said to be
(1) upper almostm-continuous at x ∈ X [23] if for each open set V of Y contain-

ing F(x), there exists U ∈ mX containing x such that F(U) ⊂ Int(Cl(V)),
(2) lower almost m-continuous at x ∈ X [23] if for each open set V of Y such

that F(x) ∩ V ̸= ∅, there exists U ∈ mX containing x such that F(u) ∩
∩ Int(Cl(V)) ̸= ∅ for every u ∈ U,

(3) upper/lower almost m-continuous if it has this property at each point x ∈ X.

Theorem 3.1. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:

(1) F is upper almost m-continuous at x ∈ X
(2) for every open set V of Y with x ∈ F+(V), x ∈ mInt(F+(Int(Cl(V))))
(3) for every closed set K of Y with x ∈ mCl(F−(Cl(Int(K)))), x ∈ F−(K)
(4) for every subset B of Y with x ∈ mCl(F−(Cl(Int(Cl(B))))),

x ∈ F−(Cl(B));

(5) for every subset B of Y with x ∈ F+(Int(B)),

x ∈ mInt(F+(Int(Cl(Int(B)))));

(6) for every regular open set V of Y with x ∈ F+(V), x ∈ mInt(F+(V))
(7) for every regular closed set K of Y with x ∈ mCl(F−(K)), x ∈ F−(K)).

Proof. (1) ⇒ (2): Let V be any open set of Y such that x ∈ F+(V), then
F(x) ⊂ V. By (1), there exists U ∈ mX containing x such that F(U) ⊂
⊂ Int(Cl(V)). Hence x ∈ U ⊂ F+(Int(Cl(V))). Since U ∈ mX, we obtain
x ∈ mInt(F+(Int(Cl(V)))).

(2) ⇒ (3): Let K be any closed set of Y. Suppose that x /∈ F−(K). Then
x ∈ X \ F−(K) = F+(Y \ K) and Y \ K is open in Y. By (2) and Lemma 3.1,
we have x ∈ mInt(F+(Int(Cl(Y \ K)))) = mInt(X \ F−(Cl(Int(K)))) = X \
mCl(F−(Cl(Int(K)))). Hence x /∈ mCl(F−(Cl(Int(K)))).

(3)⇒ (4): Let B be any subset of Y. Then Cl(B) is a closed set of Y. By (3),
we obtain that x ∈ mCl(F−(Cl(Int(Cl(B)))) implies F−(Cl(B)).
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(4) ⇒ (5): Let B be any subset of Y and x ∈ F+(Int(B)). Then we have
x ∈ X \F−(Cl(Y \B)) ⊂ X \mCl(F−(Cl(Int(Cl(Y \B))))) = X \mCl(F−(Y \
Int(Cl(Int(B))))) = mInt(F+(Int(Cl(Int(B))))).

(5) ⇒ (6): Let V be any regular open set of Y. By (5), we obtain that x ∈
∈ F+(V) implies x ∈ mInt(F+(V)).

(6) ⇒ (7): Let K be a regular closed set of Y. Suppose that x /∈ F−(K).
Then, by (6) and Lemma 3.1, we obtain x ∈ X \ F−(K) = F+(Y \ K). Then
x ∈ mInt(F+(Y \ K)) = X \mCl(F−(K)). Hence, x /∈ mCl(F−K)).

(7) ⇒ (6): Let V be any regular open set of Y and x ∈ F+(V). Suppose
that x /∈ mInt(F+(V)). Then x ∈ X \ mInt(F+(V)) = mCl(X \ F+(V)) =
mCl(F−(Y\V)), where Y\V is regular closed. By (7), x ∈ F−(Y\V) = X\F+(V).
Hence x /∈ F+(V).

(6) ⇒ (1): Let V be any open set of Y containing F(x). Then x ∈
∈ F+(V) ⊂ F+(Int(Cl(V))). Since Int(Cl(V)) is regular open, by (6) x ∈
∈ mInt(F+(Int(Cl(V)))). Hence there exists U ∈ mX containing x such that
x ∈ U ⊂ F+(Int(Cl(V))). Therefore, F(U) ⊂ Int(Cl(V)) and F is upper almost
m-continuous at x.

Theorem 3.2. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is lower almost m-continuous at x ∈ X
(2) for every open set V of Y with x ∈ F−(V), x ∈ mInt(F−(Int(Cl(V))))
(3) for every closed set K of Y with x ∈ mCl(F+(Cl(Int(K)))), x ∈ F+(K)
(4) for every subset B of Y with x ∈ mCl(F+(Cl(Int(Cl(B))))), x ∈

∈ F+(Cl(B))
(5) for every subset B of Y with x ∈ F−(Int(B)),

x ∈ mInt(F−(Int(Cl(Int(B)))));
(6) for every regular open sets V of Y with x ∈ F−(V), x ∈ mInt(F−(V))
(7) for every regular closed set K of Y with x ∈ mCl(F+(K)), x ∈ F+(K)).

Proof. The proof is similar to that of Theorem 3.1.
The following theorems are proved in [23].

Theorem 3.3. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is upper almost m-continuous
(2) F+(V) ⊂ mInt(F+(Int(Cl(V)))) for every open set V of Y
(3) mCl(F−(Cl(Int(K)))) ⊂ F−(K) for every closed set K of Y
(4) mCl(F−(Cl(Int(Cl(B))))) ⊂ F−(Cl(B)) for every subset B of Y
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(5) F+(Int(B)) ⊂ mInt(F+(Int(Cl(Int(B))))) for every subset B of Y
(6) F+(V) = mInt(F+(V)) for every regular open set V of Y
(7) F−(K) = mCl(F−(K)) for every regular closed set K of Y.

