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Abstract. Let us consider the extension functor F of ring of scalars, associated to a
surjective map f : A → A of commutative rings with 1. Let 1+Ker f consist of invertible
elements. Then F induces an isomorphism of groups K(A) → K(A). Moreover, we
investigate topological algebras, where the invertible elements form an open set, and
prove for them some analogues of theorems for Banach algebras.

1. Introduction

Let A ∋ 1 be a commutative complex algebra. (In the whole paper algebras
are complex, and have 1(̸= 0)). LetP(A) be the category of all unitary projective,
nitely generated A-modules. Then P(A) is a (small) additive category and the
set µ(A) of all classes of isomorphisms of objects in P(A) is an abelian monoid.

Let us denote by K(A) the symmetrization of the monoid µ(A) ([4, p. 53]).
For a compact Hausdorff topological space we denote by C(X) the algebra of all
continuous complex functions with domain X. Whenever no misunderstanding
arises, we shall write K(X) instead of K

(
C(X)

)
.

A seminorm p on a topological algebra A is said to be submultiplicative if,
for any elements x, y in A, we have that

P(x · y) ≤ p(x) · p(y).

A locally convex algebraA is locally multiplicatively convex if the topology
of A is dened by a separating and (upwards) directed family of submultiplica-
tive seminorms. We shall, for brevity, call such an algebra a locally m-convex
algebra and such base of seminorms an m-base.

AMS Subject Classication (2000): Primary: 19xx, Secondary: 46J99, 18G99



4 FERMÍN DALMAGRO

Let A be a locallym-convex algebra. Let P be anm-base of seminorms of A.
For each p ∈ P we dene the set Np by

Np = {x ∈ A : p(x) = 0}.

Clearly, Np is a closed two sided ideal of A. Also, for each x in A and each p in P,
we denote by xp the class of x in the quotient algebra Ap := A/Np.

For each seminorm p ∈ P we have that the function on Ap dened by

∥xp∥ = p(x)

is a norm and
∥xp · yp∥ ≤ ∥xp∥ · ∥yp∥.

This norm is continuous with respect to the quotient topology and, consequently,
endowing Ap with this norm, the natural homomorphism

πp : A → Ap

is continuous and onto.
Let θA be the set of invertible elements of the locally convex algebra A ∋ 1.

If θA is open in A (i.e. 1 ∈ int θA) then A is called a Q-algebra.
Let A′ be the topological dual of the locally convex algebra A ∋ 1. The

spectrum of A consists of all elements of A′, which are algebra-homomorphisms
preserving 1. This spectrumwith theweak topology induced byAwill be denoted
by m(A). More precisely, this is the weak topology induced by the mapsm(A) ∋
∋ f 7→ f(a) ∈ C, where a ∈ A.

It is well known that every Banach algebra is a Q-algebra (see [9, p. 16]). It
is also known that if the Banach algebra A is commutative thenm(A) is compact
Hausdorff ([9, p. 44]).

2. On the K-functor

Let us begin with some observations which are to be used in what follows.
Let A ∋ 1 be a commutative ring, J an ideal of A andM a unitary A-module.

By A we mean the ring A/J. The tensor product by M of the exact sequence of
A-modules

0 → J → A → A → 0

gives us the exact sequence of A-modules ([6, Ch. VI., §2])

M⊗A J → M⊗A A → M⊗A A → 0.
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By JM = Im(M ⊗A J → M) we denote the submodule of M spanned by
the elements of the form a · x with a ∈ J and x ∈ M. Since M ⊗A A and M are
isomorphic, the sequence

0 → JM → M → M⊗A A → 0

of A-modules is exact. Therefore, M ⊗A A and M/JM are isomorphic both as
A-modules and as A-modules.

The functor (·) ⊗A A, from the category of A-modules to the category of
A-modules, is called the extension functor of the ring of scalars associated to the
map A → A (cf. [4, II. 1. 12]).

Let g be an endomorphism of An = A⊕ . . .⊕ A︸ ︷︷ ︸
n

and let g = g⊗A idA :

An⊗AA → An⊗AA be the induced endomorphism. If we take the tensor product
of the exact sequence

0 → Ker g → An → Im g → 0

by A we get the exact sequence ([6], above cited)

Ker g⊗A A → An ⊗A A
g−→ Im g⊗ A → 0,

whence, Im(Ker g⊗A A → An ⊗A A) = Ker g and Im g = Im g⊗A A.

Theorem 2.1. Let A be a commutative ring with unit 1. Let J be an ideal of
A such that 1 + J is contained in θA. Then the extension functor of the ring of
scalars, associated to the quotient mapping from A into A := A/J induces an
isomorphism of groups between K(A) and K(A).

Proof. The proof consists of two steps: the functor mentioned in the theorem
induces an injection, and also a surjection between K(A) and K(A).

We prove rst that if M and N are objects in P(A) such that M ⊗A A and
N⊗A A are A-isomorphic thenM and N are A-isomorphic.

Let p, q be projections of An such that Im p ∼= M and Im q ∼= N. For given
φ : An → An, we write φ : An → An for the image of φ by the (·) ⊗A A functor
(observe that An ⊗A A = An). If M ⊗A A is A-isomorphic to N ⊗A A, then there
exist A-isomorphisms

f : Im p → Im q, g : Im q → Im p

such that
f · g = id, g · f = id .



6 FERMÍN DALMAGRO

We now extend f and g to endomorphisms f′, g′ of An, letting f′(Ker p) =
g′(Ker q) = {0}, as shown on the following commutative diagram,

0 → Ker p → An → Im p → 0

↓ f′ ↓ ↓ f

0 → Ker q → An → Im q → 0

↓ g′ ↓ ↓ g

0 → Ker p → An → Im p → 0

(the left hand side vertical arrows are 0's, f′ = 0⊕ f : Ker p⊕ Im p → Ker q⊕
⊕ Im q, and similarly for g′).

From this it follows that the following diagram is commutative:

An
f′ - An

g′ - An

An

p

?

f′
-

f′

-

An

q

?

g′
-

g′

-

An

p

?

and that g′f′ = p, f′g′ = q.
Let us choose endomorphisms f′′ and g′′ of An such that f′′ = f′, g′′ = g′,

and take f̂ = qf′′p, ĝ = pg′′q. Then the following diagram is commutative

An
f̂ - An

ĝ - An

An

p

?

f̂
-

f̂

-

An

q

?

ĝ
-

ĝ

-

An

p

?

in particular
f̂(Im p) ⊂ Im q, ĝ(Im q) ⊂ Im p.

Let f̃ : Im p → Im q and g̃ : Im q → Im p be dened to be the restrictions
of f̂ and ĝ to Im p and Im q respectively. Then we have that

f̃ = f, g̃ = g
whence,

f̃ · g̃(x)− x ∈ J · Im q, for all x ∈ Im q
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and
g̃ · f̃(x)− x ∈ J · Im p, for all x ∈ Im p.

It can now be easily deduced fromNakayama's Lemma ([1, Ch. III, Prop. (2.2)]),
that g̃ · f̃ and f̃ · g̃ are also isomorphisms. This, in turn, implies that f̃ and g̃ are
isomorphisms.

Now we prove that, if N is an object in P(A), then there exists an object M
in P(A) such thatM⊗A A is A-isomorphic to N. In fact, if N is an object of P(A),
then N is a direct summand of some nitely generated free A-module, therefore,
there exists a short and split exact sequence

0 → Ker p → An p−→N → 0

with p a projection of An.
Let g be an endomorphism of An such that g = p. From the fact that the

sequence
0 → Ker g → An g−→ Im g → 0

is exact, the diagram

JAn
j- J · Im g

An

i1

?

g
- Im g

i2

?
→ 0

is commutative, where the vertical arrows represent the corresponding inclusions
and j is the restriction of g to J · An, and the fact that g− g2 = p − p2 = 0, we
deduce that g− g2 maps An onto J · Im g.

Since j is an epimorphism, there exists an A-homomorphism, say ϱ : An →
→ J · An, such that

i3 · j · ϱ = g− g2,
or, equivalently,

i3 · g · i1 · ϱ = g− g2,
where i3 : J · Im g → An is the inclusion.

Let h = idAn −i1 · ϱ then gh = g2 and, for each x ∈ An we have that

h(x)− x = i1 · ϱ(x)

is in JAn. From this fact and Nakayama's Lemma we deduce that h is an isomor-
phism.
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Since (h− g)2 − (h− g) = 0, then proceeding as before we deduce that
there exists an isomorphism k such that (h− g)k = (h− g)2, i.e., (h− g)k−1 =
= (h−g)2k−2. Now, writing q = (h−g)k−1 we have that q2 = q, and k(x)−x ∈
∈ JAn, that is, q is a projection of An such that

q = (h− g) =
= 1− p.

Finally, by takingM as the image of the projection 1− q we deduce thatM
is an object of P(A) and that

M⊗A A ∼= N.

A simple consequence is the following

Corollary 2.2. Let A, B be commutative rings. Let µ : A → B be a ring epi-
morphism. If 1+Kerµ ⊂ θA, then

K(A) ∼= K(B).

Corollary 2.3. Let A be a complex commutative locally m-convex Q-algebra
with identity 1. Then for each m-base P of seminorms of A there exists p0 ∈ P
such that

K(A) ∼= K(Ap), for each p ≥ p0.

Proof. Let P be an m-base of seminorms in A. Let Γ be the family of all nite
subsets of P. For each H ∈ Γ and each ε > 0, let us dene the set U(H, ε) by

U(H, ε) = {x ∈ A : p(x) < ε, for all p ∈ H}.

This family is a basis of neighborhoods of zero in A. If A is a Q-algebra, then
there exist H in Γ and ε > 0 such that

1+ U(H, ε) ⊂ θA.

Let p0 be an upper bound of H, such that

1+ Np0 ⊂ 1+ U({p0}, ε) ⊂ 1+ U(H, ε) ⊂ θA.

Then we deduce from Theorem 2.1 that K(A) ∼= K(Ap0).
Moreover, if p ≥ p0 in P, then Np ⊂ Np0 and, consequently,

K(Ap) = K(A).
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3. The spectrum m(A) of A

Let us recall that for a commutative complex algebra A with identity 1 and
for each x ∈ A the set ΣA(x) is dened by

ΣA(x) = {λ ∈ C : x− λ1 /∈ θA}.

This set, with the topology induced by that of C, i.e., the subspace topology, is
called the spectrum of x. If A is locally m-convex, then ΣA(x) ̸= 0 ([7, p. 10]).

The following proposition may be known. We include it here for the sake
of completeness.

Proposition 3.1. If A ∋ 1 is a commutative complex locally m-convex Q-
algebra, then the set ΣA(x) is compact for each x ∈ A.

Proof. Let {λn}∞n=1 be a sequence in ΣA(x) which converges to the point λ in
the closure of ΣA(x). Then the sequence {x − λn1}∞n=1 converges to x − λ1 in
A \ θA and, since A \ θA is closed, x− λ1 /∈ θA, that is, λ ∈ ΣA(x).

The setΣA(x) being closed, it remains to prove that it is bounded. There is a
convex, balanced, and absorbent neighborhoodW of zero in A such thatW−1 ⊂
⊂ θA. Consequently, there is λ0 ∈ C∗ = C \ {0}, such that for any λ ∈ C∗ for
which |λ| < |λ0| we have that λx ∈ W. This in turn implies that λx + 1 =
= λ(x+ λ−11) ∈ θA, that is −λ−1 /∈ ΣA(x) and ΣA(x) ⊂ BC(0, |λ0|−1).

Let σA(x), x ∈ A be the function dened by

σA(x) = sup{|λ| : λ ∈ ΣA(x)}.

Let s (A) be the set of all x ∈ A such that σA(x) ≤ 1. Then, since

{f(x) : f ∈ m(A)} ⊂ ΣA(x),

we have that
|f(x)| ≤ σA(x)

for each f ∈ m(A) and

s (A) ⊂ ∩
f∈m(A)

{x ∈ A : |f(x)| ≤ 1}.

Proposition 3.2. Let A be a commutative complex locally m-convex Q-
algebra. Then s (A) is a neighborhood of zero in A.

Proof. LetW be a convex, balanced and absorbent neighborhood of 0 such that
W+ 1 ⊂ θA. If W is not contained in s (A), then there is an x ∈ W and a λ ∈ C
such that |λ| > 1 and x− λ1 /∈ θA.
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From the fact that W is balanced and the obvious equality x − λ1 =
= −λ(−λ−1x+1) we deduce that−λ−1x+1 is inW+1 and x−λ1 ∈ θA. This
is a contradiction.

Theorem 3.3. Let A be a commutative complex locally m-convex Q-algebra.
Then the set m(A) is compact Hausdorff and equicontinuous.

Proof. Since, according to Proposition 3.2, the set s (A) is a neighborhood of
zero and for each x ∈ s (A), f ∈ m(A) we have |f(x)| ≤ 1, then we deduce that
m(A) is equicontinuous.

The set m(A) is closed in A′ =
∏

x∈ACx by equicontinuity. It follows from
Proposition 3.1 and Tychonoff's theorem that the space m(A) can be identied
with a compact subset of A′. Thus m(A) is compact Hausdorff.

The continuous homomorphism πp : A → Ap induces a continuous map
π∗
p : m(Ap) → m(A).

Theorem 3.4. Let A be a commutative complex locally m-convex Q-algebra.
Let P be an m-base of seminorms in A. Then, there exists an element q0 in P
such that, for every p ≥ q0, the mapping π∗

p is a homeomorphism from m(Ap)
onto m(A).

Proof. Since the space m(A) is equicontinuous, it follows from the fact that P
is an m-base in A that there are an ε > 0 and a nite subset H of P such that
for all x ∈ U(H, ε) (dened in the proof of Corollary 2.3), |f(x)| ≤ 1 for each
f ∈ m(A).

Let q0 be an upper hound of H. Then

U({q0}, ε) ⊂ U(H, ε)

and consequently, we have that for each x ∈ Nq0

C · x ⊂ Nq0 ⊂ U({q0}, ε).

Hence, for each f ∈ m(A),

|f(λx)| = |λ||f(x)| < 1

for all λ ∈ C, that is f(x) = 0 on Nq0 . This in turn implies that π∗
q0 is onto, and

since it is injective, π∗
q0 is a homeomorphism.

Finally, if p ≥ q0 then p is an upper bound for H and proceeding as above,
we deduce that π∗

p is a homeomorphism.
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NON-FINITELY BASED VARIETIES
OF WEAKLY ASSOCIATIVE LATTICES*

By
ERVIN FRIED
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Abstract. A directed graph is called aWeakly Associative Lattice (WAL), if every
pair of elements a, b has a least common upper bound (a ∨ b) and a greatest common
lower bound (a∧b). This generalization of lattices includes a generalization of distribu-
tive lattices. LetU be the variety ofWALgenerated by the directed graphs inwhich every
pair of distinct elements have a unique upper and unique lower bound. The subdirectly
irreducible elements of variety U consist of all graphs such that every pair of elements
has a unique common upper bound and a unique common lower bound, as well. This
property is called UBP, as well as the graphs which satisfy UBP.

Let I be any set of integers greater than 2. Let UI denote the subvariety of U generated
by those UBPs which do not contain cycles of length n ∈ I. These varieties have nite
equational basis if and only if I is nite. An equational basis is presented for every I.

As a “byproduct” it is shown that every nite UBP, except the two-element lattice
contain a “triangle” or a fourcycle. The problem regarding triangle, only, is still open.

0. Preliminaries

Tournaments are complete directed graphs. In a tournament one can dene
two operations ∨ and ∧, as follows: Both operations are idempotent, commuta-
tive and for a → b let a∨b = b and a∧b = a. Either of these operations uniquely
determine the graph1. In [15] the authors proved that the variety generated by

AMS Subject Classication (2000): Primary: 08B99, secondary: 05C20
∗ Research was supported by OTKA grants T029525 and T023186 and FKFP grant 0877/1997.
The original manuscript was sent to Algebra Universalis in 2003, but it went astray and was

lost.
1More details about this connection and about the concepts used here will be given in the

introduction.
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tournaments with one binary operation is not nitely based.R.McKenzie asked
whether the same holds when we consider both operations. Though this variety
is nicer, the problem seems to be more difcult.

For tournaments with a single operation the rst step was, to have a close
look at the free algebra on three and four generators ([16]). The rst one has 15
elements and the second one a few millions. The variety generated by the tour-
naments as type 2, 2 algebras is congruence distributive. However the problem
with this variety is, that the three-generated free algebra has 162 elements and the
four-generated has more than 1011. Indeed, these algebras are weakly associa-
tive lattices. The free algebra is a subdirect product of four-generated subdirect
irreducible tournaments, considered as many times as many the number of es-
sentially different products of four-generated tournaments having neither least
nor greatest elements. Some of these are triangles. By [9] their subdirect product
is direct, moreover a direct factor of the free algebra.