Theorem 3.4. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is lower almost m-continuous
(2) F−(V) ⊂ mInt(F−(Int(Cl(V)))) for every open set V of Y
(3) mCl(F+(Cl(Int(K)))) ⊂ F+(K) for every closed set K of Y
(4) mCl(F+(Cl(Int(Cl(B))))) ⊂ F+(Cl(B)) for every subset B of Y
(5) F−(Int(B)) ⊂ mInt(F−(Int(Cl(Int(B))))) for every subset B of Y
(6) F−(V) = mInt(F−(V)) for every regular open set V of Y
(7) F+(K) = mCl(F+(K)) for every regular closed set K of Y.

Corollary 3.1. For a multifunction F : (X,mX) → (Y, σ), where mX has prop-
erty B, the following properties are equivalent:
(1) F is upper almost m-continuous
(2) F+(V) is m-open for every regular open set V of Y
(3) F−(K) is m-closed for every regular closed set K of Y.

Proof. The proof follows from Theorem 3.3 and Lemma 3.3.

Corollary 3.2. For a multifunction F : (X,mX) → (Y, σ), where mX has prop-
erty B, the following properties are equivalent:
(1) F is lower almost m-continuous
(2) F−(V) is m-open for every regular open set V of Y
(3) F+(K) is m-closed for every regular closed set K of Y.

Proof. The proof follows from Theorem 3.4 and Lemma 3.3.
For a multifunction F : (X,mX) → (Y, σ), we define D+

am(F) and D−
am(F) as

follows:
D+
am(F) = {x ∈ X : F is not upper almost m-continuous at x},

D−
am(F) = {x ∈ X : F is not lower almost m-continuous at x}.

Theorem 3.5. For a multifunction F : (X,mX) → (Y, σ), the following equali-
ties hold:

D+
am(F) =

∪
G∈σ

{F+(G) \mInt(F+(Int(Cl(G))))} =

=
∪
K∈F

{mCl(F−(Cl(Int(K)))) \ F−(K)},
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=
∪

B∈P(Y)

{mCl(F−(Cl(Int(Cl(B))))) \ F−(Cl(B))} =

=
∪

B∈P(Y)

{F+(Int(B)) \mInt(F+(Int(Cl(Int(B))} =

=
∪

V∈RO(Y)

{F+(V) \mInt(F+(V))} =

=
∪

K∈RC(Y)

{mCl(F−(K)) \ F−(K)},

where F is the family of closed sets of (Y, σ).

Proof. We shall show only the first equality since the proofs of other are similar.
Let x ∈ D+

am(F). By Theorem 3.1, there exists an open set V of Y such that
x ∈ F+(V) and x /∈ mInt(F+(Int(Cl(V)))). Hence we have x ∈ F+(V) \
mInt(F+(Int(Cl(V)))) ⊂

∪
G∈σ{F+(G) \mInt(F+(Int(Cl(G))))}.

Conversely, let x ∈
∪
G∈σ{F+(G) \ mInt(F+(Int(Cl(G))))}. Then there

exists V ∈ σ such that x ∈ F+(V) \ mInt(F+(Int(Cl(V)))). By Theorem 3.1,
we obtain x ∈ D+

am(F).

Theorem 3.6. For a multifunction F : (X,mX) → (Y, σ), the following equali-
ties hold:

D−
am(F) =

∪
G∈σ

{F−(G) \mInt(F−(Int(Cl(G))))} =

=
∪
K∈F

{mCl(F+(Cl(Int(K)))) \ F+(K)},

=
∪

B∈P(Y)

{mCl(F+(Cl(Int(Cl(B))))) \ F+(Cl(B))} =

=
∪

B∈P(Y)

{F−(Int(B)) \mInt(F−(Int(Cl(Int(B)))))} =

=
∪

V∈RO(Y)

{F−(V) \mInt(F−(V))} =

=
∪

K∈RC(Y)

{mCl(F+(K)) \ F+(K)},

where F is the family of closed sets of (Y, σ).

Proof. The proof is similar to that of Theorem 3.5.
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4. Iterate m-structures and iterate almost m-continuous
multifunctions

Definition 4.1. Let (X,mX) be an m-space. A subset A of X is said to be
(1) m-α-open [16] if A ⊂ mInt(mCl(mInt(A))),
(2) m-semi-open [15] if A ⊂ mCl(mInt(A)),
(3) m-preopen [6], [18] if A ⊂ mInt(mCl(A)),
(4) m-β-open [34] if A ⊂ mCl(mInt(mCl(A))),
(5) m-γ-open [36] if A ⊂ mInt(mCl(A)) ∪mCl(mInt(A)),
(6) m-regular open (resp. m-regular closed) [37] if A = mInt(mCl(A)) (resp.

A = mCl(mInt(A))).

LetA be a subset of anm-space (X,mX). The union of allm-regular open sets
of X contained in A is called the m-δ-interior of A and is denoted by mδ Int(A).
A subset A is said to be m-δ-open if A = mδ Int(A). The complement of an m-
δ-open set is said to be m-δ-closed. The intersection of all m-δ-closed sets of X
containing A is called them-δ-closure of A and is denoted bymδCl(A). A subset
A of X is said to be m-δ-preopen [37] if A ⊂ mInt(mδCl(A)). The complement
of an m-δ-preopen set is said to be m-δ-preclosed.

The family of all m-α-open (resp. m-semi-open, m-preopen, m-β-open, m-
γ-open, m-δ-preopen) sets in (X,mX) is denoted by mα(X) (resp. m SO(X),
mPO(X), mβ(X), mγ(X), mδ PO(X)).

Remark 4.1. Similar definitions ofm-semi-open sets,m-preopen sets,m-α-open
sets, m-β-open sets are provided in [7], [32] and [34].

Let (X,mX) be an m-space. Then mα(X), m SO(X), mPO(X), mβ(X),
mγ(X) andmδ PO(X) are all minimal structures on X and are determined by iter-
ating operatorsmInt,mCl andmδCl. Hence, they are calledm-iterate structures
and are denoted bymIT(X) (brieflymIT).

Remark 4.2. (1) It easily follows from Lemma 3.1(1), (3), (4) that mα(X),
mSO(X), mPO(X), mβ(X), mγ(X), mδ PO(X) are all minimal structures
on Xwith property B. They are also shown in Theorem 3.5 of [15], Theorem
3.4 of [18], Theorem 3.4 of [16], Proposition 3.5 of [36].

(2) Let (X,mX) be an m-space and mIT(X) an iterate structure on X. If
mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X)), mγ(X), mδ PO(X)),
then we obtain the following definitions provided in [15], [19], [36], [37]:

mITCl(A) = msCl(A) (resp.mpCl(A),mαCl(A),mβ Cl(A),mγ Cl(A),
mδ pCl(A)),
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mITInt(A) = msInt(A) (resp. mpInt(A), mα Int(A), mβ Int(A),
mγ Int(A), mδ pInt(A)).

Remark 4.3. (1) By Lemmas 3.1 and 3.3, we obtain Theorems 3.7 and 3.8 of
[18], Theroems 3.8 and 3.9 of [16], Remark 3.10 of [36].

(2) By Lemma 3.2, we obtain Lemma 3.9 of [18] and Theorem 3.10 of [16].

Definition 4.2. Let (X,mX) be an m-space and (Y, σ) a topological space.
A multifunction F : (X,mX) → (Y, σ) is said to be
(1) upper almost γ-M-continuous [36] (resp. upper almost δ-M-precontinuous

[37]) at x ∈ X if for each open set V of Y containing F(x), there exists U ∈
∈ mγ(X) (resp. mδ PO(X)) containing x such that F(U) ⊂ Int(Cl(V)),

(2) lower almost γ-M-continuous [36] (resp. lower almost δ-M-precontinuous
[37]) at x ∈ X if for each open set V of Y such that F(x)∩V ̸= ∅, there exists
U ∈ mγ(X) (resp. mδ PO(X)) containing x such that F(u)∩ Int(Cl(V)) ̸= ∅
for every u ∈ U,

(3) upper/lower almost γ-M-continuous [36] (resp. upper/lower almost δ-M-
precontinuous [37]) if it has this property at each x ∈ X.

Remark 4.4. By Definition 4.2 and Remark 4.2, it follows that a multifunc-
tion F : (X,mX) → (Y, σ) is upper/lower almost γ-M-continuous (resp. up-
per/lower almost δ-M-precontinuous) at x (on X) if and only if a multifunction
F : (X,mγ(X)) → (Y, σ) (resp. F : (X,mδ PO(X)) → (Y, σ)) is upper/lower
almost m-continuous at x (on X).

Definition 4.3. AmultifunctionF : (X,mX) → (Y, σ) is said to be upper/lower
almost mIT-continuous at x ∈ X (on X) if F : (X,mIT(X)) → (Y, σ) is up-
per/lower almost m-continuous at x ∈ X (on X).

Remark 4.5. Let (X,mX) be a minimal space. If mIT(X) = m SO(X) (resp.
mPO(X), mα(X), mβ(X), mγ(X), mδ PO(X)) and F : (X,mX) → (Y, σ) is
upper/lower almost mIT-continuous, then F is upper/lower almost m-semi-
continuous (resp. upper/lower almost m-precontinuous, upper/lower almost m-
α-continuous, upper/lower almost m-β-continuous, upper/lower almost γ-M-
continuous [36], upper/lower almost δ-M-precontinuous [37]).

Remark 4.6. By Definition 4.3, it follows that the study of upper/lower almost
mIT-continuity is reduced to the study of upper/lower almost m-continuity.

Since mIT(X) has property B, Theorem 4.1 (resp. Theorem 4.2) follows
from Theorem 3.3 and Corollary 3.1 (resp. Theorem 3.4 and Corollary 3.2).
Theorems 4.3 and 4.4 follow from Theorems 3.1 and 3.2, respectively.
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Theorem 4.1. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is upper almost mIT-continuous
(2) F+(V) ⊂ mITInt(F+(Int(Cl(V)))) for every open set V of Y
(3) mITCl(F−(Cl(Int(K)))) ⊂ F−(K) for every closed set K of Y
(4) mITCl(F−(Cl(Int(Cl(B))))) ⊂ F−(Cl(B)) for every subset B of Y
(5) F+(Int(B)) ⊂ mITInt(F+(Int(Cl(Int(B))))) for every subset B of Y
(6) F+(V) is mIT-open for every regular open set V of Y
(7) F−(K) is mIT-closed for every regular closed set K of Y.

Theorem 4.2. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is lower almost mIT-continuous
(2) F−(V) ⊂ mITInt(F−(Int(Cl(V)))) for every open set V of Y
(3) mITCl(F+(Cl(Int(K)))) ⊂ F+(K) for every closed set K of Y
(4) mITCl(F+(Cl(Int(Cl(B))))) ⊂ F+(Cl(B)) for every subset B of Y
(5) F−(Int(B)) ⊂ mITInt(F−(Int(Cl(Int(B))))) for every subset B of Y
(6) F−(V) is mIT-open for every regular open set V of Y
(7) F+(K) is mIT-closed for every regular closed set K of Y.