We get as many triangles as many distinct onto-projection the generators
a, b, c, d have to the triangle 1, 2, 3. Two of them – say a and b – must have the
same image – say 1. Then c is mapped either to 2 or to 3, which are distinct cases
because of 3 → 1 → 2. Hence, the number of triangles are

(4
3
)
·3 ·2 = 36. Since

we have a direct product, the number of elements is 336 ≈ 1,5 · 1036 > 1011.
In [3] tournaments with two operations was the natural starting point of

weakly associative lattices – a non-associative generalization of lattices –, with
the idea, that tournaments are the generalization of chains, i.e., they generate a
variety, a generalization of the class of distributive lattices.

It is natural to ask whether, if not the whole variety, at least a subvariety of
this variety is non-nitely based. There is an easy way, to check the existence
of such a subvariety. If a variety has a continuum of subvarieties, then “most
of them” must be non-nitely based, since the number of nitely based subva-
rieties is countable2. In [6] the following method was used for establishing a
continuum of subvarieties. Suppose, the subdirectly irreducible members of a
congruence distributive variety “behave nicely” so that we can nd an innite
set of nite ones such that no variety, generated by any subset of these algebras
contains the others. Then we can conclude the existence of a continuum of sub-
varieties. Certain aspects of this “nice behavior” hold for tournaments. Namely,
nite homomorphic images of subalgebras of ultraproducts of nite tournaments
are tournaments, again. Due to the well-known behavior of ultraproducts the ex-
istence of a continuum of subvarieties is equivalent to the following question:

2We speak about varieties having nitely many nitary operations.
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Problem. Does there exist an infinite set of finite tournaments such that none
of them is isomorphic to (a homomorphic image of) a subalgebra3 of some
other one

However, it is possible, that the variety of tournaments have countable many
subvarieties, only. It is not difcult to see that this is, basically, equivalent to the
following

Problem. To each natural k does there exist a natural n, such that every finite
simple tournament of cardinality greater than n contains an isomorphic copy of
every tournament of cardinality at most k (A tournament is simple if it contains
no proper convex subsets. A subset S of a tournament T is convex if a, b ∈ S ,
a → x → b implies x ∈ S . S is proper if S ̸= T and |S| ̸= 1.)

In [10], [4], [5], [11], [12], [13], and [14] it became clear that the “appro-
priate” generalization of distributive lattices is the variety generated by those
weakly associative lattices which satisfy the unique bound property. Following
an other question of R. McKenzie, it was obvious to try to nd subvarieties
of this variety which are not nitely based. Actually, in [6] the existence of a
continuum of such subvarieties of this variety was proved. We used the method
outlined above, thus each of these subvarieties was generated by nite algebras.
Of course, none of these subvarieties was “pointed out” to be non-nitely based.

In this paper, we shall produce a continuum of subvarieties of this variety,
such that their nite members are only the distributive lattices. Using the results
of [2] we shall be able to “point out” some of them. We shall give, as well, an
innite system of equations which dene one of these varieties.

1. Introduction

Let G = ⟨G;≤⟩ be any directed graph, i.e.,≤ is a reexive and antisymmet-
ric relation on G. For a ≤ b and a ̸= b we shall use the notation a → b. For any
a ∈ G let U(a) = {x|a ≤ x} and L(a) = {y|y ≤ a} denote the set of upper and
lower bounds, respectively. If, for a, b ∈ G, there exist a c ∈ U(a) ∩ U(b) such
that for every x ∈ U(a)∩U(b) we have c ∈ L(x), then c is called the least upper
bound of a and b and it is denoted by a ∨ b. The greatest lower bound a ∧ b is
dened dually. If every pair of elements in G has least upper bound and greatest

3It is easy to see, that any homomorphic image of a tournament is isomorphic to a subalgebra
of the given tournament.
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lower bound, then G = ⟨G,≤⟩ is called a Weakly Associative Lattice (WAL for
short). Obviously, a WAL is a lattice if and only if the relation ≤ is transitive.

We can give an equational form of these operations. They are idempotent,
commutative, satisfy the absorption laws, just as in the case of lattices. But here
we only have a weaker form of associativity (this explains the name):

x ∨ [(x ∧ y) ∨ (x ∧ z)] = x ∧ [(x ∨ y) ∧ (x ∨ z)] = x.

These equations imply that the relation x ≤ y : x ∨ y = y gives a WAL in the
above sense. Moreover, the WAL ⟨G;≤⟩ and the algebra ⟨G;∨,∧⟩ uniquely de-
termine each other. Therefore, we may refer to these algebras as WALs, as well.
Obviously, tournaments are WALs. The variety of WALs will be denoted byW ,
and the variety of lattices by L.

As in L, the term m(x, y, z) = [(x∨ y)∧ (x∨ z)]∧ (y∨ z) is a majority term,
hence,W is congruence distributive (CD for short).

Several attempts were made to nd an “appropriate” generalization of the
variety D of distributive lattices within W . The idea, that they satisfy the Con-
gruence Extension Property (CEP for short), used in [10] turned out to be the
best. In [3], [4], [11] many properties were discussed, and it was proved that they
are equivalent to CEP.

In [10] a variety T was described, which covers D. T is generated by the
“triangle” T. It has three elements, satisfying a → b → c → a. It is subdirectly
irreducible, just as the two-element lattice.

None of the subdirectly irreducible members of subvarieties of W satisfy-
ing CEP contain a three-element chain, i.e., elements satisfying a → b → c and
a → c. This property turned out to be equivalent to the Unique Bound Property
(UBP for short). UBP means, that for distinct a and b both U(a) ∩ U(b) and
L(a) ∩ L(b) have a single element. The WALs satisfying UBP will be called
UBP, themselves. U will denote the class of all UBP and U will denote the
variety, generated by all UBP.

As UBP can be dened by a rst order universal sentence,U is closed under
ultra-products and subalgebras. Since every UBP is simple, U is closed under
proper homomorphic images, as well. Thus, all Subdirectly Irreducible (SI for
short) members of U are inU.

It was shown in [5] thatU consists of all SI members ofW satisfying CEP.
It was proved in [12], that U is the largest subvariety ofW enjoying CEP. In the
same paper it was proved, as well, that U is the largest variety having Restricted
Equationally Denable Principal Congruences (REDPC for short). This means,
that there exists a (nite) set Σ(x, y, u, v) = {pi(x, y, u, v) = qi(x, y, u, v)} of
equations such that for a, b, c, d ∈ A ∈ U the congruence c ≡ d

(
Θ(a, b)

)
holds

if and only if Σ(a, b, c, d) is satised.
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One more very important feature of U was discovered in [13]. A ternary
function g(x, y, z) is called the dual discriminator on a set A if

g(a, b, c) =

{
a if a = b
c if a ̸= b

for a, b, c ∈ A.

A variety V is called a dual discriminator variety if there exists a term q(x, y, z)
in the language of V which yields the dual discriminator on each SI member of
V . In this case q(x, y, z) is called a dual discriminator term. Dual discriminator
terms are always majority terms. Dual discriminator varieties have REDPC.

D is the maximal dual discriminator variety of L, with the majority term
m(x, y, z) as the dual discriminator term. T is a dual discriminator variety, as
well. Here both

t(x, y, z) = {[(z ∧ x) ∨ y] ∧ x} ∨ (z ∧ y)

and its “dual”
t∗(x, y, z) = {[(z ∨ y) ∧ x] ∨ y} ∧ (z ∨ x)

are dual discriminator terms, yielding the dual discriminator on the two-element
lattice, as well as on the triangle (but not on other WALs).

U is, also, a dual discriminator variety, in fact the largest in W . Here the
construction of the dual discriminator term is more complicated. Let u(x, y, z) =
t(t(x, y, z), t∗(x, y, z), z). Then

q(x, y, z) = t(u(x, x ∨ y, z), u(y, x ∨ y, z), z)

is a dual discriminator term, yielding the dual discriminator function on
each UBP.

In [14] a graph-theoretic description of UBPs, with at least three elements
were given. Every UBP determines a projective plane, but distinct UBPs may
give the same plane. There are two kinds of “UBP-graphs”. Singular UBPs con-
sist of a set X and two more elements 0 and 1, such that 0 → 1 and for every
x ∈ X the relations 1 → x → 0 hold. Regular UBPs have the following property:
There exists a cardinal λ, depending on the UBP only, such that for each element
a in the underlying set of the UBP, |U(a)| = |L(a)| = λ is satised. T is the
only UBP which is both singular and regular.

A directed graph G = ⟨G,≤⟩ is called a partial UBP if, for each a, b ∈ G
bothU(a)∩U(b) and L(a)∩L(b) have at most one element. In [7] the following
procedure was given to produce a UBP from a partial UBP.

Let G = ⟨G,≤⟩ be any partial UBP and consider all pairs a, b ∈ G having
no common upper bounds. Then extend G by new elements [a, b,∨], and for
each pair c, d ∈ G having no common lower bounds extend G by new elements
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[c, d,∧]. Then add the new relations a → [a, b,∨], b → [a, b,∨], [c, d,∧] →
→ c, and [c, d,∧] → d. This way we get a new partial UBP G′, where each
pair of elements in G has both (unique) upper bound and (unique) lower bound.
Starting with a given partial UBP G0 we can construct Gn+1 = (Gn)

′ for each
n ∈ {0, 1, . . . }. Gn will denote the underlying set of Gn. Their union G∗ with
underlying set G∗ is, obviously, a UBP, called the UBP freely constructed from
G. (This is obviously not a free algebra.)

2. Patterns inU

We start by observing some patterns in elements ofU, which will be needed
in the sequel. Consider the free extension of a graph G0 with underlying set G0,
as dened in the previous section. The elements in G0 will be called elements of
rank 0 and the elements of Gn \ Gn−1 elements of rank n. r(a) will denote the
rank of a.

Proposition 2.1. Suppose a ∈ Gn+1 \ Gn, then either U(a) ∩ Gn or L(a) ∩ Gn
is empty, and the other has exactly two elements.

Proof. The statement follows immediately from the construction of the freely
constructed UBP.

Definition 2.2. Let G be any directed graph and a, u, v,w ∈ G. We shall say
that a is oppressed by the elements u, v,w, if either u → a, v → a and w → a or
a → u, a → v and a → w. We shall say that a is oppressed by u, v if u → a → v.

We shall say that a nite directed graph is oppressed if every element of the
graph is oppressed (in the graph).

We shall say that a directed graph is oppressed if it is the disjoint union of
nite oppressed subgraphs.

Proposition 2.3. Suppose the element a ∈ G∗ is oppressed by a set S. Then, at
least one of the elements in S has greater rank than a.

If a complete subgraph S is oppressed, then its underlying set S is con-
tained in G0.

Proof. The rst statement follows immediately from Proposition 2.1.
If S is nite, then it must contain at least one element of maximal rank. By

the rst statement of our proposition this rank must be 0.
In the general case every component is contained inG0, hence the last state-

ment follows.
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Definition 2.4. Let P be a nite set, →⊆ P × P and ̸→⊆ P × P disjoint
subsets of P × P, such that none of them contains the diagonal. The relational
set P = ⟨P| →, ̸→⟩ will be called a pattern and P = ⟨P| →⟩ will be called a
positive pattern.

A set PI = {Pi|i ∈ I} of positive patterns will be called disjoint if no
member of PI is a subgraph of some other member.

A graph ⟨G| →⟩ contains patternP if there exists an embeddingφ : P → G,
such that for a, b ∈ P the relation a → b or the relation a ̸→ b implies that
φ(a) → φ(b) holds or φ(a) → φ(b) does not hold, respectively.

A graph ⟨G| →⟩ contains positive pattern P if there exists an embedding
φ : P → G, such that for a, b ∈ P the relation a → b implies that φ(a) → φ(b)
holds.

A graph G is free of the (positive) pattern P if it does not contain pattern P .

Proposition 2.5. Let PI = {Pi|i ∈ I} be a set of patterns. Let G be the ul-
traproduct of the graphs {Gλ|λ ∈ Λ}. If each Gλ is free of every Pi, then so
is G.

If a UBP is free of the positive pattern in PI so is the homomorphic image
of every subalgebra.

Let {Aλ|λ ∈ Λ} be a collection of UBP, free of the positive pattern in PI.
Then each subdirectly irreducible member in the variety generated by them is
free of these patterns, as well.

Proof. Any pattern can be formulated by a rst order sentence. Hence, an ultra-
product contains a pattern if and only if almost all components have it, proving
our rst statement for a single pattern. This, obviously, yields the statement for
any set of patterns.

If a UBP A ≤ B contains a positive pattern, B comtaines it, as well4. As
every UBP is simple, i.e., every nontrivial homomorphic image is an isomorphic
copy of it, the second statement holds, too.

These, together with Jónsson's Lemma yield the last statement.
Observe, that the number of patterns is countable, so we may assume, that

I is a subset of positive integers.

Definition 2.6. LetPI be any set of positive patterns. LetUPI denote the class
of all UBP, which are free of PI. UPI denote the variety generated byUPI .

4We need, in general, that the pattern is positive, because a → b might be true in a graph, but
not in a subgraph.
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Proposition 2.7. Let PI be any given set of disjoint positive patterns. For any
distinct J,K ⊆ I the varieties UPJ and UPK are different. If I is infinite, the
number of subvarieties of UPI is continuum.

Proof. The rst statement follows immediately from the last statment of propo-
sition 2.5. The second stetement follows from the fact, that I is countable and
the number of subsets of a countable set is continuum.

For n > 1 a nite graph Pn = ⟨{x0, x1, . . . , xn}| →⟩} of distinct elements
will be called a path of length n, provided x0 → x1 → . . . → xn.

For n > 1 a nite graph Cn = ⟨{x0, x1, . . . , xn}| →⟩} of distinct elements
will be called a cycle of length n, provided x0 → x1 → . . . → xn → x0. Since
any cycle is oppressed, we get, immediately

Corollary 2.8. Any cycle in G∗ is contained in G0.
Consider the cycle Cn of length n as a partial UBP. According to Corollary

2.8 we have:

Proposition 2.9. Un = C∗
n contains a unique cycle, namely Cn.

Proposition 2.7 and Proposition 2.9 yield immediately:

Corollary 2.10. Let I be any subset of the set N2 of integers greater than 2.
Consider the set CI of patterns consisting of all cycles of length n ∈ I. Let UCI
be the class of all UBP which are free of all cycles in CI and UCI be the variety
generated by UCI . These varieties are all distinct for different subsets I1 and I2.
The number of these varieties are continuum.

Let us remark the following: If I = ∅, then no UBP is excluded, therefore
the variety UC∅ = U . In case I = N2 all UBPs are excluded, which contain a
cycle. If we have no relations in the starting graph, but it has two vertices, we get
an innite UBP. It was shown in [6] that this UBP generates a variety U∞ ≤ UN2 ,
covering D.

Theorem 2.11. Almost all UCI are non-finitely based.

Proof. Since the number of nitely based subvarieties is countable our asser-
tion holds by Corollary 2.10.

Observe, that the same argument holds if instead of N2 we start with any
innite subset of N2.
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3. Non-nitely based varieties

We start this section with some results ofGábor Braun in [2]. His results
will be listed as B.1., B.2., and B.3.. Let A = ⟨A| →⟩ be any nite directed
graph. Let v = v(A) = |A| denote the number of vertices of A and e = e(A)
denote the number of edges in A (i.e., the number of pairs a, b ∈ A such that
a → b hold). We shall call the number µ = µ(A) = 2v− e the weight of A.

Consider a nite graph G and the graph G∗ dened in section 1. A nite
subgraph B ≤ G∗ will be called a generating graph of G∗ if G∗ is the least UBP
in G∗, containing B. A generating graph A freely generates G∗ if the natural
embedding A → G∗ has a unique extension to a graph-isomorphism A∗ → G∗.

A generating graph I ≤ G∗ of size n will be called independent (of size n)
if e(I) = 0 and v(I) = n.

Theorem B.1. LetA and B two generating graphs of G∗. IfA freely generates
G∗, then µ(A) ≤ µ(B) (and equality holds if and only if B freely generates G∗,
as well).

Corollary B.2. If, for a cycle Cn of length n, an independent I of size k is a
generating graph of C∗

n, then 2k ≥ n.

Theorem B.3. Let Pn be a path of even length n > 3. Then P∗
n has an inde-

pendent generating graph.
Now, we are going to prove a considerable generalization of Theorem 2.11:

Theorem 3.1. For infinite I, UCI is non-finitely based.

Proof. Consider any nite set Σ = Σ(x1, . . . , xk) of identities. Choose any n ∈
∈ I such that n ≥ 2k. The mapping of the k free generators into C∗

n can not
generate this algebra, by Corollary B.2, hence C∗

n does not satisfy Σ. On the
other hand C∗

n ∈ UC1 . Indeed, by Proposition 2.9, C∗
n does not contain C∗

m for
n < m ∈ I. This means Σ does not dene this variety.

Corollary 3.2. UCN2 is non-finitely based.

Theorem 3.3. U∞ is non-finitely based.

Proof. Consider any nite set Σ = Σ(x1, . . . , xk) of identities, satised in U∞.
Choose any even n ∈ N2 such that n > 2k. Let A ≤ C∗

n be a proper subalgebra.
Then, Cn ̸≤ A. Hence, there is a path Pn ≤ Cn such that the subalgebra B
generated byPn containsA. By Theorem B.3.,B has an independent generating
graph.

It is easy to see, that in this caseB∗ generates the variety U∞.
Thus, C∗

n satises Σ, but it is not in the variety generated by U∞
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4. Patterns and terms

In this section we aim to give terms, to exclude given patterns. We shall use
a “peculiar” phenomenon of the dual discriminator, introduced in [8].

Suppose, we are given three terms f = f(x1, . . . , xn), g = g(x1, . . . , xn)
and h = h(x1, . . . , xn) in a dual discriminator variety V , and let q(x, y, z) de-
note the dual discriminator term. Consider any subdirectly irreducible member
S of the subvariety V ′ of V , dened by the identity q(f, g, h) = h. For any
sequence a1, . . . , an of elements in S let u = f(a1, . . . , an), v = g(a1, . . . , an)
and w = h(a1, . . . , an).

If u = v, then u = q(u, v,w) = w yields u = w. Conversely, if S is
any subdirectly irreducible member of V , satisfying the condition: “whenever
u = v, we have u = w”, then the initial identity must hold, i.e., it belongs to the
subvariety.

Now, consider the variety U with the dual discriminator term q(x, y, z) and
dene the following terms in variables x0, x1, . . . , xn, . . . :

Let y0 = x0, and for the integers i ≥ 0, yi+1 = xi+1 ∨ yi. Consider the
identities:

q(x0, x0 ∨ yi, yi) = yi for i > 1. #i

Proposition 4.1. A UBP A satisfies the identity #i if and only if it is free of
n-cycles, for n ≤ i+ 1.

Proof. Suppose, the UBP A satises #i and has elements a0 ≤ a1 ≤ . . . ai →
→ a0. Substituting xj by aj, for 0 ≤ j ≤ i, we get, according to#i, that

a0 = q(a0, a0, ai) = q(a0, a0 ∨ ai, ai) = ai,

a contradiction.
Conversely, for any a0, . . . , ai, let b0 = a0, and for 0 ≤ j < i, let bj+1 =

aj+1 ∨ bj. Then, we have a0 ≤ . . . ≤ ai and q(a0, a0 ∨ ai, ai) = ai implies
a0 ̸= a0 ∨ ai, i.e., A does not contain a cycle of length at most i+ 1.

Theorem 4.2. The identities#i define the (non-finitely based) subvariety of U
generated by all UBP, containing no cycles.

Proof. Using proposition 4.1, it is enough to show, that if a member of U does
not satisfy these identities, it is not in this subvariety. This, in turn follows from
the fact that in this case at least one subdirectly irreducible component does not
satisfy at least one of these identities.
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Remark. Observe, that if the identity #i+1 is satised so is #i. Hence, this
system of identities is not independent.

If all the cycles are excluded, then, obviously, all nite UBPs are excluded,
as well. The following, still unsolved question was raised some 25 years ago:

Problem. Does there exist a finite UBP, containing no triangle
This is obviously equivalent to the question, whether#2 excludes all nite

UBPs. We are going to prove:

Proposition 4.3. #3 excludes all finite UBPs.
In fact, we prove more:

Proposition 4.4. Let a be any vertex of a finite UBP A (having more then two
elements). Then there are elements a ≤ b ≤ c → a in A.

For a → b in A there are elements b ≤ c ≤ d ≤ e ≤ a in A.

Proof. For singular UBPs (see the introduction) the statement is obvious. For
regular ones, by [14] there exists a natural number r, such that |U(x)| = |L(x)| =
r, for every x ∈ A. Since x ∪ U(x) can be considered as the lines of the dened
projective plane, we have |A| = r2 + r+ 1.

LetU2(x) be the set consisting of all z ∈ A, for which there exists an element
y ∈ U(x), such that y → z. Since A contains no three-element chain, U2(x) is
disjoint to U(x). The intransitivity of→ implies x /∈ U2(x).

Now, we are going to count the number of elements of U2(x). Let U(x) =
{y1, . . . , yr}. The number of upper bounds of y1 is r. Counting the upper bounds
of y2, we get exactly r − 1 new elements, because we have already counted
y1 ∨ y2. Consider, recursively, the new elements in U(yi). This set itself has r
elements. However, y1 ∨ yi, y2 ∨ yi, etc. were, already, counted. Since they need
not be distinct, we know, only, that the number of newly added elements is at
least r − i + 1. Hence, |U2(x)| ≥

(r+1
2
)
. Therefore, |U(x) ∪ U2(x)| ≥ r2+3r

2 .
Similarly, for any x′, we get |L(x′)∪L2(x′)| ≥ r2+3r

2 . As r2+3r > r2+ r, we get
that [U(x) ∪ U2(x)] ∩ [L(x′) ∪ L2(x′)] is never empty, and this gives the desired
result.
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5. Identities for subvarieties excluding cycles

We have already, given an equational basis for the subvariety generated by
UBPs containing no cycles. For the cases, when innitely many cycles are ex-
cluded, we proved that these varieties are not nitely based, however, we gave
no equational basis, yet.

The method used in the previous section is, obviously, not applicable. To
nd a basis, however, it is sufcient to nd a nite set of identities, excluding a
cycle of given length. Firstly, we shall start with any dual discriminator variety.

Proposition 5.1. Let Q be any dual discriminator variety with q(x, y, z) the
dual discriminator term. Then, Baker's Principal Intersection Property [1] holds,
in fact:

Θ(a, b) ∩Θ(c, d) = Θ(q(a, b, c), q(a, b, d)).

Moreover, for any natural n there exist terms cn = cn(u1, . . . , un, v1, . . . , vn),
and dn = dn(u1, . . . , un, v1, . . . , vn) such that

∩
1≤i≤n

(Θ(ui, vi)) = Θ(cn(u1, . . . , un, v1, . . . , vn), dn(u1, . . . , un, v1, . . . , vn)).

Proof. It is enough, to prove the rst identity for subdirectly irreducible mem-
bers S of Q. If a = b, then we have the least congruence on both sides, since
in this case q(a, a, x) = a, for all x ∈ S. Otherwise, Θ(a, b) is the greatest con-
gruence (A is simple) and q(a, b, x) = x, for all x ∈ S. Thus, we have Θ(c, d)
on both sides.

The second statement will be proved by induction on n. For n = 1, the
statement is trivial (c1 = u1 and d1 = v1). For n = 2 this is a restatement of
Baker's Theorem (c2 = q(u2, v2, u1) and d2 = q(u2, v2, v1)).

Suppose, the terms cn and dn are, already, given.
Dene cn+1 = q(cn, dn, un+1) and dn+1 = q(cn, dn, vn+1). Using the case n = 2,
a routine calculation shows that Θ(cn+1, dn+1) = Θ(cn, dn) ∩ Θ(un+1, vn+1)
holds.

Let us remark, that the given congruence equation holds after any substitu-
tions ui 7→ ai and vi 7→ bi, due to Maltsev's Lemma.
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Theorem 5.2. Let Q be a dual discriminator variety with a dual discriminator
q(x, y, z). Then, there are terms

q∗n,t = q∗n,t(x0, x1, . . . , xn, y0, y1, . . . , yn),
p∗n,t = p∗n,t(x0, x1, . . . , xn, y0, y1, . . . , yn)
qn,t = qn,t(x, y, z1, . . . , zn),
pn,t = pn,t(x, y, z1, . . . , zn)

for t ∈ {1, 2}, such that for every a0, a1, . . . , an, b0, b1, . . . , bn and for every
a, b, e1, . . . , en in any subdirectly irreducible S ∈ Q the equations

q∗n,t(a0, a1, . . . , an, b0, b1, . . . , bn) = p∗n,t(a0, a1, . . . , an, b0, b1, . . . , bn)

hold if and only if the equality a0 = b0 implies at least one of the equalities
ai = bi (0 < i ≤ n), and the equations

qn,t(a, b, e1, . . . , en) = pn,t(a, b, e1, . . . , en)

hold if and only if the equality a = b implies at least one of the equalities ei = ej
(0 < i < j ≤ n).

Proof. First, we prove, that it is enough to deal with the terms q∗ and p∗. Con-
sider qn and let k =

(n
2
)
and choose q∗k . For each 1 ≤ ℓ ≤ k consider a pair i < j

(1 ≤ i, j ≤ n). Choose xℓ = zi and yℓ = zj. Since the pairs xℓ, yℓ cover all the
pairs zi, zj, the statement follows.

In what follows, we shall need a result from [8].
If q(x, y, z) is a dual discriminator term of the variety Q, then for every

a, b, c, d ∈ A ∈ Q the congruence c ≡ d(Θ(a, b)) holds if and only if c =
q(c, d, q(a, b, c)) and d = q(c, d, q(a, b, d)) are both satised.

ByMaltsev's lemma, if the congruence holds then it holds in any subdirectly
irreducible memberS of the variety. If c = d, then the equalities hold, obviously.
Otherwise, c ̸= d implies a ̸= b, and we get q(a, b, c) = c and q(a, b, d) = d,
yielding the desired equalities, as q is a majority term. Conversely, suppose the
equalities hold. Factor by the congruence Θ(a, b). Then for the corresponding
images b∗ = a∗, c∗, d∗ we have c∗ = q(c∗, d∗, q(a∗, a∗, c∗)) = q(c∗, d∗, a∗) and
d∗ = q(c∗, d∗, q(a∗, a∗, d∗)) = q(c∗, d∗, a∗), i.e., c∗ = d∗ therefore the desired
congruence holds.

Now, we turn back to the proof of the theorem.
From the result above it follows that cn ≡ dn

(
Θ(a0, b0)

)
holds for cn, dn

from Proposition 5.1. if and only if the equalities

cn = q(cn, dn, q(a0, b0, cn)) and dn = q(cn, dn, q(a0, b0, dn))
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are satised. Choose

p∗n,1 = cn, q∗n,1 = q(cn, dn, q(a0, b0, cn)),
p∗n,2 = dn, q∗n,2 = q(cn, dn, q(a0, b0, dn)).

We have to prove, that from these equalities it follows that a0 = b0 implies
ai = bi for some 0 < i ≤ n in any subdirectly irreducible algebra. If ai = bi
does not hold for any i > 0, then the congruence Θ(ai, bi) is never the least
congruence. Since every subdirectly irreducible member of a dual discriminator
variety is simple, these congruences must be equal to the greatest congruence.
Therefore, by proposition 5.1. Θ(cn, dn) is the greatest congruence. As cn ≡
≡ dn

(
Θ(a0, b0)

)
holds, Θ(a0, b0) is the greatest congruence, i.e., a0 ̸= b0, a

contradiction.

Theorem 5.3. Let U be the variety generated by all UBP and let F ∈ U be the
algebra freely generated by the set x0, . . . , xn, . . . . For each n > 2 there exists a
pair of identities γn = γn(x0, . . . , xn) and δn = δn(x0, . . . , xn), which is satisfied
in a UBP S if and only if it does not contain an n-cycle.

For any sequence I ⊆ N \ {0, 1, 2} there is a system of identities
ΓI = {γn | n ∈ I} ∪ {δn | n ∈ I}which is satisfied in a subvariety UI if and only
if no subdirectly irreducible members of the variety contain an n-cycle for n ∈ I.
These systems are finite if and only if I is finite. The elements of ΓI are inde-
pendent, i.e., omitting any of the pairs (γn, δn), the variety will be changed.

Proof. Consider the terms

t0 = x0, t1 = t0 ∨ x1, . . . , ti+1 = ti ∨ xi+1, . . . , tn = tn−1 ∨ xn, s = t0 ∨ tn,

and (for t = 1, 2)

pn,t = pn,t(s0, t0, t1, . . . , tn, s), qn,t = qn,t(s0, t0, t1, . . . , tn, s).

Dene the identities

γn = γn(x0, . . . , xn) : pn,1 = qn,1 and δn = δn(x0, . . . , xn) : pn,2 = qn,2

Let S be subdirectly irreducible and π : F → S any projection. Further, let
ai = π(ti) and b = π(s). Then, we have a0 ≤ a1 ≤ . . . ≤ an ≤ b and a0 ≤ b.
By theorem 5.2, a0 = b implies at least one equality of the form ai = aj for
i ̸= j. Hence, no cycle of the form a0 → a1 → . . . → an → b = a0 exists.
On the other hand, if such a cycle exists, then for the appropriate projection the
equality is not satised, i.e., γn, δn is not a pair of identities.
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Abstract. In this paper circular quartics constructed as pedal curves of conics are
classied depending on their position with respect to the absolute gure. It is shown that
only 2, 3 and 4-circular quartics can be obtained by using this method.

1. Introduction

An isotropic plane I2 is a real projective plane where the metric is induced up
to the constant by a real line f and a real point F, incidental with it, [6], [7]. The
ordered pair (f,F) is called the absolute gure of the isotropic plane.

In the afne model of the isotropic plane where the afne coordinates of the
points are given by

x =
x1
x0
, y =

x2
x0
,

where (x0, x1, x2) are the homogeneous coordinates such that the absolute line f
is determined by the equation x0 = 0 and the absolute point F by the coordinates
(0, 0, 1).

Projective transformations that map the absolute gure into itself form a
5-parametric group G5. They have the equations of the form

x = a+ dx, y = b+ cx+ ey.

G5 is called the group of similarities of the isotropic plane, [1], [6]. Its subgroup
G3 consisting of the transformations of the form

x = a+ x, y = b+ cx+ y,

AMS Subject Classication (2000): 54A05, 54D30.
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is called the group of motions of the isotropic plane. It preserves the quantities
such as the distance between two points or the angle between two lines. So, it
has been selected for the fundamental group of transformations.
The ordered pair (I2, G3) is called the isotropic geometry.

All straight lines through the absolute point F are called isotropic lines and
all points incidental with f are called isotropic points.

There are seven types of regular conics classied depending on their posi-
tion with respect to the absolute gure, [1], [6]. An ellipse (imaginary or real) is
a conic that intersects the absolute line in a pair of conjugate imaginary points.
If a conic intersects the absolute line in two different real points, it is called a
hyperbola (of 1st or 2nd type, depending on whether the absolute point is outside
or inside the conic). A hyperbola passing through the absolute point is called a
special hyperbola and a conic touching the absolute line is called a parabola. If
a conic touches the absolute line at the absolute point, it is said to be a circle.

A curve in the isotropic plane is circular if it passes through the absolute
point F, [10]. Its degree of circularity is dened as the intersection multiplicity
of the curve and the absolute line f at the absolute point. If it does not share
any common point with the absolute line except the absolute point, it is entirely
circular, [5].

f F

k k

k

k k

k

k

F

F

F

F

F

F

f

f

f f

f

f

Figure 1

A circular curve of order four can be 1, 2, 3 and 4-circular. The absolute
line can intersect it, touch it, osculate or hyperosculate it at the absolute point.
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The absolute point can be simple, double or triple point of the curve. Due to that
for each degree of circularity we distinguish several types of quartics. Just for
the illustration types of entirely circular quartics are shown in Figure 1. The rst
column contains a quartic with a simple point at the absolute point F, the second
column contains the quartics with a double point at F, and the quartics having
a triple point at F are shown in the third column. The cases of isolated double
points are also possible, but here they are not specially distinguished from the
nodes.

In the Euclidean plane bicircular quartics (entirely circular quartics with
double points in the absolute points of the plane) can be constructed as the pedal
curves of an ellipse and a hyperbola, [9]. The aim of this paper is to construct
circular quartics as pedal curves of conics and classify them with respect to the
absolute gure. As it includes all four possible types of the pedal transformation,
in that sense it is an extension of the paper [11] where only one of the types was
studied.

2. Pedal transformation in isotropic plane

2.1. Denition and properties of pedal transformation
Definition 2.1. The pedal curve kN of a given curve k with respect to a xed
conic q is the locus of the foot of the perpendicular to the tangent of the given
curve k from the pole of the tangent with respect to the conic q, [10].

The conic q is called the fundamental conic of the pedal transformation.
The polar line p of the absolute point F, called also the pedal point, with respect
to the fundamental conic q intersects the conic in the points P1 and P2 (foci of
the conic q). Their polar lines p1 and p2 are isotropic lines. The points P = F,
P1 and P2 are called fundamental points and the lines p, p1 and p2 are called
fundamental lines of the pedal transformation, [10].

The construction of the pedal curve kN of the curve k should be done in the
following way: Let t be a tangent of the curve k and let T be its pole with respect
to the fundamental conic q. The isotropic line n through T meets t in the point
TN lying on the claimed curve, Figure 2.

It has been shown in the paper [10] that the pedal curve of a conic is a
quartic.

There are two tangents l1, l2 of the conic k passing through the absolute
point F. Their poles L1, L2 with respect to the fundamental conic lie on the line
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p. Isotropic lines through L1, L2 intersect the tangents l1, l2 in the point F. There-
fore, the pedal point is double point of the quartic kN and the normal lines FL1
and FL2 are tangents of kN at the point F.

Two tangents a1, a2 of the conic k can be drawn from the fundamental point
P1. Their poles lie on the fundamental line p1 being at the same time the normal
of the tangents a1, a2. It follows that P1 is a double point of the curve kN. The
same applies to P2.