Theorem 4.3. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is upper almost mIT-continuous at x ∈ X
(2) for every open set V of Y with x ∈ F+(V), x ∈ mITInt(F+(Int(Cl(V))))
(3) for every closed set K of Y with x ∈ mITCl(F−(Cl(Int(K)))), x ∈ F−(K)
(4) for every subset B of Y with x ∈ mITCl(F−(Cl(Int(Cl(B))))), x ∈

∈ F−(Cl(B))
(5) for every subset B of Y with x ∈ F+(Int(B)),

x ∈ mITInt(F+(Int(Cl(Int(B)))));

(6) for every regular open set V of Y with x ∈ F+(V), x ∈ mITInt(F+(V))
(7) for every regular closed set K of Y with x ∈ mITCl(F−(K)), x ∈ F−(K)).

Theorem 4.4. For a multifunction F : (X,mX) → (Y, σ), the following proper-
ties are equivalent:
(1) F is lower almost mIT-continuous at x ∈ X
(2) for every open set V of Y with x ∈ F−(V), x ∈ mITInt(F−(Int(Cl(V))))
(3) for every closed set K of Y with x ∈ mITCl(F+(Cl(Int(K)))), x ∈ F+(K)
(4) for every subset B of Y with x ∈ mITCl(F+(Cl(Int(Cl(B))))),

x ∈ F+(Cl(B))
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(5) for every subset B of Y with x ∈ F−(Int(B)),

x ∈ mITInt(F−(Int(Cl(Int(B)))));

(6) for every regular open set V of Y with x ∈ F−(V), x ∈ mITInt(F−(V))
(7) for every regular closed set K of Y with x ∈ mITCl(F+(K)), x ∈ F+(K)).

Remark 4.7. (1) IfmIT(X) = mγ(X) (resp.mδPO(X)), then by Theorems 4.1
and 4.3 we obtain the results established in Theorem 4.13 (1), (2), (3), (5),
(6), (7), (8) of [36] (resp. Theorem 4.2 (1), (2), (3), (5), (6), (7), (8) of [37]),

(2) If mIT(X) = mγ(X) (resp. mδ PO(X)), then by Theorems 4.2 and 4.4 we
obtain the results established in Theorem 4.14 (1), (2), (3), (5), (6), (7), (8)
of [36] (resp. Theorem 4.4 (1), (2), (3), (5), (6), (7), (8) of [37]).

For a multifunction F : (X,mX) → (Y, σ), we defineD+
amIT(F) andD

−
amIT(F)

as follows:

D+
amIT(F) = {x ∈ X : F is not upper almost mIT-continuous at x},

D−
amIT(F) = {x ∈ X : F is not lower almost mIT-continuous at x}.

Theorem 4.5. For a multifunction F : (X,mX) → (Y, σ), the following equali-
ties hold:

D+
amIT(F) =

∪
G∈σ

{F+(G) \mITInt(F+(Int(Cl(G))))} =

=
∪
K∈F

{mITCl(F−(Cl(Int(K)))) \ F−(K)},

=
∪

B∈P(Y)

{mITCl(F−(Cl(Int(Cl(B))))) \ F−(Cl(B))} =

=
∪

B∈P(Y)

{F+(Int(B)) \mITInt(F+(Int(Cl(Int(B))} =

=
∪

V∈RO(Y)

{F+(V) \mITInt(F+(V))} =

=
∪

K∈RC(Y)

{mITCl(F−(K)) \ F−(K)},

where F is the family of closed sets of (Y, σ).

Proof. The proof follows from Theorem 3.5.
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Theorem 4.6. For a multifunction F : (X,mX) → (Y, σ), the following equali-
ties hold:

D−
amIT(F) =

∪
G∈σ

{F−(G) \mITInt(F−(Int(Cl(G))))}

=
∪
K∈F

{mITCl(F+(Cl(Int(K)))) \ F+(K)},

=
∪

B∈P(Y)

{mITCl(F+(Cl(Int(Cl(B))))) \ F+(Cl(B))}

=
∪

B∈P(Y)

{F−(Int(B)) \mITInt(F−(Int(Cl(Int(B))}

=
∪

V∈RO(Y)

{F−(V) \mITInt(F−(V))}

=
∪

K∈RC(Y)

{mITCl(F+(K)) \ F+(K)},

where F is the family of closed sets of (Y, σ).

Proof. The proof follows from Theorem 3.6.

Remark 4.8. Some other characterizations of upper/lower almost mIT-
continuous multifunctions are obtained by Theorems 3.7–3.10 and Theorems
4.1–4.5 of [23].
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ON GENERALIZED SIDON SETS
WHICH ARE ASYMPTOTIC BASES
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Abstract. Let h and k be positive integers. We say a setA of positive integers is an
asymptotic basis of order k if every large enough positive integer can be represented as
the sum of k terms fromA. A set of positive integersA is called Bh[g] set if all positive
integers can be represented as the sum of h terms from A at most g times. In this paper
we prove the existence of Bh[g] sets which are asymptotic bases of order k, if 3 ≤ h < k
by using probabilistic methods.