The construction of the tangents at the double points can be adopted from [3]
where it has been done for the pedal transformation in the Euclidean plane. The
equalities (p, ta1, p1, a1) = −1, (p, ta2, p1, a2) = −1 and (p, tb1, p2, b1) = −1,
(p, tb2, p2, b2) = −1 hold, where ta1, ta2 and tb1, tb2 are the tangents of the curve
kN at the points P1 and P2, respectively, b1 and b2 are the tangents of k from P2.

The quartic kN has a node, a cusp or an isolated double point in the funda-
mental point depending on whether P is outside, on or inside the conic k. In other
words, the type of the double point depends on the type of the tangents passing
through it.

The fourth order curve with three double points is a curve of the sixth class.
If some of the double points are cusps, the class is reduced and equals 6 − c,
where c is the number of cusps, [8], [9].

The poles T1, T2, T3, T4 of the common tangents of q and k are also their
normal's pedals. So, they lie on the constructed quartic.
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The curve q of order four and the curve k of order two have eight common
points. Consequently, there are no other intersections beside those four points
and twice counted fundamental points P1, P2 (points with intersection multi-
plicity 2).

If a fundamental line is a tangent of the conic k, the constructed quartic will
split into the line and a cubic. In order to obtain an irreducible quartic, kmust not
touch any of the fundamental lines. Let K be the locus of the pole of the tangent
of the conic k with respect to the conic q. The conic K should not contain any
fundamental points.

There are two tangents m1, m2 of the conic k passing through the pole Fp of
the absolute line f (the center of q). Their polesM1,M2 lie on the absolute line f
being therefore the normal line of the tangents. Pedal pointsM1N, M2N together
with the twice counted absolute point F are all common points of the quartic kN
and the line f. If the point Fp is located in the interior of the conic k, M1N, M2N
form a pair of the conjugate imaginary points. If Fp lies on k, those two points
coincide and form a contact point with the absolute line.

After connecting contact points of the tangents t of k with their poles T ∈ K
a curve of class four is obtained. Counting multiplicities, four tangent lines of
the curve pass through every point of the plane. In particular, this holds for the
pedal point P. One intersection of each of those four lines with the conic k is the
contact point of the conic and the curve kN.

A quartic can also be obtained as a pedal curve of a curve k of order higher
than two. But in that case it is necessary for k to touch some of the fundamental
lines. For example, curve k of order three touching two fundamental lines is
transformed into a curve of order four. We will consider the quartics obtained as
conic pedal curves.

2.2. Circular quartics obtained by pedal transformation
Since the absolute point F is the pedal point and due to this fact a double point
of the pedal curve kN of the conic k, only quartics the degree of circularity of
which is at least 2 can be obtained by the derivation

It is necessary to determine the conditions that the fundamental elements
and the conic k have to fulll in order to obtain a circular quartic of a certain
type.

Beside the pedal point P = F two fundamental points P1 and P2 are double
points of the curve kN. If the pedal point lies on the fundamental conic, three
fundamental points fall into one, being a singularity of higher order, [8], and
four times counted intersection of the fundamental line p = p1 = p2 and the
quartic kN.

We distinguish four types of pedal transformation:
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(1) The fundamental conic q is a 0-circular ellipse or hyperbola.
Three fundamental points are different and tree fundamental lines are
different, too.

(2) The fundamental conic q is a 0-circular parabola.
Three fundamental points are different and three fundamental lines are
different, too. The absolute line is one of the fundamental lines.

(3) The fundamental conic q is a 1-circular special hyperbola.
Three fundamental points coincide with the pedal point F and three fun-
damental lines coincide with the line p different from the absolute line.

(4) The fundamental conic q is 2-circular, i.e., a circle.
Three fundamental points coincide with the pedal point F and three fun-
damental lines coincide with the absolute line f.

Table 1 contains a complete list of circular quartics that could be generated
as a conic pedal curve in the isotropic plane. For example, the 2-circular quartics
that can be obtained by the pedal transformation of the type (1) are shown in the
rst column and the rst row. Two main types are possible, either the quartic has
a double point at F and intersects f at two different further points, or the quartic
has a double point at F and touches f at a further point. The double point can be
a node, an isolated double point or a cusp. In Table 1 only the cases of nodes and
cusps are presented.

The following theorem is valid:
p.t. 2-circular 3-circular 4-circular

f F

kN

k

P1 P2
q

f

k

q

F

P1
P2

kN Fp

f F

q
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p.t. 2-circular 3-circular 4-circular

f F

k

P1 P2

q

type 1

f F

k

P2P1

Fp

q

f

q
k

kN

F

P1

P2

qkN

kf

P1

P2F

qkN

k

f

P1

P2

F
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q

kN k
f

P1
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q
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p.t. 2-circular 3-circular 4-circular

kN

k

p

q

Fp

Ff

kN

k
p

q

Ff

type 3
kN

k

pq

Fp
Ff

f
F

k

kN

q

type 4

k

kN

q

F
f

Table 1

Theorem 2.1. A pedal transformation in the isotropic plane maps a conic k, not
touching any fundamental lines, into a circular quartic kN the degree of circular-
ity of which depends on the type of the pedal transformation and on the conic k
as follows:

• If the fundamental conic q is a hyperbola or an ellipse, kN is a 2-circular
quartic in general case, 3-circular if FFp is a tangent of the conic k or
4-circular if FFp is the tangent of the conic at the point Fp, where F is
the absolute point and Fp is the pole of the absolute line f with respect
to q.

• If the fundamental conic q is a parabola or a special hyperbola, kN is a
2-circular quartic.
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• If the fundamental conic q is a circle, kN is a 4-circular quartic.

Proof. We consider the above four types of pedal transformations separately.

Type (1)
A general case of this type of pedal transformation is shown in Figure 2. The
pedal curve kN of a conic k is at least 2-circular since it has a double point in the
pedal point F. Two other intersections of quartic kN and the absolute line f are
the intersectionsM1N,M2N of f with tangents of k drawn from the pole Fp of the
line f with respect to the fundamental conic q.

If the conic k touches the connecting line FFp at the point different from Fp,
then one of the points M1N, M2N falls into the absolute point. Consequently, the
constructed quartic is 3-circular, Figure 3. The pole of the tangent l1 = FFp lies
on the line f which is therefore one of the quartic's tangents at the double point
F. If the line FFp touches the conic at the absolute point, both tangents at the
point F coincide with the absolute line being the tangent at the cusp.

It is also possible to get entirely circular quartics by this type of pedal trans-
formation. If the conic k touches the lineFFp at the pointFp, four common points
of the absolute line and the quartic fall into the absolute point F = M1N = M2N.
Thus, the line f osculates kN at the double point F. The other tangent of the
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quartic at the point is the line joining F with the pole L2 of the tangent l2 of the
conic k, Figure 4.

Type (2)
A quartic derived as a conic image by this type of pedal transformation is nec-
essarily 2-circular. It intersects the absolute line at the fundamental points P and
P1. Each of them is a double point of the quartic.

Type (3)
If the fundamental conic q passes through the pedal pointP, all three fundamental
points coincide with P, and all three fundamental lines with the tangent p of q at
P, Figure 5. A conic k is transformed into a 2-circular quartic kNwith a singularity
in P. Both tangents at the point P coincide with the polar p of the point. If k is
a special hyperbola, the pedal point P is a cusp. The other two common points
of the absolute line f and the quartic kN are the intersections M1N, M2N of the
absolute line with tangents of the quartic passing through the pole Fp of the line.
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Type (4)
If the fundamental conic q is a circle, three fundamental points coincide with
the pedal point F and three fundamental lines coincide with the absolute line
f. Since, in this case, the pole Fp of the absolute line is the absolute point, all
intersections of the absolute line with the quartic fall into F. The constructed
quartic kN is entirely circular. The poles of the tangents drawn from F lie on the
line f so the absolute line is the two times counted tangent of the quartic at the
absolute point, which is a node (Figure 6), an isolated double point or a cusp
(Figure 7) depending on whether it is outside, inside or on the conic k.

t

k

kN

n

q

K TN

F =Fp

Figure 7

Type (1) on afne model of isotropic plane
The facts about the pedal transformation have been proved by using the synthetic
method and have been illustrated on the projective model of an isotropic plane.
The same conclusions can also be carried out by using analytical method on the
afne (Euclidean) model of the plane. Since the approach is similar in all cases,
we will consider here only the case of the pedal transformation of type (1).

Let us rst determine the equation of the fundamental conic q which is in
this case an ellipse or a hyperbola.
Every conic is given by the equation of the form

a00x20 + a11x21 + a22x22 + 2a01x0x1 + 2a02x0x2 + 2a12x1x2 = 0,
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or in the afne coordinates

a00 + a11x2 + a22y2 + 2a01x+ 2a02y+ 2a12xy = 0.

Using the isotropic motion

x = x− a01a22 − a02a12
a212 − a11a22

, y = y− a02a11 − a01a12
a212 − a11a22

it is possible to get a simpler form of the equation

a11x2 + a22y2 + 2a12xy+ a = 0.

If we assume that the conic is an ellipse or a hyperbola intersecting the absolute
line in the points (0, 1,±n), it follows that a12 = 0, a11 = −n2 and the equation
becomes

bx2 + y2 + a = 0.
The polar line p of the pedal point F(0, 0, 1) has the equation y = 0, while

the polar lines p1, p2 of two other fundamental points

P1

(
−
√

−a
b
, 0
)
, P2

(√
−a
b
, 0
)

have the equations

x = −
√

−a
b
, x =

√
−a
b
.

Fp(1, 0, 0) is the pole of the absolute line f [1, 0, 0], and the line FpF joining
it with the absolute point has the equation x1 = 0, i.e. x = 0.

According to [4], the pole T of the given line t [t0, t1, t2], in the afne coor-
dinates t [u, v], with respect to the conic q is

A−1t =

 1
a 0 0
0 1

b 0
0 0 1

 t0
t1
t2

 =

 t0
at1
b
t2

 .

The coordinates of the pedal TN(x, y) of the line perpendicular to t can be deter-
mined by solving the system of the linear equations∣∣∣∣∣∣

x0 x1 x2
t0
a

t1
b t2

0 0 1

∣∣∣∣∣∣ = 0

x0t0 + x1t1 + x2t2 = 0.
Thus,

(2.1) x =
au
b
, y = −b+ au2

bv
.
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Let the conic k be given by point-coordinates

k . . . b00 + b11x2 + b22y2 + 2b01x+ 2b02y+ 2b12xy = 0

and line-coordinates

(b00b22 − b202)u2 + 2(b01b02 − b00b12)uv+ (b00b11 − b201)v2 +

+ 2(b02b12 − b01b22)u+ 2(b01b12 − b02b11)v+ b11b22 − b212 = 0.

Substituting u and v from (2.1) into the equation above, the equation of the quar-
tic kN is obtained

b2
[
(b00b11 − b201)x4 + 2(b00b12 − b01b02)x3y+ (b00b22 − b202)x2y2

]
+

+ 2ab
[
(b02b11 − b01b12)x2y+ (b02b12 − b01b22)xy2

]
+

+ 2ab(b00b11 − b201)x2 + 2ab(b00b12 − b01b02)xy+

+ a2(b11b22 − b212)y2+

− 2a2(b01b12 − b02b11)y+ a2(b00b11 − b201) = 0.
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Let us now determine the intersection points of the absolute line f . . . x0 = 0
with the quartic kN. Their coordinates satisfy the equation

b2x21
[
(b00b11 − b201)x21 + 2(b00b12 − b01b02)x1x2 + (b00b22 − b202)x22

]
= 0.

It is obvious that x1 = 0 is double solution of the equation. Therefore, the abso-
lute point F(0, 0, 1) is a point with intersection multiplicity at least 2.

x1 = 0 is at least a triple solution if and only if b00b22−b202 = 0, thus if and
only if the line FFp [0, 1, 0] is a tangent of the conic k.

x1 = 0 is quadruple solution if and only if b00b22 − b202 = 0 and b00b12 −
−b01b02 = 0. This holds when FFp touches the conic k at the point Fp, Figure 8.

In the general case the other two intersection points are

M1N,2N

(
0, b00b22 − b202, b01b02 − b00b12±

±
√
(b01b02 − b00b12)2 − (b00b22 − b202)(b00b11 − b201)

)
.

It can be checked easily that those are the intersections of the absolute line with
the tangentsm1,m2 of the conic k drawn from the point Fp. The pointsM1N,M2N
fall into one point if Fp lies on the conic k, in other words, if b00 = 0.

Therefore, kN can be 2, 3 or 4-circular.
We compute the tangents of the quartic kN at the point F: Any line through

F different from the absolute one has the equation of the form x1 = mx0. The
coordinates of its intersections with kN satisfy the equation

x20

[
(a+ bm2)2(b00b11 − b201)x20 + 2(a+ bm2)

(
a(b02b11 − b01b12)+

+ bm(b00b12 − b01b02)
)
x0x2 +

(
a2(b11b22 − b212)+

+ 2abm(b02b12 − b01b22) + b2m2(b00b22 − b202)
)
x22

]
= 0.

Since x0 = 0 is a double solution of the equation for eachm,F(0, 0, 1) is a double
point of the curve. In order to determine the tangent at that point, it is necessary
to dene the values of m for which x0 = 0 is a triple solution. This is achieved
when a2(b11b22 − b212) + 2abm(b02b12 − b01b22) + b2m2(b00b22 − b202) = 0.
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In the general case the equations of two tangents are

x =
a(b01b22 − b02b12)± a

√
(b02b12 − b01b22)2 − (b00b22 − b202)(b11b22 − b212)

b(b00b22 − b202)
.

The equations above represent perpendiculars PL1, PL2 to the tangents l1, l2

x =
b01b22 − b02b12 ±

√
(b02b12 − b01b22)2 − (b00b22 − b202)(b11b22 − b212)

b212 − b11b22

of the conic k.
If b00b22 − b202 = 0, the conic k touches the line FFp. This implies that one

of the tangents of kN at F coincides with the absolute line, while the other is

x =
a(b11b22 − b212)

2b(b01b22 − b02b12)
.

If b00b22− b202 = 0 and b01b22− b02b12 = 0, it necessary holds b22 = 0, as
otherwise k would be a singular conic. The conic k now touches the line FFp at
the point F and the quartic kN does not have any tangents at the absolute point
except the absolute line.

Figure 8 displays the conic k . . . x2 + y2 − 2x = 0 (v2 − 2u− 1 = 0) and its
pedal curve kN . . . x4+2xy2−2x2−y2+1 = 0 in the case when the fundamental
conic q is given by the equation x2 + y2 − 1 = 0. Beside the absolute point F
the fundamental points are P1,2(∓1, 0). The fundamental lines are y = 0 and
x = ∓1. The conic k touches FFp . . . x = 0 at Fp(0, 0). Due to that kN possesses
a node in the absolute point at which one tangent coincides with the absolute

line while the other has the equation x =
1
2
. The quartic is entirely circular.

Remark 2.1. Observing automorphic inversion, [2], and the pedal transforma-
tion in an isotropic plane, it can be noted that some of the circular quartics can
be obtained by both transformations, while some can be obtained by one of them
only. Moreover, the following statement is valid:

LetK be the reciprocal curve of a conic kwith respect to a special hyperbola
or a circle q. The pedal curve kN of the conic k with respect to the conic q is
identical to the inverse image of the conic K with respect to the fundamental
conic q and the pole F, [10].
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AND Ig-CLOSED SETS
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Abstract. In this paper, the notions of rough closedness and rough continuity re-
lated to Ig-closed sets in ideal topological spaces are introduced and studied. The re-
lationships between rough closedness, Ig-closed sets and between rough continuity, Ig-
closed sets are investigated. Various properties of rough closedness and rough continuity
are discussed.

1. Introduction and preliminaries

In 1999, Dontchev et al. [1] discussed the notion of generalized closed-
ness in ideal topological spaces and introduced Ig-closed sets in ideal topological
spaces. In 2008, Navaneethakrishnan and Joseph [5] have studied properties of
Ig-closed sets in ideal topological spaces. The main aim of this paper is to in-
troduce and study the notions of rough closedness and rough continuity related
to Ig-closed sets in ideal topological spaces. The relationships between rough
closedness, Ig-closed sets and between rough continuity, Ig-closed sets and also
various properties of rough closedness and rough continuity are investigated. It
is shown in the present paper that the inverse image of any Ig-closed set under
Ig-continuity and rough closedness is Ig-closed and the image of any Ig-closed
set under rough continuity and ⋆-closedness is Ig-closed.

In this paper, we consider a topological space (X, τ) with no separation
properties assumed by a space. For a subset U of a topological space (X, τ),
Cl(U) and Int(U)will denote the closure and interior ofU in (X, τ), respectively.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets
of X which satises

AMS Subject Classication (2000): 54A05, 54C10, 54D15.
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(1) U ∈ I and V ⊂ U implies V ∈ I,
(2) U ∈ I and V ∈ I implies U ∪ V ∈ I [3].
For a topological space (X, τ) with an ideal I on X, a set operator

(.)∗ : P(X) → P(X) where P(X) is the set of all subsets of X, called a local
function [3] of U with respect to τ and I is dened as follows:

for U ⊂ X, U∗(I, τ) =
{
x ∈ X : V ∩ U /∈ I for every V ∈ τ(x)

}
where

τ(x) = {V ∈ τ : x ∈ V}.
A Kuratowski closure operator Cl∗(.) for a topology τ∗(I, τ), called the

⋆-topology and ner than τ , is dened by Cl∗(U) = U ∪ U∗(I, τ) [2]. We will
simply writeU∗ forU∗(I, τ) and τ∗ for τ∗(I, τ). If I is an ideal on X, then (X, τ, I)
is said to be an ideal topological space or simply an ideal space. A subset V of
a topological space (X, τ) is called g-closed [4] if Cl(V) ⊂ G whenever V ⊂ G
and G is open in (X, τ).

Definition 1. A subset U of an ideal topological space (X, τ, I) is called
(1) Ig-closed [1] if U∗ ⊂ V whenever U ⊂ V and V is open in (X, τ, I).
(2) Ig-open [1] if X \ U is Ig-closed.

Theorem 2. ([5]) For an ideal topological space (X, τ, I) and U ⊂ X, the fol-
lowing are equivalent:

(1) U is Ig-closed,
(2) Cl∗(U) ⊂ V whenever U ⊂ V and V is open in (X, τ, I).

Theorem 3. ([5]) Let (X, τ, I) be an ideal topological space and U ⊂ X. Then U
is Ig-open if and only if K ⊂ Int∗(U) whenever K is closed and K ⊂ U.

2. Rough closedness and Ig-closed sets

Definition 4. A function f : (X, τ, I) → (Y, σ, J) is called roughly closed if
f(K) ⊂ Int∗(U) whenever K is a closed set in (X, τ, I) and U is an Ig-open set in
(Y, σ, J) such that f(K) ⊂ U.

Remark 5. For a function f : (X, τ, I) → (Y, σ, J), if f is closed, then it is roughly
closed but the reverse implication is not true in general as shown in the following
example:

Example 6. Let X = {a, b, c, d}, τ =
{
X, ∅, {a}, {b, c}, {a, b, c}

}
and I =

=
{
∅, {a}, {d}, {a, d}

}
. Then the function f : (X, τ, I) → (X, τ, I) dened by

f(a) = a, f(b) = c, f(c) = b, f(d) = a is roughly closed but it is not closed.
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Definition 7. A function f : (X, τ, I) → (Y, σ, J) is said to be Ig-continuous if
for every ⋆-closed subset K of (Y, σ, J), f−1(K) is Ig-closed.

Theorem 8. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is Ig-continuous and
roughly closed, then f−1(U) is an Ig-closed set in (X, τ, I) for each Ig-closed set
U in (Y, σ, J).

Proof. Let U be an Ig-closed set in (Y, σ, J). Suppose that f−1(U) ⊂ V for an
open set V in (X, τ, I). This implies that X \V ⊂ f−1(Y \U) and then f(X \V) ⊂
⊂ Y \ U. Since f is roughly closed, then f(X \ V) ⊂ Int∗(Y \ U) = Y \ Cl∗(U).
This implies X \ V ⊂ X \ f−1(Cl∗(U)) and then f−1(Cl∗(U)) ⊂ V. Since f is
Ig-continuous, then f−1(Cl∗(U)) is an Ig-closed set. Consequently,

Cl∗(f−1(U)) ⊂ Cl∗(f−1(Cl∗(U))) ⊂ V.

Thus, Cl∗(f−1(U)) ⊂ V and hence f−1(U) is an Ig-closed set in (X, τ, I).

Corollary 9. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is Ig-continuous
and roughly closed, then f−1(U) is an Ig-open set in (X, τ, I) for each Ig-open set
U in (Y, σ, J).

Corollary 10. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is Ig-continuous
and closed, then

(1) f−1(U) is an Ig-closed set in (X, τ, I) for each Ig-closed setU in (Y, σ, J).
(2) f−1(U) is an Ig-open set in (X, τ, I) for each Ig-open set U in (Y, σ, J).

Proof. It follows from Theorem 8 and Remark 5.

Theorem 11. Let f : (X, τ, I) → (Y, σ, J) be a function. If f(K) is a ⋆-open set
in (Y, σ, J) for each closed set K in (X, τ, I), then f is a roughly closed function.

Proof. Suppose that f(K) is a ⋆-open set in (Y, σ, J) for each closed set K in
(X, τ, I). Let f(V) ⊂ U for a closed set V in (X, τ, I) and an Ig-open set U in
(Y, σ, J). This implies that Int∗(f(V)) ⊂ Int∗(U). Since f(V) is a ⋆-open set in
(Y, σ, J), then f(V) ⊂ Int∗(U). Hence, f is a roughly closed function.

Remark 12. The following example shows that the reverse of Theorem 11 is
not true in general.

Example 13. Let X = {a, b, c, d}, τ =
{
X, ∅, {a}, {b, c}, {a, b, c}

}
and

I =
{
∅, {a}, {d}, {a, d}

}
. Then the identity function i : (X, τ, I) → (X, τ, I)

is roughly closed but f({a, d}) = {a, d} is not ⋆-open.

Definition 14. ([1]) Let (X, τ, I) be an ideal topological space. Then (X, τ, I) is
called a TI-ideal space if each Ig-closed set in (X, τ, I) is ⋆-closed.
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Theorem 15. Let (Y, σ, J) be an ideal topological space. The following proper-
ties are equivalent:

(1) Each function f : (X, τ, I) → (Y, σ, J) is roughly closed for each ideal
topological space (X, τ, I),

(2) (Y, σ, J) is a TI-ideal space.

Proof. (1) ⇒ (2): Let U ̸= ∅ be an Ig-closed set in (Y, σ, J). Suppose that
(X, τ, I) where X = Y and I = J is an ideal topological space with the topol-
ogy τ = {X, ∅,U}. Let f : (X, τ, I) → (Y, σ, J) be the identity function. Then
f : (X, τ, I) → (Y, σ, J) is roughly closed. Since Y \ U is Ig-open in (Y, σ, J) and
X \ U is closed in (X, τ, I) and f(X \ U) ⊂ Y \ U, then we have f(X \ U) ⊂
⊂ Int∗(Y \ U). Since

f(X \ U) = Y \ U ⊂ Int∗(Y \ U) = Y \ Cl∗(U),

then Cl∗(U) ⊂ U. Thus, U is a ⋆-closed set in (Y, σ, J). Hence, (Y, σ, J) is a
TI-ideal space.

(2) ⇒ (1): Let V be an Ig-open set in (Y, σ, J) and f(K) ⊂ V where K is a
closed set in (X, τ, I). Since (Y, σ, J) is a TI-ideal space, then V is ⋆-open. This
implies that f(K) ⊂ Int∗(V). Thus, f is a roughly closed function.

Theorem 16. ([5])Each subset of an ideal topological space (X, τ, I) is Ig-closed
if and only if each open set of (X, τ, I) is ⋆-closed.

Theorem 17. Let f : (X, τ, I) → (Y, σ, J) be a function where σ = η and η
is the family of all ⋆-closed sets of (Y, σ, J). Then the following properties are
equivalent:

(1) f is roughly closed,
(2) f(K) is ⋆-open for each closed set K in (X, τ, I).

Proof. (1) ⇒ (2): Let f : (X, τ, I) → (Y, σ, J) be a roughly closed function.
Suppose that K is a closed set in (X, τ, I). This implies from Theorem 16 that
f(K) is an Ig-open set in (Y, σ, J). Since f is a roughly closed function, then
f(K) ⊂ Int∗(f(K)). Consequently, f(K) is a ⋆-open set in (Y, σ, J).

(2) ⇒ (1): It follows from Theorem 11.

Remark 18. The following example shows that the composition of two roughly
closed functions is not roughly closed in general.

Example 19. Let X = Y = {a, b, c, d}, τ =
{
X, ∅, {a}, {a, b}, {c, d},

{a, c, d}
}
, I = J =

{
∅, {a}, {d}, {a, d}

}
and σ =

{
Y, ∅, {a}, {b, c}, {a, b, c}

}
.

Then for the functions f : (X, τ, I) → (Y, σ, J) dened by f(a) = d, f(b) = a,
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f(c) = c, f(d) = d and g : (Y, σ, J) → (Y, σ, J) dened by g(a) = a, g(b) = c,
g(c) = b, g(d) = a, g ◦ f is not roughly closed but f and g are roughly closed.

Theorem 20. Let f : (X, τ, I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η, ℓ) be two
functions. If f is closed and g is roughly closed, then g ◦ f : (X, τ, I) → (Z, η, ℓ)
is a roughly closed function.

Proof. Let K be a closed set in (X, τ, I) andU be an Ig-open set in (Z, η, ℓ) such
that (g ◦ f)(K) ⊂ U. Since f is a closed function, then f(K) is a closed set in
(Y, σ, J). Since g is a roughly closed function, then g(f(K)) ⊂ Int∗(U). Thus,
(g ◦ f)(K) ⊂ Int∗(U) and hence g ◦ f is roughly closed.

Definition 21. A function f : (X, τ, I) → (Y, σ, J) is called
(1) ⋆-open if f(K) is ⋆-open for every ⋆-open subset K of (X, τ, I).
(2) Ig-irresolute if f−1(K) is Ig-closed for every Ig-closed subset K of

(Y, σ, J).

Theorem 22. Let f : (X, τ, I) → (Y, σ, J) and g : (Y, σ, J) → (Z, η, ℓ) be two
functions. If f is roughly closed and g : (Y, σ, J) → (Z, η, ℓ) is ⋆-open and Ig-
irresolute, then g ◦ f : (X, τ, I) → (Z, η, ℓ) is a roughly closed function.

Proof. Let K be a closed set in (X, τ, I) and U be an Ig-open set in (Z, η, ℓ)
such that (g ◦ f)(K) ⊂ U. This implies that f(K) ⊂ g−1(U). Since g−1(U) is
an Ig-open set and f is roughly closed, then f(K) ⊂ Int∗(g−1(U)). We have
(g ◦ f)(K) = g(f(K)) ⊂ g(Int∗(g−1(U))). Since Int∗(g−1(U)) ⊂ g−1(U),
then g(Int∗(g−1(U))) ⊂ g(g−1(U)) ⊂ U. Since g is a ⋆-open function,
then g(Int∗(g−1(U))) ⊂ Int∗(U). Thus, (g ◦ f)(K) ⊂ Int∗(U) and hence,
g ◦ f : (X, τ, I) → (Z, η, ℓ) is a roughly closed function.

Recall that for an ideal topological space (X, τ, I) and V ⊂ X, (V, τV, IV),
where τV is the relative topology on V and IV = {V ∩ J : J ∈ I} is an ideal
topological space [2].

Theorem 23. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is roughly closed
and V is a closed set in (X, τ, I), then its restriction f |V : (V, τV, IV) → (Y, σ, J)
is a roughly closed function.

Proof. Let U be a closed set in (V, τV, IV) and G be an Ig-open set in (Y, σ, J)
such that f |V (U) ⊂ G. This implies that U is a closed set in (X, τ, I) and f |V
(U) = f(U) ⊂ G. Since f is roughly closed, then we have f |V (U) = f(U) ⊂
⊂ Int∗(G). Hence, f |V is a roughly closed function.

Remark 24. The following example shows that any restriction of a roughly
closed function is not roughly closed in general.
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Example 25. Let X = Y = {a, b, c, d}, τ =
{
X, ∅, {a}, {a, b}, {c, d},

{a, c, d}
}
, I = J =

{
∅, {a}, {d}, {a, d}

}
and σ =

{
Y, ∅, {a}, {b, c}, {a, b, c}

}
.

Then for the function f : (X, τ, I) → (Y, σ, J) dened by f(a) = c, f(b) = d,
f(c) = a, f(d) = d and A = {a, c, d}, f is roughly closed but f |A : (A, τA, IA) →
→ (Y, σ, J) is not roughly closed.

3. Rough continuity and Ig-closed sets

Definition 26. A function f : (X, τ, I) → (Y, σ, J) is called roughly continuous
if V∗ ⊂ f−1(U) whenever U is an open set in (Y, σ, J) and V is an Ig-closed set
in (X, τ, I) such that V ⊂ f−1(U).

Theorem 27. Let f : (X, τ, I) → (Y, σ, J) be a function. The following are equiv-
alent:

(1) f is roughly continuous,
(2) Cl∗(V) ⊂ f−1(U) whenever U is an open set in (Y, σ, J) and V is an

Ig-closed set in (X, τ, I) such that V ⊂ f−1(U).

Proof. (1) ⇒ (2): Suppose that f is roughly continuous. Let U be an open set
in (Y, σ, J) and V be an Ig-closed set in (X, τ, I) such that V ⊂ f−1(U). By (1),
we have V∗ ⊂ f−1(U). This implies that V∗ ∪ V = Cl∗(V) ⊂ f−1(U).

(2) ⇒ (1): Let U be an open set in (Y, σ, J) and V be an Ig-closed set
in (X, τ, I) such that V ⊂ f−1(U). By (2), Cl∗(V) ⊂ f−1(U). Then, we have
Cl∗(V) = V∗ ∪ V ⊂ f−1(U). Thus, V∗ ⊂ f−1(U) and hence, f is roughly contin-
uous.

Remark 28. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is continuous, then
f is roughly continuous. The following example shows that the reverse of this
implication is not true in general.

Example 29. Let X = {a, b, c, d}, τ =
{
X, ∅, {a}, {b, c}, {a, b, c}

}
and I =

=
{
∅, {a}, {d}, {a, d}

}
. Then the function f : (X, τ, I) → (X, τ, I) dened by

f(a) = d, f(b) = c, f(c) = b, f(d) = a is roughly continuous but it is not
continuous.

Theorem 30. Let f : (X, τ, I) → (Y, σ, J) be a bijective function. Then the fol-
lowing are equivalent:

(1) f is roughly closed,
(2) f−1 is roughly continuous.
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Proof. Suppose that f : (X, τ, I) → (Y, σ, J) is a roughly closed function. Let U
be an open set in (X, τ, I) andV be an Ig-closed set in (Y, σ, J) such thatV ⊂ f(U).
This implies that X \ U is a closed set in (X, τ, I) and Y \ V be an Ig-open set in
(Y, σ, J) such that Y \ f(U) = f(X \ U) ⊂ Y \ V. Since f is roughly closed, then
f(X \ U) ⊂ Int∗(Y \ V). We have f(X \ U) = Y \ f(U) ⊂ Y \ Cl∗(V) and then
Cl∗(V) ⊂ f(U). Thus, f−1 is roughly continuous. The converse is similar.

Definition 31. A function f : (X, τ, I) → (Y, σ, J) is called ⋆-closed if f(K) is
⋆-closed for each ⋆-closed set K in (X, τ, I).

Theorem 32. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is roughly continu-
ous and ⋆-closed, then f(V) is an Ig-closed set in (Y, σ, J) for each Ig-closed set
V in (X, τ, I).

Proof. Let V be an Ig-closed set in (X, τ, I) and U be an open set in (Y, σ, J)
such that f(V) ⊂ U. We have V ⊂ f−1(U). Since f is roughly continuous, then
Cl∗(V) ⊂ f−1(U). This implies f(Cl∗(V)) ⊂ U. Since f is ⋆-closed, then we
have

Cl∗(f(V)) ⊂ Cl∗(f(Cl∗(V))) = f(Cl∗(V)) ⊂ U.

Consequently, Cl∗(f(V)) ⊂ U. Thus, f(V) is an Ig-closed set in (Y, σ, J).

Corollary 33. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is continuous and
⋆-closed, then f(V) is an Ig-closed set in (Y, σ, J) for each Ig-closed set V in
(X, τ, I).

Proof. It follows from Theorem 32 and Remark 28.

Theorem 34. Let f : (X, τ, I) → (Y, σ, J) be a function. If f−1(U) is a ⋆-closed
set in (X, τ, I) for each open set U in (Y, σ, J), then f is a roughly continuous
function.

Proof. Let U be an open set in (Y, σ, J) and K be an Ig-closed set in (X, τ, I)
such that K ⊂ f−1(U). Then we have Cl∗(K) ⊂ Cl∗(f−1(U)) = f−1(U). Hence,
f is a roughly continuous function.

Remark 35. The reverse of Theorem 34 is not true in general as shown in the
following example.

Example 36. Let X = {a, b, c, d}, τ =
{
X, ∅, {a}, {b, c}, {a, b, c}

}
and I =

=
{
∅, {a}, {d}, {a, d}

}
. Then the identity function i : (X, τ, I) → (X, τ, I) is

roughly continuous but f−1({a, b, c}) = {a, b, c} is not ⋆-closed.
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Theorem 37. Let (X, τ, I) be an ideal topological space and R ⊂ S ⊂ X. If R
is an Ig-closed set relative to S and S is g-closed relative to (X, τ∗), then R is
Ig-closed relative to (X, τ, I).

Proof. Let R be an Ig-closed set relative to S and S be g-closed relative to
(X, τ∗). Since S is g-closed relative to (X, τ∗), then S is Ig-closed in X. So, by
Theorem 2.8 of [1], R is Ig-closed relative to (X, τ, I).