1. Introduction

Let N denote the set of positive integers. Let h and k be positive integers
satisfying 3 ≤ h < k. Let A ⊂ N be an infinite set of positive integers and let
Rh(A, n) denote the number of solutions of the equation

(1) a1 + a2 + · · ·+ ah = n, a1 ∈ A, . . . , ah ∈ A, a1 ≤ a2 ≤ . . . ≤ ah,

where n ∈ N. A set of positive integers A is called Bh[g] set if for every n ∈ N,
the number of representations of n as the sum of h terms in the form (1) is at
most g, that is Rh(A, n) ≤ g. We say a setA ⊂ N is an asymptotic basis of order
k, if Rk(A, n) > 0 for all large enough positive integer n, i.e., if there exists a
positive integer n0 such that Rk(A, n) > 0 for n > n0. In [5] and [6] P. Erdős,
A. Sárközy and V. T. Sós asked if there exists a Sidon set (or B2[1] set) which is
an asymptotic basis of order 3. The problem also appears in [13] (with a typo in
it: order 2 is written instead of order 3). It is easy to see that a Sidon set cannot
be an asymptotic basis of order 2 (see in [8]). Recently J. M. Deshouillers and
A. Plagne in [2] constructed a Sidon set which is an asymptotic basis of order at
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most 7. In [11] I proved the existence of Sidon sets which are asymptotic bases
of order 5 by using probabilistic methods. In [12] we improve on this result by
proving the existence of a Sidon set which is an asymptotic basis of order 4. It
could be also proved that there exists a positive integer g and a B2[g] set which
is an asymptotic basis of order 3. As Erdős claimed in [3] without proof: “We
proved by the probabilistic method that there is a basis of order three for which
the number of solutions of ai + aj = n is ≤ c but we do not know that smallest
value of c”. In [1] Cilleruelo proved the existence of a B2[2] set which is an
asymptotic basis of order 3. In this paper I will prove a similar but more general
theorem for Bh[g] sets:

Theorem 1. For every positive integer h and k satisfying 3 ≤ h < k there exists
a positive integer g and a Bh[g] set which is an asymptotic basis of order k.

Before we prove the above theorem, we give a short survey of the proba-
bilistic method we are working with.

2. Probabilistic tools

To prove Theorem 1 we use the probabilistic method due to Erdős and
Rényi. There is an excellent summary of this method in the book of Halberstam
and Roth [9]. In this paper we denote the probability of an event by P, and the
expectation of a random variable ζ by E(ζ). Let Ω denote the set of the strictly
increasing sequences of positive integers.

Lemma 2. Let
α1, α2, α3 . . .

be real numbers satisfying

0 ≤ αn ≤ 1 (n = 1, 2, . . . ).

Then there exists a probability space (Ω, X, P) with the following two properties:
(i) For every natural number n, the event E(n) = {A: A ∈ Ω, n ∈ A} is

measurable, and P(E(n)) = αn.
(ii) The events E(1), E(2), . . . are independent.
See Theorem 13. in [9], p. 142. We denote the characteristic function of the

event E(n) by ϱ(A, n):

ϱ(A, n) =

{
1, if n ∈ A
0, if n /∈ A.
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Furthermore, for someA = {a1, a2, . . . } ∈ Ωwe denote the number of solutions
of ai1 + ai2 + . . . + aih = n with ai1 ∈ A, ai2 ∈ A, . . . , aih ∈ A, 1 ≤ ai1 <
< ai2 . . . < aih < n by rh(n). Then

(2) rh(A, n) = rh(n) =
∑

(a1,a2,...,ah)∈Nh

1≤a1<...<ah<n
a1+a2+...+ah=n

ϱ(A, a1)ϱ(A, a2) . . . ϱ(A, ah).

Let r∗h(n) denote the number of those representations of n in the form (1) in which
there are at least two equal terms. Thus we have

(3) Rh(A, n) = Rh(n) = rh(n) + r∗h(n).

It is easy to see from (2) that rh(n) is the sum of random variables. However for
h > 2 these variables are not independent because the same ϱ(A, ai)may appear
in many terms. To overcome this problem we need the following inequality due
to S. Janson [7], [10], [14] which plays an important role in our proof.

Consider a set {ti}i∈Q of independent random indicator variables and for
an index set Γ a family {Q(γ)}γ∈Γ of subsets of the index set Q, and define
Iγ =

∏
i∈Q(γ) ti and N =

∑
γ∈Γ Iγ . (In other words N counts the number of the

given sets {Q(γ)} that are contained in the random set {i ∈ Q : ti = 1}.) Let us
write γ ∼ δ if Q(γ) ∩ Q(δ) ̸= ∅ but γ ̸= δ, and define

pγ = E(Iγ),

λ = E(N) =
∑
γ

pγ ,

∆ =
1
λ

∑
γ∼δ

E(IγIδ).

Lemma 3. (Janson) With notations as above, if 0 ≤ ε ≤ 1, then

P(N ≤ (1− ε)λ) ≤ exp
(
− 1

2(1+∆)
ε2λ
)
.

In the proof of Theorem 1 we use the following lemma:

Lemma 4. (Borel--Cantelli) Let X1,X2, . . . be a sequence of events in a proba-
bility space. If

+∞∑
j=1

P(Xj) <∞,

then with probability 1, at most a finite number of the events Xj can occur.
See [9], p. 135. We also need the following lemma due to Erdős and Tetali:
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Lemma 5. Let Y1,Y2, . . . be a sequence of events in a probability space. If∑
i P(Yi) ≤ µ, and κ is a positive integer then∑

(Y1,...,Yκ)
independent

P(Y1 ∩ . . . ∩ Yκ) ≤ µκ/κ!.

See [7] for the proof. (We say the events W1, . . . ,Wn are independent if for all
subsets I ⊆ {1, . . . , n}, P(∩i∈IWi) =

∏
i∈I P(Wi).) Finally we need the fol-

lowing combinatorial result due to Erdős and Rado, see [4]. Let r be a positive
integer, r ≥ 3. A collection of sets L1,L2, . . . , Lr is said to form a Delta - system
if the sets have pairwise the same intersection.

Lemma 6. If H is a collection of sets of size at most m and |H| > (r − 1)mm!
then H contains r sets forming a Delta - system.