Theorem 38. Let f : (X, τ, I) → (Y, σ, J) be a function. If f is roughly con-
tinuous and R is g-closed relative to (X, τ∗), then the restriction function
f |R : (R, τR, IR) → (Y, σ, J) is roughly continuous.

Proof. Let S be an Ig-closed set in (R, τR, IR) and U be an open set in (Y, σ, J)
such that S ⊂ (f |R)−1(U). This implies that S ⊂ f−1(U)∩R. Since S is Ig-closed
relative to (X, τ, I) by Theorem 37 and f is roughly continuous, then Cl∗(S) ⊂
⊂ f−1(U). We have Cl∗(S)∩R ⊂ f−1(U)∩R. Thus, Cl∗R(S) ⊂ (f |R)−1(U) and
hence, f |R : (R, τR, IR) → (Y, σ, J) is roughly continuous.

Theorem 39. Let (X, τ, I) be an ideal topological space. The following proper-
ties are equivalent:

(1) Each function f : (X, τ, I) → (Y, σ, J) is roughly continuous for each
ideal topological space (Y, σ, J),

(2) (X, τ, I) is a TI-ideal space.

Proof. (1) ⇒ (2): Let U be a nonempty Ig-closed set in (X, τ, I). Suppose that
Y = X, I = J and σ = {Y, ∅,U} and f : X → Y is the identity function. Since f is
roughly continuous, U is an Ig-closed set in (X, τ, I) and an open set in (Y, σ, J)
such that U ⊂ f−1(U), then Cl∗(U) ⊂ f−1(U) = U. Consequently, U is a
⋆-closed set in (X, τ, I). Thus, (X, τ, I) is a TI-ideal space.

(2) ⇒ (1): Let K be an Ig-closed set in (X, τ, I) and V be an open set in
(Y, σ, J) such that K ⊂ f−1(V). Since (X, τ, I) is a TI-ideal space, then K is a
⋆-closed set. Thus, Cl∗(K) ⊂ f−1(V) and hence f is roughly continuous.

Theorem 40. Let (X, τ, I) be an ideal topological space such that τ and the fam-
ily of ⋆-closed sets of (X, τ, I) coincide. Then a function f : (X, τ, I) → (Y, σ, J)
is roughly continuous if and only if f−1(U) is ⋆-closed for each open set U in
(Y, σ, J).

Proof. (⇒): Let f : (X, τ, I) → (Y, σ, J) be a roughly continuous function. Let
U be an open set in (Y, σ, J). By Theorem 16, f−1(U) is an Ig-closed set in
(X, τ, I). Since f is roughly continuous, Cl∗(f−1(U)) ⊂ f−1(U). Hence, f−1(U)
is a ⋆-closed set in (X, τ, I).
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(⇐): It follows from Theorem 34.

Remark 41. The following example shows that any composition of two roughly
continuous functions is not roughly continuous in general.

Example 42. Let X = Y = {a, b, c, d}, τ =
{
X, ∅, {a}, {b, c}, {a, b, c}

}
,

I = J =
{
∅ , {a}, {d}, {a, d}

}
and σ =

{
X, ∅, {a}, {a, b}, {c, d}, {a, c, d}

}
.

Then for the functions f : (X, τ, I) → (X, τ, I) dened by f(a) = d, f(b) = b,
f(c) = c, f(d) = a and g : (X, τ, I) → (Y, σ, J) dened by g(a) = a, g(b) = a,
g(c) = b, g(d) = b, g ◦ f is not roughly continuous but f and g are roughly
continuous.

Theorem 43. If f : (X, τ, I) → (Y, σ, J) is a roughly continuous function and
g : (Y, σ, J) → (Z, η, ℓ) is a continuous function, then g ◦ f : (X, τ, I) → (Z, η, ℓ)
is roughly continuous.

Proof. Let V be an Ig-closed set in (X, τ, I) and U be an open set in (Z, η, ℓ)
such that V ⊂ (g ◦ f)−1(U). Since g is continuous, then g−1(U) is an open set.
Since f is roughly continuous, then Cl∗(V) ⊂ f−1(g−1(U)) = (g ◦ f)−1(U).
Thus, Cl∗(V) ⊂ (g ◦ f)−1(U) and hence g ◦ f is roughly continuous.
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Abstract. We characterize some properties of generalized compactness and gen-
eralized closedness of generalized topological spaces by using closure operator dened
on such a space. It is also shown that many results done in this area in some previous
papers can be considered as special cases of our results.

1. Introduction

In the past few years, several forms of open sets have been studied. Re-
cently, Á. Császár found the theory of generalized topology in [8], studying the
extremely elementary character of these classes. Especially, the author dened
some basic operators on generalized topological spaces.

It is observed that a large number of papers is devoted to the study of
compactness and closedness of a space, containing the class of open sets and
possessing properties more or less similar to those of open sets. For exam-
ple, [13] has introduced semi-compact and s-closed [22], strongly compact [23]
and p-closed [12], δp-closed [26], δ-semi-compact [14], α-compact [21] and α-
closed [16], β-compact [3] and β-closed [4] topological spaces. It is interesting
to mention that Ganster [15] has shown that innite β-compact spaces do not
exist.

Owing to the fact that corresponding denitions have many features in com-
mon, it is quite natural to conjecture that they can be obtained and a considerable
part of the properties of generalized open sets can be deduced from suitable more
general denitions. The purpose of this paper is to show that this is possible and
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the generality obtained in this manner helps us to point out extremely elemen-
tary character of the proofs and to get many unknown results by special choice
of the GT.

We recall some notions dened in [8]. Let X be a non-empty set, expX
denotes the power set of X. We call a class g ⊆ expX a generalized topology [8],
(briey, GT) if ∅ ∈ g and union of elements of g belongs to g. A set with a GT is
said to be a generalized topological space (briey, GTS). A generalized topology
g on X is called strong [9] if X ∈ g. We note that for any topological space (X, τ),
the collection of all open sets denoted by τ (preopen sets [1] denoted by PO(X),
semi-open sets [20] denoted by SO(X), δ-open sets [30] denoted by δO(X), δ-
preopen [27, 26] sets denoted by δ-PO(X), δ-semiopen sets [25] denoted by δ-
SO(X), α-open sets [24] denoted by αO(X), β-open sets [2] denoted by βO(X))
form a GT.

For a GTS (X, g), the elements of g are called g-open sets and the comple-
ments of g-open sets are called g-closed sets. For A ⊆ X, we denote by cg(A) the
intersection of all g-closed sets containing A, i.e., the smallest g-closed set con-
taining A; and by ig(A) the union of all g-open sets contained in A, i.e., the largest
g-open set contained in A (see [8, 10]). It is easy to observe that ig and cg are
idempotent and monotonic, where γ : expX → expX is said to be idempotent
iff for each A ⊆ X, γ(γ(A)) = γ(A), and monotonic iff γ(A) ⊆ γ(B) whenever
A ⊆ B ⊆ X. It is also well known from [10, 11] that if g is a GT on X and A ⊆ X,
x ∈ X, then x ∈ cg(A) iff x ∈ M ∈ g ⇒ M ∩ A ̸= ∅ and cg(X \ A) = X \ ig(A).

In this paper we use the concepts of g-open sets to introduce g-compact
and g-closed spaces. It is shown that many results in previous papers can be
considered as special cases of our results.

2. g-compactness in generalized topological spaces

Definition 2.1. Let (X, g) be a GTS. A non-empty subset A of X is called gen-
eralized compact relative to X or in short, g-compact relative to X if every cover
of A by g-open sets of X (such a cover will henceforth be called a g-open cover
of A) has a nite subfamily which covers A. If, in addition, A = X then X is
called g-compact.

Remark 2.1. Let (X, g1) and (X, g2) be two GTS's such that g1 ⊆ g2 and X ∈
∈ g1. If (X, g2) is g2-compact then (X, g1) is g1-compact.

For any topological space (X, τ), since τ ⊆ αO(X) ⊆ PO(X) ⊆ βO(X) and
τ ⊆ αO(X) ⊆ SO(X) ⊆ βO(X), it follows from the above theorem that
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β-compact ⇒ semicompact⇒α-compact⇒ compact
⇓

strongly compact or pre-compact⇒ α-compact ⇒ compact.

Definition 2.2. [29] Let (X, g) be a GTS and x ∈ X. A net {xα}α∈D in X is
said to g-converge to x in X if for every g-open set U containing x there exists
α0 ∈ D such that xα ∈ U, for each α ≥ α0.

Definition 2.3. Let (X, g) be a GTS. Let {xα}α∈D be a net in X. Then,
(i) a point x ∈ X is called a g-cluster point of {xα}α∈D iff {xα}α∈D is fre-

quently in every g-open set containing x. We denote the set of all g-cluster points
of {xα}α∈D by g-cp{xα}α∈D.

(ii) {xα}α∈D is said to satisfy P(I) iff there exists y ∈ g-cp{xα}α∈D such
that {α ∈ D : xα = y} is conal in D.

(iii) {xα}α∈D is said to satisfy P(II) iff there exists y ∈ g-cp{xα}α∈D such
that if U,V ∈ g and y ∈ U ∩ V, then (U ∩ V) \ {y} ̸= ∅.

Theorem 2.1. For a GTS (X, g), the following properties are equivalent:
(i) (X, g) is g-compact;
(ii) Every family of g-closed subsets of X with finite intersection property

has non-empty intersection;
(iii) g-cp{xα}α∈D ̸= ∅, for each net {xα}α∈D in X.

Proof. The proof is straightforward.
This theorem contains several results in literature. For example, in a topo-

logical space, (X, τ), if we take g = τ then we get the Theorems 5.1 and 5.2 of
[18], if g = PO(X), we get the Theorem 2.1. of [23], if g = SO(X), we get the
Theorem 3.3 of [13].

Theorem 2.2. Let (X, g) be a strong GTS in which no net satisfy P(II). Then X
is singleton.

Proof. Let y ∈ X. Then y is a g-cluster point of the constant net {y}.
Take U = V = X ∈ g. Since no net in X has the property P(II), we have
(U ∩ V) \ {y} = ∅. Hence X = U ∩ V = {y}.

This theorem contains several results in literature. For example, in a topo-
logical space (X, τ), if g = PO(X), we get Theorem 2.8 of [23], if we take
g = SO(X), we get Proposition 3 of [28].

Theorem 2.3. Let (X, g) be a GTS and {xα}α∈D be a net in X such that
g-cp{xα}α∈D is finite. Then {xα}α∈D satisfies P(I) or P(II).
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Proof. We shall prove the Theorem by themethod of induction. Let {xα}α∈D be
a net in X such that g-cp{xα}α∈D = {x}. If possible, let {xα}α∈D does not satisfy
P(I) and P(II). Then there existU,V ∈ g such that x ∈ U∩V andU∩V\{x} = ∅.
Let B = {α ∈ D : xα ∈ U}, then it is conal in D. Then {xβ}β∈B is a net in X.
Since {xα}α∈D does not satisfy P(I), {β ∈ B : xβ = x} is residual in B and for
x ∈ V ∈ g, {xβ}β∈B is not frequently in V which implies that x ̸∈ g-cp{xβ}β∈B.
Since g-cp{xβ}β∈B ⊆ g-cp{xα}α∈D = {x}, g-cp{xβ}β∈B = ∅-a contradiction.

Assume that the statement is true for all natural numbers less than k, where
k > 1. Let {xα}α∈D be a net in X such that g-cp{xα}α∈D has exactly k ele-
ments. We need to show that {xα}α∈D satisfy P(I) or P(II). For suppose not,
let x ∈ g-cp{xα}α∈D. Then there exist U,V ∈ g such that x ∈ U ∩ V and
U ∩ V \ {x} = ∅. Let B = {α ∈ D : xα ∈ U}, then it is conal in D. Since
{xα}α∈D does not satisfy P(I), then {β ∈ B : xβ = x} is residual in B and
V ∈ g such that x ∈ V and {xβ}β∈B is not frequently in V which implies that
x ̸∈ g-cp{xβ}β∈B. Since g-cp{xβ}β∈B ⊆ g-cp{xα}α∈D, x ∈ g-cp{xα}α∈D and
x ̸∈ g-cp{xβ}β∈B, then g-cp{xβ}β∈B has less than k elements, which implies that
{xβ}β∈B satises P(I) or P(II)-a contradiction.

This theorem contains several results in literature. For example, in a topo-
logical space (X, τ), if g = PO(X), we get Theorem 2.2 of [23], if we take
g = SO(X), we get Theorem 3.5 of [13].

Definition 2.4. A GTS (X, g) is said to be anti-g-compact if the only g-
compact subsets of X are those which have to be g-compact because of their
cardinality, i.e., the nite subsets.

Theorem 2.4. AGTS (X, g) is anti-g-compact iff for each point x ∈ X and each
infinite subset A of X, there is a g-open set U containing x such that A \U is not
g-compact relative to X.

Proof. Let (X, g) be anti-g-compact. Since A∪{x} is not g-compact, there is a
cover U of A ∪ {x} by g-open subsets of X which has no nite subcover. Then
there is someU ∈ U such that x ∈ U. Then U \{U} is a cover of A\U by g-open
subsets of X which has no nite subcover. Thus A \ U is not g-compact.

Conversely, let A be a g-compact subset of X. If A is nite, then there is
nothing to show. Let A be innite and x ∈ A. By hypothesis, there is a g-open
set U containing x such that A \U is not g-compact. Hence there is a cover U of
A \ U by g-open subsets of X which has no nite subcover. Then U ∪ {U} is a
cover of A by g-open subsets of X which has no nite subcover. Hence A is not
g-compact.
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If we consider a topological space (X, τ) with g = SO(X), then we get
Proposition 8 of [28].

Theorem 2.5. A GTS (X, g) which is not g-compact has an infinite subset
which is anti-g-compact.

Proof. Let U be a cover of X by g-open subsets, which has no nite subcover.
Let x1 ∈ X. Then there exists U1 ∈ U such that x1 ∈ U1. Then there is a point
x2 ∈ X\U1 and a setU2 ∈ U such that x2 ∈ U2. There is a point x3 ∈ X\(U1∪U2)
and so on, by induction for each positive integer n, there is a point xn ∈ Un ∈ U
and xn+1 ∈ X \ ∪n

i=1Ui. Then {xn : n ∈ N} is innite and anti-g-compact.
This theorem contains several results in literature. For example, in a topo-

logical space (X, τ), if we take g = SO(X) it gives that any space (X, τ)which is
not semi-compact has an innite subset which is anti-semi-compact, Proposition
9 of [28].

Theorem 2.6. Let (X, g1) and (X, g2) be two GTS's such that g1 ⊆ g2 and
(X, g1) is anti-g1-compact. Then (X, g2) is anti-g2-compact.

Proof. Suppose A is an innite g2-compact subset of X. We claim that A is a
g1-compact subset of X. Let {Vα : α ∈ D} be a cover of A by g1-open subsets
of X. Since g1 ⊆ g2, {Vα : α ∈ D} is a family of g2-open subsets of X. By
g2-compactness of A, there must exist a nite subset D0 of D such that A ⊆
⊆ ∪{Vα : α ∈ D0}. This shows that A is g1-compact – a contradiction.

Definition 2.5. [8] Let (X, g1) and (Y, g2) be two GTS's. A mapping
f : (X, g1) → (Y, g2) is said to be (g1, g2)-continuous iff f

−1(G2) ∈ g1 for each
G2 ∈ g2.

Theorem 2.7. Let (X, g1) and (Y, g2) be two GTS's and f : (X, g1) → (Y, g2)
be a (g1, g2)-continuous surjection. If (X, g1) is g1-compact, then (Y, g2) is g2-
compact.

Proof. Straightforward and hence omitted.

Theorem 2.8. Let f : (X, g1) → (Y, g2) be a (g1, g2)-continuous map. If
{xα}α∈D be a net in X which g1-converges to x, then the net {f(xα)}α∈D g2-
converges to f(x).

Proof. Straightforward and hence omitted.
That the converse is false follows from the next example.

Example 2.1. Let X = {a, b, c} and g1 = {∅, {a}, {a, b}, {a, c},X} and g2 =
= {∅, {a}, {b}, {c}, {b, c}, {a, c}, {a, b},X} be two GT's on X. Consider the
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function f : (X, g1) → (X, g2) dened by f(x) = x, for all x ∈ X. Then for every
constant net {xα} in X g1-converging to x, f({xα}) g2-converges to f(x), but
clearly, f is not (g1, g2)-continuous.

3. gH-closedness in generalized topological spaces

Definition 3.1. A non-void subset A of a generalized topological space (X, g)
is said to be g-closed relative to X if for every cover {Uα : α ∈ Λ} (Λ being
some index set) of A by g-open sets of X, there exists a nite subset Λ0 of Λ such
that A ⊆ ∪{cgUα : α ∈ Λ0}. If, in addition, A = X, then X is called a g-closed
space.

Definition 3.2. A lter base F on a GTS (X, g) is said to be g-convergent to a
point x ∈ X if for each V ∈ g containing x, there exists F ∈ F such that F ⊆ cgV
and a lter base F is said to g-accumulate at x ∈ X if cgV ∩ F ̸= ∅, for each
x ∈ V ∈ g and each F ∈ F .