3. Proof of Theorem 1

Let k be fixed. Let α be any real number satisfying 1
k < α < 3

3k−1 . Define
the sequence αn in Lemma 1 by

αn =
1

n1−α
,

so that P({A: A ∈ Ω, n ∈ A}) = 1
n1−α . The proof of Theorem 1 consists of

two parts. In the first part we prove similarly as in [7] that with probability 1,A
is an asymptotic basis of order k, i.e., with probability 1, Rk(n) > 0 if n is large
enough. In the second part we show that with probability 1, A is a Bh[g] set.

Let T1 = {a1, . . . , ak}, T2 = {b1, . . . , bk}, two different representations of
n, that is T1 ̸= T2, T1,T2 ⊂ A and

a1 + . . . + ak = b1 + . . . + bk = n.

We say T1 and T2 are disjoint if they share no element in common. To prove
thatA is an asymptotic basis of order k we apply Lemma 2. We use the theorem
with Q = N, and ti is ϱ(A, i). For a fixed n the sets {Q(γ)}γ∈Γ denote all the
representations of n as the sum of k distinct positive integers, i.e.,

{Q(γ)}γ∈Γ = {(a1, . . . , ak) : a1 + . . . + ak = n, 1 ≤ a1 < . . . < ak < n}.
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Thus Iγ =
∏

ai∈Q(γ) ϱ(ai,A). In other words Iγ is the indicator variable that
Q(γ) i.e., a representation of n as the sum of k terms is inA. Then it is clear that

N =
∑
γ∈Γ

Iγ =
∑
γ∈Γ

∏
ai∈Q(γ)

ϱ(ai,A) =

=
∑

(a1,a2,...,ak)∈Nk

1≤a1<...<ak<n
a1+...+ak=n

ϱ(A, a1)ϱ(A, a2) . . . ϱ(A, ak) = rk(n).

If Q(γ), Q(δ) are two different representations of n as the sum of k terms and
γ ̸= δ, then γ ∼ δ implies that they have at least 1 but at most k − 2 common
terms. It is clear thatE(IγIδ) = P({Q(γ) ∈ A}∩{Q(δ) ∈ A}). To apply Lemma
2 we have to estimate E(rk(n)) and calculate ∆. First we give lower estimation
for E(rk(n)). Let a be a small positive constant. By ak < n, we have
(4)

E(rk(n)) =
∑

a1+...+ak=n
1≤a1<...<ak<n

P(a1 ∈ A) . . .P(ak ∈ A) =

=
∑

a1+...+ak=n
1≤a1<...<ak<n

1
(a1 . . . ak)1−α

≥
∑

a1+...+ak=n
na≤a1<...<ak<n

1
(a1 . . . ak)1−α

>

>
1

n1−α
∑

na<a1< n
k(k−1)

1
a1−α1

∑
n

k(k−1)<a2<
2n

k(k−1)

1
a1−α2

. . .
∑

(k−2)n
k(k−1)<ak−1<

(k−1)n
k(k−1)

1
a1−αk−1

=

=
1

n1−α

[ n
k(k−1)∫
na

1
a1−α1

+ O(1)

][ 2n
k(k−1)∫
n

k(k−1)

1
a1−α2

+ O(1)

]
. . .

[ (k−1)n
k(k−1)∫

(k−2)n
k(k−1)

1
a1−αk−1

+ O(1)

]
=

=
1

n1−α

[
nα

[k(k− 1)]αα
− naα

α
+ O(1)

][
nα(2α − 1)
[k(k− 1)]αα

+ O(1)

]
. . .×

×

[
nα((k− 2)α − (k− 3)α)

[(k− 1)(k− 2)]αα
+ O(1)

][
nα((k− 1)α − (k− 2)α)

[k(k− 1)]αα
+ O(1)

]
=

=
1

n1−α
n(k−1)α(1+ o(1))c1(1− nα(a−1)) > c2nkα−1,

if n is large enough, and c1, c2 are constants depending on α.
For 1 ≤ l ≤ k− 1 we denote by rl(n) the number of representations of n as

the sum of l distinct numbers from A. Let E(rl(n)) = λl(n). In the next step we
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give upper estimation for E(rl(n)). By n/l < al, we have

(5)

λl(n) = E(rl(n)) =
∑

a1+a2+...+al=n
1≤a1<a2<...<al<n

P(a1 ∈ A)P(a2 ∈ A) . . .P(al ∈ A) =

=
∑

a1+a2+...+al=n
1≤a1<a2<...<al<n

1
(a1 . . . al)1−α

≤

≤ n−1+α+o(1)
∑

a1+a2+...+al=n
1≤a1<a2<...<al<n

1
(a1 . . . al−1)1−α

≤

≤ n−1+α+o(1)
∑

1≤ai≤n
i=1...l−1

1
(a1 . . . al−1)1−α

≤

≤ n−1+α+o(1)
( ∑

1≤a1≤n

1
a1−α1

)l−1
=

= n−1+α+o(1)(nα+o(1))l−1 = n−1+lα+o(1).

LetQ(i) andQ(j) be two different representations of n as the sum of k terms. Let
Fi denote the event that Q(i) ⊂ A. The following lemma shows that the above
events have low correlation in the following sense:

Lemma 7. ∑
i∼j

P(Fi ∩ Fj) = o(1).

Proof. The proof of this lemma is similar to Lemma 11 in [7] and Lemma 5 in
[11]. For the sake of completeness I present the proof. Note that i ∼ j implies
that Q(i) and Q(j) share at least 1 number and at most k− 2 numbers.

∑
i∼j

P(Fi ∩ Fj) =
k−2∑
l=1

∑
|Q(i)∩Q(j)|=l

P(Fi ∩ Fj).