Theorem 3.1. For a GTS (X, g) the followings are equivalent:
(i) (X, g) is g-closed;
(ii) Every maximal filter-base g-converges to some point of X;
(iii) Every filter-base accumulates at some point of X;
(iv) For every family {Vα : α ∈ D} of g-closed subsets such that

∩{Vα : α ∈ D} = ∅, there exists a finite subset D0 of D such that ∩{igVα : α ∈
∈ D0} = ∅.

Proof. (i) ⇒ (ii): Let F be a maximal lter-base on X. Suppose F does not
g-converge to any point of X. Since F is maximal, F does not g-accumulate to
any point of X. Then for each x ∈ X, there exist Fx ∈ F and Vx ∈ g containing
x such that cgVx ∩ Fx = ∅. The family {Vx : x ∈ X} is a cover of X by g-open
sets of X. Then by (i), there exist nite number of points x1, x2, . . . , xn in X such
that X = ∪{cgVxi : i = 1, 2, . . . , n}. Since F is a lter-base on X, there exists
F0 ∈ F such that F0 ⊆ ∩{Fxi : i = 1, 2, . . . , n}. Therefore we obtain F0 = ∅-a
contradiction.

(ii)⇒ (iii): Let F be any lter-base on X. Then there exists a maximal lter-
base F0 such that F ⊆ F0. By (ii), F0 g-converges to some point x ∈ X. Then
for every F ∈ F and every V ∈ g with x ∈ V, there exists F0 ∈ F0 such that
F0 ⊆ cgV, hence ∅ ̸= F0 ∩ F ⊆ cgV ∩ F. This shows that F accumulates at x.

(iii) ⇒ (i): Suppose X is not g-closed. Then there exists a g-open cover
{Vα : α ∈ D} of X such that ∪{cgVα : α ∈ D0} ̸= X for each nite subset D0 of
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D. LetG(D) denotes the ideal of all nite subsets ofD. Since ∩{X\cgVα : D0 ∈
∈ G(D)} ̸= ∅, the family F = {∩(X \ cgVα) : α ∈ D0} is a lter- base on X.
By (iii), F accumulates at some point x ∈ X. Since ∪{Vα : α ∈ D} is a cover
of X, x ∈ Vα0 for some α0 ∈ D. Therefore we obtain Vα0 ∈ g with x ∈ Vα0 ,
X \ cgVα0 ∈ F and cgVα0 ∩ (X \ cgVα0) = ∅ – a contradiction.

(iii) ⇒ (iv): Let {Vα : α ∈ D} be a family of g-closed subsets of X such
that ∩{Vα : α ∈ D} = ∅. Let G(D) denotes the ideal of all nite subsets of D.
Assume ∩{igVα : α ∈ D0} ≠ ∅ for each D0 ∈ G(D). Then the family F =
= ∩D0∈G(D){igVα : α ∈ D0} is a lter-base on X. By (iii), F accumulates at
some point x ∈ X. Since {X \ Vα : α ∈ D} is a cover of X, x ∈ X \ Vα0 for some
α0 ∈ D. Therefore we obtain x ∈ X \ Vα0 ∈ g, igVα0 ∈ F and cg(X \ Vα0) ∩
∩ igVα0 = ∅-a contradiction.

(iv)⇒ (i): Let {Vα : α ∈ D} be a cover of X by g-open subsets of X. Then
{X \ Vα : α ∈ D} is a family of g-closed subsets of X such that ∩{X \ Vα : α ∈
D} = ∅. By (iv), there exists a nite subsetD0 ofD such that∩{ig(X\Vα) : α ∈
∈ D0} = ∅, hence X = ∪{cgVα : α ∈ D0}. This shows that X is g-closed.

This theorem unies many results of topology. For example, in a topological
space (X, τ), if g = τ , we get Theorem 2.1 of [31], if g = θO(X), we get
Theorem 5.10 of [19] if g = PO(X), we get Theorem 2.8 of [12], if g = δ-
PO(X) we get Theorem 3.3 of [27], if g = βO(X), we get Theorem 3.5 of [4].

Theorem 3.2. For a GTS (X, g) the followings are equivalent:
(i) A is g-closed relative to X;
(ii) Every maximal filter-base on X which meets A, g-converges to some

point of A;
(iii) Every filter-base onXwhichmeetsA, g-accumulates at some point ofA;
(iv) For every family {Vα : α ∈ D} of g-closed subsets of (X, g), such

that ∩{Vα : α ∈ D} ∩ A = ∅, there exists a finite subset D0 of D such that
∩{igVα : α ∈ D0} ∩ A = ∅.

Proof. The proof is similar to that of Theorem 3.3.

Theorem 3.3. Let (X, g1) and (X, g2) be two GTS's such that g2 ⊆ g1. If (X, g1)
is g1-closed, then (X, g2) is g2-closed.

Proof. Let {Vα : α ∈ D} be a cover ofX by g2-open subsets ofX. Since g2⊆g1,
{Vα : α ∈ D} is a family of g1-open cover of X. By hypothesis, there exists a
nite subset D0 of D such that X = ∪{cg1Vα : α ∈ D0} ⊆ ∪{cg2Vα : α ∈ D0}.

From this theorem we observe that for any topological space (X, τ), every
p-closed space is quasi H-closed [12] (by taking g2 = τ and g1 = PO(X)),
every s-closed space is quasi H-closed [12] (by taking g1 = SO(X) and g2 = τ ),
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δp-closed space is quasi H-closed [27] (by taking g1 = δ-PO(X) and g2 = τ ),
every β-closed space is quasi H-closed [4] (by taking g2 = τ and g1 = βO(X)),
δp-closed space is p-closed [12] (by taking g1 = δ-PO(X) and g2 = PO(X)).

Theorem 3.4. Let theGTS (X, g) be a g-compact space. Then (X, g) is g-closed.

Proof. Let {Vα : α ∈ D} be a g-open cover of X. Then by g-compactness of
(X, g), there exists a nite subfamily D0 of D such that X = ∪{Vα : α ∈ D0} ⊆
⊆ ∪{cgVα : α ∈ D0}. This shows that (X, g) is g-closed.

From this theorem we can conclude that in any topological space (X, τ),
every compact space is quasi H-closed [5] (by taking g = τ ), every strongly
compact space is p-closed [12] (by taking g = PO(X)), every semi-compact
space is s-closed [6] (by taking g = SO(X)), every α-compact space is α-closed
(by taking g = αO(X)), every β-compact space is β-closed (by taking g =
= βO(X)) [4].
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Abstract. We introduce the notion of mIT-structures determined by operators
mInt and mCl on an m-space (X,mX). By using mIT-structures, we introduce and in-
vestigate a function f : (X,mIT) → (Y, σ) called mIT-continuous. As special cases of
mIT-continuity, we obtain m-semi-continuity [16] and m-precontinuity [18].

1. Introduction

Semi-open sets, preopen sets, α-open sets, β-open sets and b-open sets play
an important role in the researches of generalizations of continuity in topologi-
cal spaces. By using these sets, several authors introduced and studied various
types of non-continuous functions. Certain of these non-continuous functions
have properties similar to those of continuous functions and they hold, in many
part, parallel to the theory of continuous functions.

In [20] and [21], the present authors introduced and studied the notions of
minimal structures, m-spaces, m-continuity andM-continuity. Quite recently, in
[14], [15], [16], [17], and [18], Min and Kim introduced the notions of m-semi-
open sets, m-preopen sets, m-α-open sets, m-β-open sets which generalize the
notions of m-open sets and m-semi-continuity, m-precontinuity, m-α-continuity,
m-β-continuity generalizing the notions of m-continuity. In [6], [24] and [25],
the notions of m-semi-open sets, m-preopen sets, m-α-open sets and m-β-open
sets are also introduced and studied.

In the present paper, we introduce the notions of iterate m-structures and
mIT-continuity and reduce the study of m-precontinuity and m-semi-continuity
to the study of m-continuity.

AMS Subject Classication (2000): 54C08
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2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and
the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some
generalized open sets in topological spaces.

Definition 2.1. Let (X, τ) be a topological space. A subset A of X is said to be
(1) α-open [19] if A ⊂ Int(Cl(Int(A))),
(2) semi-open [10] if A ⊂ Cl(Int(A)),
(3) preopen [12] if A ⊂ Int(Cl(A)),
(4) b-open [4] if A ⊂ Int(Cl(A)) ∪ Cl(Int(A)),
(5) β-open [1] or semi-preopen [3] if A ⊂ Cl(Int(Cl(A))).

The family of all α-open (resp. semi-open, preopen, b-open, β-open) sets
in (X, τ) is denoted by α(X) (resp. SO(X), PO(X), BO(X), β(X)).

Definition 2.2. Let (X, τ) be a topological space. A subset A of X is said to be
α-closed [13] (resp. semi-closed [7], preclosed [12], b-closed [4], β-closed [1])
if the complement of A is α-open (resp. semi-open, preopen, b-open, β-open).

Definition 2.3. Let (X, τ) be a topological space and A a subset of X. The in-
tersection of all α-closed (resp. semi-closed, preclosed, b-closed, β-closed) sets
of X containing A is called the α-closure [13] (resp. semi-closure [7], preclosure
[9], b-closure [4], β-closure [2]) of A and is denoted by αCl(A) (resp. sCl(A),
pCl(A), bCl(A), β Cl(A)).

Definition 2.4. Let (X, τ) be a topological space andA a subset ofX. The union
of all α-open (resp. semi-open, preopen, b-open, β-open) sets of X contained in
A is called the α-interior [13] (resp. semi-interior [7], preinterior [9], b-interior
[4], β-interior [2]) of A and is denoted by α Int(A) (resp. sInt(A), pInt(A),
bInt(A), β Int(A)).

Definition 2.5. A function f : (X, τ) → (Y, σ) is said to be semi-continu-
ous [10] (resp. precontinuous [12], α-continuous [13], b-continuous [8], β-
continuous [1]) at x ∈ X if for each open set V containing f(x), there exists a
semi-open (resp. preopen, α-open, b-open, β-open) set U of X containing x such
that f(U) ⊂ V. The function f is said to be semi-continuous (resp. precontinuous,
α-continuous, b-continuous, β-continuous) if it has this property at each point
x ∈ X.
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3. Minimal structures and m-continuity

Definition 3.1. Let X be a nonempty set and P(X) the power set of X. A sub-
family mX of P(X) is called a minimal structure (briey m-structure) on X [20],
[21] if ∅ ∈ mX and X ∈ mX.

By (X,mX), we denote a nonempty set X with an m-structure mX on X and
call it an m-space. Each member of mX is said to be mX-open (briey m-open)
and the complement of anmX-open set is said to bemX-closed (brieym-closed).

Remark 3.1. Let (X, τ) be a topological space. The families τ , α(X), SO(X),
PO(X), BO(X) and β(X) are all minimal structures on X.

Definition 3.2. Let X be a nonempty set and mX an m-structure on X. For a
subset A of X, the mX-closure of A and the mX-interior of A are dened in [11]
as follows:

(1) mCl(A) = ∩{F : A ⊂ F,X \ F ∈ mX},
(2) mInt(A) = ∪{U : U ⊂ A,U ∈ mX}.

Remark 3.2. Let (X, τ) be a topological space and A a subset of X. If mX = τ
(resp. SO(X), PO(X), α(X), BO(X), β(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), αCl(A), bCl(A), β Cl(A)),
(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), α Int(A), bInt(A),

β Int(A)).

Lemma 3.1 (Maki et al. [11]). Let X be a nonempty set and mX a minimal struc-
ture on X. For subsets A and B of X, the following properties hold:

(1) mCl(X \ A) = X \mInt(A) and mInt(X \ A) = X \mCl(A),
(2) If (X \ A) ∈ mX, then mCl(A) = A and if A ∈ mX,

then mInt(A) = A,
(3) mCl(∅) = ∅, mCl(X) = X, mInt(∅) = ∅ and mInt(X) = X,
(4) If A ⊂ B, then mCl(A) ⊂ mCl(B) and mInt(A) ⊂ mInt(B),
(5) A ⊂ mCl(A) and mInt(A) ⊂ A,
(6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

Lemma 3.2 (Popa and Noiri [20]). Let (X,mX) be an m-space and A a subset
of X. Then x ∈ mCl(A) if and only if U ∩ A ̸= ∅ for each U ∈ mX containing x.

Definition 3.3. A minimal structure mX on a nonempty set X is said to have
property B [11] if the union of any family of subsets belonging to mX belongs
to mX.
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Remark 3.3. If (X, τ) is a topological space, then SO(X),PO(X),α(X),BO(X)
and β(X) have property B.

Lemma 3.3 (Popa and Noiri [23]). Let X be a nonempty set and mX an m-
structure on X satisfying propertyB. For a subset A of X, the following properties
hold:

(1) A ∈ mX if and only if mInt(A) = A,
(2) A is mX-closed if and only if mCl(A) = A,
(3) mInt(A) ∈ mX and mCl(A) is mX-closed.

Definition 3.4. A function f : (X,mX) → (Y, σ) is said to be m-continuous at
x ∈ X [21] if for each open set V ∈ σ containing f(x), there exists U ∈ mX
containing x such that f(U) ⊂ V. The function f is said to be m-continuous if it
has this property at each x ∈ X.

Remark 3.4. Let (X, τ) be a topological space. If f : (X,mX) → (Y, σ) is m-
continuous and mX = SO(X) (resp. PO(X), α(X), BO(X) and β(X)), then we
obtain Denition 2.5.

Theorem 3.1 (Popa and Noiri [21]). For a function f : (X,mX) → (Y, σ), the
following properties are equivalent:

(1) f is m-continuous;
(2) f−1(V) = mInt(f−1(V)) for every open set V of Y;
(3) f−1(F) = mCl(f−1(F)) for every closed set F of Y;
(4) mCl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y;
(5) f(mCl(A)) ⊂ Cl(f(A)) for every subset A of X;
(6) f−1(Int(B)) ⊂ mInt(f−1(B)) for every subset B of Y.

Corollary 3.1 (Popa and Noiri [21]). For a function f : (X,mX) →
→ (Y, σ), where mX has property B, the following properties are equivalent:

(1) f is m-continuous;
(2) f−1(V) is mX-open in X for every open set V of Y;
(3) f−1(F) is mX-closed in X for every closed set F of Y.

For a function f : (X,mX) → (Y, σ), we dene Dm(f) as follows:
Dm(f) = {x ∈ X : f is not m-continuous at x}.

Theorem 3.2 (Popa and Noiri [22]). For a function f : (X,mX) → (Y, σ), the
following properties hold:

Dm(f) =
∪
G∈σ

{f−1(G)-mInt(f−1(G))} =
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=
∪

B∈P(Y)

{f−1(Int(B))-mInt(f−1(B))} =

=
∪

B∈P(Y)

{mCl(f−1(B))− f−1(Cl(B))} =

=
∪

A∈P(X)

{mCl(A)− f−1(Cl(f(A)))} =

=
∪
F∈F

{mCl(f−1(F))− f−1(F)},

where F is the family of closed sets of (Y, σ).

4. Iterate m-structures and iterate m-continuity

Definition 4.1. Let (X,mX) be an m-space. A subset A of X is said to be
(1) m-α-open [15] if A ⊂ mInt(mCl(mInt(A))),
(2) m-semi-open [14] if A ⊂ mCl(mInt(A)),
(3) m-preopen [17] if A ⊂ mInt(mCl(A)),
(4) m-β-open [5], [25] if A ⊂ mCl(mInt(mCl(A))),
(5) m-b-open if A ⊂ mInt(mCl(A)) ∪mCl(mInt(A)).

The family of all m-α-open (resp. m-semi-open, m-preopen, m-β-open, m-
b-open) sets in (X,mX) is denoted by mα(X) (resp.mSO(X),mPO(X), mβ(X),
mBO(X)).

Remark 4.1. Similar denitions of m-semi-open sets, m-preopen sets, m-α-
open sets, m-β-open sets are provided in [6], [24] and [25].

Let (X,mX) be an m-space. Then mα(X), mSO(X), mPO(X), mβ(X) and
mBO(X) are determined by iterating operators mInt and mCl. Hence, they are
called m-iterate structures and are denoted by mIT(X) (brieymIT).

Remark 4.2.
(1) It easily follows from Lemma 3.1(3)(4) thatmα(X),mSO(X),mPO(X),

mβ(X) and mBO(X) are minimal structures with property B. They are
also shown in Theorem 3.5 of [14], Theorem 3.4 of [17] and Theorem
3.4 of [15].

(2) Let (X,mX) be an m-space and mIT(X) an iterate structure on X. If
mIT(X) = mSO(X) (resp. mPO(X), mα(X), mβ(X), mBO(X)), then
we obtain the following denitions provided in [14] (resp. [17], [15],
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[18]): mITCl(A) = msCl(A) (resp. mpCl(A), mαCl(A), mβ Cl(A),
mbCl(A)); mIT Int(A) = msInt(A) (resp. mpInt(A), mα Int(A),
mβ Int(A),mbInt(A)).