Consider Q(i),Q(j) such that |Q(i) ∩ Q(j)| = l. Say,

Q(i) = (z1, . . . , zl, x1, x2, . . . , xk−l)

and

Q(j) = (z1, . . . , zl, y1, y2, . . . , yk−l).
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Let
∑

i zi = m. Then
∑

i xi =
∑

i yi = n− m. Write P(xi ∈ A) = P(xi). So∑
|Q(i)∩Q(j)|=l

P(Fi ∩ Fj) =

=
∑
m

∑
z1+...+zl=m

x1+...+xk−l=n−m
y1+...+yk−l=n−m

(P(z1) . . .P(zl))(P(x1) . . .P(xk−l))(P(y1) . . .P(yk−l)) =

=
∑
m

( ∑
z1+...+zl=m

P(z1) . . .P(zl)
)( ∑

x1+...+xk−l=n−m
P(x1) . . .P(xk−l)

)2
=

=
∑
m
λl(m)

(
λk−l(n− m)

)2
.

We alreadymade the estimates in (5) that λl(n) < n−1+lα+o(1), for 1 ≤ l ≤ k−1.
Fix ε < 1/(6k− 2). Then there exists an m0 such that

λl(m) < m−1+lα+ε,

for m > m0. Since m0 is a constant, λl(m) < C, where C is a constant, for
m ≤ m0. We split the above summation in four parts:

∑
m
λl(m)

(
λk−l(n− m)

)2
=

=
∑
m≤m0

λl(m)
(
λk−l(n− m)

)2
+

∑
m0<m≤n/2

λl(m)
(
λk−l(n− m)

)2
+

+
∑

n/2<m≤n−m0

λl(m)
(
λk−l(n− m)

)2
+

∑
n−m0<m

λl(m)
(
λk−l(n− m)

)2
=

= ∆1 +∆2 +∆3 +∆4.

First we estimate∆1:

∆1 =
∑
m≤m0

λl(m)
(
λk−l(n− m)

)2
<

< (n−1+(k−l)α+o(1))2
∑
m≤m0

C = n−2−2lα+2kα+o(1) = o(1).
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In the next step we estimate∆2:

∆2 =
∑

m0<m≤n/2

λl(m)
(
λk−l(n− m)

)2
<

< (n−1+(k−l)α+o(1))2
∑

m0<m≤n/2

m−1+lα+ε =

= n−2−2lα+2kα+o(1)
∑

m0<m≤n/2

m−1+lα+ε.

Now we estimate by integral over the full range:

∆2 < n−2−2lα+2kα+o(1)
(∫ n

0
m−1+lα+εdm+ O(1)

)
=

= n−2−lα+2kα+o(1)+ε = o(1).
In the next step we estimate∆3:

∆3 =
∑

n/2<m≤n−m0

λl(m)
(
λk−l(n− m)

)2
<

< (n−1+lα+o(1))
∑

n/2<m≤n−m0

(
(n− m)−1+(k−l)α+ε

)2
=

= (n−1+lα+o(1))
∑

n/2<m≤n−m0

(n− m)−2−2lα+2kα+2ε.

Once again estimating by integral over the full range:

∆3 < n−1+lα+o(1)
(∫ n

0
(n− m)−2−2lα+2kα+2εdm+ O(1)

)
=

= n−2−lα+2kα+2ε+o(1) = o(1).
In the last step we estimate∆4:

∆4 =
∑

n−m0<m
λl(m)

(
λk−l(n− m)

)2
<

< (n−1+lα+o(1))
∑

n−m0<m
C2 = n−1+lα+o(1) = o(1).

Thus we have ∑
i∼j

P(Fi ∩ Fj) = ∆1 +∆2 +∆3 +∆4 = o(1).

The proof of Lemma 6 is completed.
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Then it follows from Lemma 2 that for 0 ≤ c3 ≤ 1 constant, we have

P(rk(n) ≤ c3λ) ≤ e−1/2(1+∆)(1−c3)2λ.

It follows from Lemma 6 that ∆ = o(1). Thus in view of (4) it follows from
Lemma 2 that

P(rk(n) ≤ c3E(rk(n))) ≤ e−1/2(1+o(1))(1−c3)2c2nkα−1
< e−c4 log n,

where c4 is a constant. Note that c3 can be chosen arbitrarily small, thus if c4 is
large enough we have

P(rk(n) ≤ c3E(rk(n))) ≤ n−2+o(1).

Thus by (4) and the Borel–Cantelli lemma we get that with probability 1, there
exists an n0 = n0(A) such that

(6) rk(n) > c3nkα−1 for n > n0.

It is clear from (3) that with probability 1, Rk(n) > c3nkα−1 for n > n0, thus
with probability 1, A is an asymptotic basis of order k.

In the next section we will prove that with probability 1, A is a Bh[g] set
for some g positive integer. For 3 ≤ h ≤ k − 1, let fh(n) denote the size of a
maximal collection of pairwise disjoint representations of n as the sum of h terms
fromA. We show similarly as in [7] that with probability 1, fh(n) is bounded by
a constant. Let

B = {(a1, . . . , ah) : a1 + . . . + ah = n, a1 ∈ A, . . . , ah ∈ A,
1 ≤ a1 < . . . < ah < n},

and let H(B) = {T ⊂ B: all the S ∈ T are pairwise disjoint}.
It is clear that pairwise disjointness of the sets implies the independence of

the associated events, i.e., if S1 and S2 are pairwise disjoint representations as
the sum of h terms, the events S1 ⊂ A, S2 ⊂ A are independent. Thus by (5)
and Lemma 4 we have

(7)

P(fh(n) > 2k) ≤ P
( ∪

T ⊂H(B)

|T |=2k+1

∩
S∈T

S
)
≤

∑
T ⊂H(B)
|T |=2k+1

P
( ∩
S∈T

S
)
=

=
∑

(S1,...,S2k+1)
Pairwise disjoint

P(S1 ∩ . . . ∩ S2k+1) ≤
1

(2k+ 1)!
(E(fh(n)))2k+1 ≤

≤ 1
(2k+ 1)!

(E(rh(n)))2k+1 ≤ 1
(2k+ 1)!

c2k+1
5 n(2k+1)(−1+hα+o(1)),
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where c5 is a constant. By h ≤ (k− 1) it follows that

P(fh(n) > 2k) < n−2+o(1).

Thus by the Borel–Cantelli lemma with probability 1, the above assertion im-
plies that almost always for 3 ≤ h ≤ (k− 1) there exists nh such that if n > nh,
then fh(n) ≤ 2k. But for any finite nh, there are at most a finite number of repre-
sentations as a sum of h numbers. Therefore, almost always for 3 ≤ h ≤ (k− 1)
there exists a Ch such that for every n, fh(n) < Ch. Set cmax = maxh{Ch}. Now
we show similarly as in [7] that almost always there exists a constant c = c(A)
such that for every n,
(8) rh(n) < c.
The proof of (8) is purely combinatorial. We show that (whenever every Ch ex-
ists), for every n
(9) rh(n) ≤ (cmax)hh!.

We prove by contradiction. Suppose (9) is false for some n = n′ , i.e.,

(10) rh(n
′
) > (cmax)hh!.

We will apply Lemma 5. Let H be the set of representations of n′ as the sum
of h distinct numbers from A. Clearly |H| = rh(n

′
), thus by (10) and applying

Lemma 5 we get that H contains cmax + 1 representations of n′ as the sum of h
distinct numbers which form a Delta - system {Sh1, . . . , Shcmax+1}. If the common
intersection of these sets is empty then this cmax+1 set form a family of disjoint
h representations of n′ , which contradicts the definition of cmax. Otherwise let
the common intersection of the system be {x1, . . . , xq}, where 0 ≤ q ≤ h− 2. If∑

i xi = m, then removing the common intersection each set will yield fh−q(n
′−

m) ≥ cmax + 1. This is impossible in view of fh(n) < Ch and the definition of
cmax. This proves (9), and in fact, also shows that rh(n) is bounded by a constant,
namely rh(n) < chmaxh!.

In the last section we will give an upper estimation for r∗h(n). This is almost
the same as in the previous paragraph. For the sake of completeness I will present
the proof and leave the details to the reader. If we collect the equal terms, we have
(11) u1a1 + u2a2 + . . . + utat = n,
where the ui’s are natural numbers, and
(12) u1 + u2 + . . . + ut = h.
Thus r∗h(n) denotes the number of representations of n in the form (11), where the
ai’s are different. Similarly to the estimate of rh(n), we show that with probability
1, r∗h(n) is also bounded by a constant. Let 2 ≤ t ≤ h − 1 be fixed. For a fixed



ON GENERALIZED SIDON SETS WHICH ARE ASYMPTOTIC BASES 157

u1, . . . , ut denote st(n) the number of representations of n in the form (11). We
show that with probability 1, st(n) is bounded by a constant. (Note that in the
previous section we proved the case when all ui’s equal to one, and t = h). First
we will give an upper estimation for E(st(n)), with a calculation similar to (5).
Using the definition, and n/k < at, we have

(13)

E(st(n)) =
∑

u1a1+u2a2+...+utat=n
1≤a1<a2<...<at<n

P(a1 ∈ A)P(a2 ∈ A) . . .P(at ∈ A) =

=
∑

u1a1+u2a2+...+utat=n
1≤a1<a2<...<at<n

1
(a1 . . . at)1−α

≤

≤ n−1+α+o(1)
∑

u1a1+u2a2+...+utat=n
1≤a1<a2<...<at<n

1
(a1 . . . at−1)1+α

<

< n−1+hα+o(1).

Let s∗t (n) denote the size of a maximal collection of pairwise disjoint represen-
tations in the form (11). The same argument as in (7) shows that almost always
there exists a dh constant such that for every large enough n, s∗t (n) ≤ dh. In view
of (13), and applying Lemma 4 we have

P(s∗t (n) > dh) < n−2+o(1),

thus by the Borel–Cantelli lemma we get that with probability 1, s∗t (n) ≤ dh
if n is large enough. We say that a m - tuple (a1, . . . , am) (m ≤ t) is an m -
representation of n in the form (11) if there is a permutation π of the numbers
{1, 2, . . . ,m} such that

∑m
i=1 uπ(i)ai = n. In the last step we apply Lemma 5

to prove that st(n) is bounded by a constant. Let D =
(
maxh{dh}

)t
t!. Let H

in Lemma 5 be the collection of representations of n in the form (11). Clearly
|H| = st(n). If st(n) > D, and n is sufficiently large then by Lemma 5,H contains
a Delta - systemwithmaxh{dh}+1 sets. If the intersection of these sets is empty,
then they form a family of disjoint t-representations in the form (11). Otherwise
let the common intersection of the sets be {y1, . . . , yw}, where 1 ≤ w ≤ t −
1. By the pigeon hole principle, there exists a permutation π of the numbers
{1, 2, . . . , t} such that we can find maxh{dh} + 1 (h − w) - representations of
n′′

= n−
∑w

i=1 uπ(i)yi. These maxh{dh}+ 1 sets are disjoint, thus in both cases
we obtain a contradiction. Since there are only finitely many partitions of h in
the form (11), we get that with probability 1, r∗h(n) is bounded by a constant.
From (3) we get that with probability 1, Rh(n) is also bounded by a constant.
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