Remark 4.3.
(1) By Lemmas 3.1 and 3.3, we obtain Theorems 3.7 and 3.8 of [17] and

Theroems 3.8 and 3.9 of [15].
(2) By Lemma 3.2, we obtain Lemma 3.9 of [17] and Theorem 3.10 of [15].

Definition 4.2. A function f : (X,mX) → (Y, σ) is said to be m-semi-
continuous [16] (resp. m-precontinuous [18]) at x ∈ X if for each open set V
containing f(x), there exists m-semi-open set (resp. m-preopen) set U of X con-
taining x such that f(U) ⊂ V. The function f is said to be m-semi-continuous
(resp. m-precontinuous) if it has this property at each x ∈ X.

Remark 4.4. By Denition 4.2 and Remark 4.2, it follows that a function
f : (X,mX) → (Y, σ) is m-semi-continuous (resp. m-precontinuous) if the
function f : (X,mSO(X)) → (Y, σ) (resp. f : (X,mPO(X)) → (Y, σ)) is m-
continuous.

Definition 4.3. A function f : (X,mX) → (Y, σ) is said to be mIT-continuous
at x ∈ X (on X) if f : (X,mIT(X)) → (Y, σ) is m-continuous at x ∈ X (on X).

Remark 4.5. Let (X,mX) be a minimal space. If mIT(X) = mSO(X)
(resp. mPO(X), mα(X), mβ(X), mBO(X)) and f : (X,mX) → (Y, σ) is mIT-
continuous, then f is m-semi-continuous [16] (resp. m-precontinuous [18]), m-
α-continuous, m-β-continuous, m-b-continuous).

Since mIT(X) has property B, by Theorems 3.1 and 3.2 and Corollary 3.1
we have the following theorems.

Theorem 4.1. For a function f : (X,mX) → (Y, σ), the following properties are
equivalent:

(1) f is mIT-continuous;
(2) f−1(V) is mIT-open for every open set V of Y;
(3) f−1(F) is mIT-closed for every closed set F of Y;
(4) mITCl(f−1(B)) ⊂ f−1(Cl(B)) for every subset B of Y;
(5) f(mITCl(A)) ⊂ Cl(f(A)) for every subset A of X;
(6) f−1(Int(B)) ⊂ mITInt(f−1(B)) for every subset B of Y.

Remark 4.6. If mIT(X) = mSO(X) (resp. mPO(X)), then by Theorem 4.1
we obtain Theorem 3.3 of [16] (resp. Theorem 3.3 of [18]).
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For a function f : (X,mX) → (Y, σ), we dene DmIT(f) as follows:
DmIT(f) = {x ∈ X : f is not mIT-continuous at x}.

Theorem 4.2. For a function f : (X,mX) → (Y, σ), the following properties
hold:

DmIT(f) =
∪
G∈σ

{f−1(G)-mITInt(f−1(G))} =

=
∪

B∈P(Y)

{f−1(Int(B))-mITInt(f−1(B))} =

=
∪

B∈P(Y)

{mITCl(f−1(B))− f−1(Cl(B))} =

=
∪

A∈P(X)

{mITCl(A)− f−1(Cl(f(A)))} =

=
∪
F∈F

{mITCl(f−1(F))− f−1(F)},

where F is the family of closed sets of (Y, σ).

5. Some properties of mIT-continuous functions

Since the study ofmIT-continuity is reduced from the study ofm-continuity,
the properties of mIT-continuous functions follow from the properties of m-
continuous functions in [21].

Definition 5.1. An m-space (X,mX) is said to be m-T2 [21] if for each distinct
points x, y ∈ X, there exist U,V ∈ mX containing x and y, respectively, such that
U ∩ V = ∅.

Definition 5.2. An m-space (X,mX) is said to be mIT -T2 if the m-space
(X,mIT(X)) is m-T2.

Hence, an m-space (X,mX) is mIT -T2 if for each distinct points x, y ∈ X,
there existU,V ∈ mIT(X) containing x and y, respectively, such thatU∩V = ∅.

Remark 5.1. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Denition 5.2 we obtain the denition of m-semi-T2 spaces
in [16] (resp. m-pre-T2-spaces in [18]).

Lemma 5.1 (Popa and Noiri [21]). If f : (X,mX) → (Y, σ) is an m-continuous
injection and (Y, σ) is a Hausdorff space, then (X,mX) is m-T2.
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Theorem 5.1. If f : (X,mX) → (Y, σ) is an mIT-continuous injection and
(Y, σ) is a Hausdorff space, then X is mIT-T2.

Proof. The proof follows from Denition 5.2 and Lemma 5.1.

Remark 5.2. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Theorem 5.1 we obtain Theorem 3.12 in [16] (resp. The-
orem 3.10 in [18]).

Definition 5.3. Anm-space (X,mX) is said to bem-compact [21] if every cover
of X by mX-open sets of X has a nite subcover.

A subset K of an m-space (X,mX) is said to be m-compact [21] if every
cover of K by mX-open sets of X has a nite subcover.

Definition 5.4. An m-space (X,mX) is said to bemIT-compact if the m-space
(X,mIT(X)) is m-compact.

A subset K of an m-space (X,mX) is said to bemIT-compact if every cover
of K by mIT-open sets of X has a nite subcover.

Remark 5.3. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Denition 5.4 we obtain the denition of m-semicompact
spaces in [16] (resp. m-precompact spaces in [18]).

Lemma 5.2 (Popa and Noiri [21]). Let f : (X,mX) → (Y, σ) be anm-continuous
function. If K is an m-compact set of X, then f(K) is compact.

Theorem 5.2. If f : (X,mX) → (Y, σ) is an mIT-continuous function and K is
an mIT-compact set of X, then f(K) is compact.

Proof. The proof follows from Denition 5.4 and Lemma 5.2.

Remark 5.4. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Theorem 5.2 we obtain Theorem 3.16 of [16] (resp. Theorem
3.13 in [18]).

Definition 5.5. A function f : (X,mX) → (Y, σ) is said to have a strongly m-
closed graph (resp. m-closed graph) [21] if for each (x, y) ∈ (X × Y) − G(f),
there exist U ∈ mX containing x and an open set V of Y containing y such that
[U× Cl(V)] ∩G(f) = ∅ (resp. [U× V] ∩G(f) = ∅).

Definition 5.6. A function f : (X,mX) → (Y, σ) is said to have a stronglymIT-
closed graph (resp. mIT-closed graph) if a function f : (X,mIT(X)) → (Y, σ)
has a strongly m-closed graph (resp. m-closed graph).
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Hence, a function f : (X,mX) → (Y, σ) has a strongly mIT-closed graph
(resp. mIT-closed graph) if for each (x, y) ∈ (X × Y) − G(f), there exist
U ∈ mIT(X) containing x and an open set V of Y containing y such that
[U× Cl(V)] ∩G(f) = ∅ (resp. [U× V] ∩G(f) = ∅).

Remark 5.5. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Denition 5.6 we obtain Denition 3.6 of [16] (resp. Deni-
tion 3.6 of [18]).

Lemma 5.3 (Popa and Noiri [21]). If f : (X,mX) → (Y, σ) is an m-continuous
function and (Y, σ) is a Hausdorff space, then f has a strongly m-closed graph.

Theorem 5.3. If f : (X,mX) → (Y, σ) is anmIT-continuous function and (Y, σ)
is a Hausdorff space, then f has a strongly mIT-closed graph.

Proof. The proof follows from Denition 5.6 and Lemma 5.3.

Remark 5.6. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Theorem 5.3 we obtain Theorem 3.8 of [16] (resp. Theorem
3.8 in [18]).

Lemma 5.4 (Popa and Noiri [21]). If f : (X,mX) → (Y, σ) is a surjective func-
tion with a strongly m-closed graph, then (Y, σ) is Hausdorff.

Theorem 5.4. If f : (X,mX) → (Y, σ) is a surjective function with a strongly
mIT-closed graph, then (Y, σ) is Hausdorff.

Proof. The proof follows from Denition 5.6 and Lemma 5.4.

Remark 5.7. Let (X,mX) be an m-space. If mIT(X) = mSO(X), then by The-
orem 5.4 we obtain Theorem 3.10 of [16].

Lemma 5.5 (Popa and Noiri [21]). Let (X,mX) be anm-space andmX have prop-
erty B. If f : (X,mX) → (Y, σ) is an injective m-continuous function with an
m-closed graph, then X is m-T2.

Theorem 5.5. If f : (X,mX) → (Y, σ) is an injective mIT-continuous function
with an mIT-closed graph, then X is mIT-T2.

Proof. The proof follows from Denition 5.6 and Lemma 5.5.

Remark 5.8. Let (X,mX) be an m-space. If mIT(X) = mSO(X) (resp.
mPO(X)), then by Theorem 5.5 we obtain Theorem 3.13 of [16] (resp. Theorem
3.11 in [18]).
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Definition 5.7. Anm-space (X,mX) is said to bem-connected [21] if X cannot
be written as the union of two nonempty sets of mX.

Definition 5.8. Anm-space (X,mX) is said to bemIT-connected if anm-space
(X,mIT(X)) is m-connected.

Hence, an m-space (X,mIT(X)) is m-connected if X cannot be written as
the union of two nonempty sets ofmIT(X).

Lemma 5.6. Let f : (X,mX) → (Y, σ) be a function, where mX has property B.
If f is an m-continuous surjection and (X,mX) is m-connected, then (Y, σ) is
connected.

Theorem 5.6. Let f : (X,mX) → (Y, σ) be a function. If f is anmIT-continuous
surjection and (X,mX) is mIT-connected, then (Y, σ) is connected.

Proof. The proof follows from Denition 5.8, Lemma 5.6 and the fact that
mIT(X) has property B.

6. mIT-open sets for mX = SO(X), PO(X)

Let (X, τ) be a topological space. Among generalized open sets in Denition
2.1, the following implications are well-known:

DIAGRAM I
open ⇒ α-open ⇒ semi-open

⇓ ⇓
preopen ⇒ b-open ⇒ β-open

Let (X,mX) be an m-space. Similarly, among mIT-open sets in Denition
4.1, the following implications hold:

DIAGRAM II
m-open ⇒ m-α-open ⇒ m-semi-open

⇓ ⇓
m-preopen ⇒ m-b-open ⇒ m-β-open

In this section, we investigate the properties of inverse implications in Dia-
gram II for mX = SO(X), PO(X).

Lemma 6.1 (Andrijević [3], [4]). For a subset A of a topological space (X, τ),
the following properties hold:

(1) sInt(A) = A ∩Cl(Int(A)), pInt(A) = A ∩ Int(Cl(A)) (Theorem 1.5 of
[3]),
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(2) sInt(sCl(A)) = sCl(A) ∩ Cl(Int(Cl(A))) (Theorem 3.1 of [3]),
(3) sCl(sInt(sCl(A))) = sInt(sCl(A)) (Corollary 3.2 of [3]),
(4) pCl(pInt(pCl(A))) = pCl(pInt(A)) (Corollary 3.8 of [3]),
(5) A is b-open if and only if A ⊂ pCl(pInt(A)) (Proposition 2.1 of [4]).

Theorem 6.1. Let (X, τ) be a topological space and mX = SO(X). Then the
following properties hold:

(1) m-open ⇔ m-α-open ⇔ m-semi-open,
(2) m-preopen ⇔ m-b-open ⇔ m-β-open,
(3) m-preopen ⇔ β-open.

Proof.

(1) Let A be an m-semi-open set. Then, by Lemma 6.1(1), we have A ⊂
⊂ mCl(mInt(A)) = sCl(sInt(A)) ⊂ Cl(sInt(A)) = Cl(A ∩
∩Cl(Int(A))) ⊂ Cl(Int(A)). Therefore, A is semi-open, that is,m-open.

(2) Let A be an m-β-open set. Then, by Lemma 6.1(3), we have A ⊂
⊂ mCl(mInt(mCl(A))) = sCl(sInt(sCl(A))) = sInt(sCl(A))) =
= mInt(mCl(A))). Therefore, A is m-preopen.

(3) Let A be an m-preopen set. Then, by Lemma 6.1(2), we have A ⊂
⊂ mInt(mCl(A)) = sInt(sCl(A)) = sCl(A) ∩ Cl(Int(Cl(A))) ⊂
⊂ Cl(Int(Cl(A))). Therefore, A is β-open.

Conversely, let A be a β-open set. Then, A ⊂ Cl(Int(Cl(A))) and hence
A ⊂ sCl(A) ∩ Cl(Int(Cl(A))) = sInt(sCl(A)) = mInt(mCl(A)).

Therefore, A is m-preopen.

Corollary 6.1. Let (X, τ) be a topological space and mX = SO(X). Then, a
function f : (X, τ) → (Y, σ) is semi-continuous if and only if f : (X,mX) →
(Y, σ) is m-semi-continuous.

Proof. This is an immediate consequence of Theorem 6.1.

Theorem 6.2. Let (X, τ) be a topological space and mX = PO(X). Then the
following properties hold:

(1) m-open ⇔ m-α-open ⇔ m-preopen,
(2) m-semi-open ⇔ m-b-open ⇔ m-β-open,
(3) m-semi-open ⇔ b-open.
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Proof.

(1) Let A be an m-preopen set. Then, by Lemma 6.1(1), we have A ⊂
⊂ mInt(mCl(A)) = pInt(pCl(A)) ⊂ pInt(Cl(A)) = Cl(A) ∩
∩ Int(Cl(Cl(A))) = Int(Cl(A)). Therefore, A is preopen, that is, m-
open.

(2) Let A be an m-β-open set. Then, by Lemma 6.1(4), we have A ⊂
⊂ mCl(mInt(mCl(A))) = pCl(pInt(pCl(A))) = pCl(pInt(A)) =
= mCl(mInt(A))). Therefore, A is m-semi-open.

(3) By Lemma 6.1(5), the following properties are equivalent:
(a) A is m-semi-open,
(b) A ⊂ mCl(mInt(A)) = pCl(pInt(A)),
(c) A is b-open.

Corollary 6.2. Let (X, τ) be a topological space and mX = PO(X). Then,
a function f : (X, τ) → (Y, σ) is precontinuous if and only if f : (X,mX) →
→ (Y, σ) is m-precontinuous.

Proof. This is an immediate consequence of Theorem 6.2.
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Abstract. The subject is the overview of the use of quasi-entropy in nite dimen-
sional spaces. Matrix monotone functions and relative modular operators are used. The
origin is the relative entropy and the f-divergence, monotone metrics, covariance and
the χ2-divergence are the most important particular cases.

Quasi-entropy was introduced by Petz in 1985 as the quantum generaliza-
tion of Csiszár's f-divergence in the setting of matrices or von Neumann alge-
bras. The important special case was the relative entropy of Umegaki and Araki.
In this paper the applications are overviewed in the nite dimensional setting.
Quasi-entropy has some similarity to the monotone metrics, in both cases the
modular operator is included, but there is an essential difference: In the quasi-
entropy two density matrices are included and for the monotone metric on foot-
point density matrices. In this paper two density matrices are introduced in the
monotone metric style.

1. The concept of quasi-entropy

LetM denote the algebra of n× n matrices with complex entries. For pos-
itive denite matrices ρ1, ρ2 ∈ M, for A ∈ M and a function f : R+ → R, the

0* Partially supported by the Mittag-Lefer Institute in Stockholm.
AMS Subject Classication (2000): 81P45; 54C70
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quasi-entropy is dened as

(1) SAf (ρ1∥ρ2) := ⟨Aρ1/22 , f(∆(ρ1/ρ2))(Aρ
1/2
2 )⟩

= Tr ρ
1/2
2 (A∗f(∆(ρ1/ρ2))Aρ

1/2
2 ),

where ⟨B,C⟩ := TrB∗C is the so-called Hilbert-Schmidt inner product and
∆(ρ1/ρ2) : M → M is a linear mapping acting on matrices:

∆(ρ1/ρ2)B = ρ1Bρ−1
2 .

This concept was introduced by Petz in 1985, see [19, 20], or Chapter 7 in [18].
(The relative modular operator ∆(ρ1/ρ2) was born in the context of von Neu-
mann algebras and the paper of Araki [1] had a big inuence even in the matrix
case.) The quasi-entropy is the quantum generalization of the f-divergence of
Csiszár used in classical information theory (and statistics) [2, 16]. Therefore
the quantum f-divergence could be another terminology as in [10].

The denition of quasi-entropy can be formulated with mean. For a function
f the corresponding mean is dened as mf(x, y) = f(x/y)y for positive numbers,
or for commuting positive denite matrices. The linear mappings

Lρ1X = ρ1X and Rρ2X = Xρ2
are positive and commuting. The mean mf makes sense and

(2) SAf (ρ1∥ρ2) = ⟨A,mf(Lρ1 ,Rρ2)A⟩.

Let α : M0 → M be a mapping between two matrix algebras. The dual
α∗ : M → M0 with respect to the Hilbert-Schmidt inner product is positive if
and only if α is positive. Moreover, α is unital if and only if α∗ is trace preserv-
ing. α : M0 → M is called a Schwarz mapping if

(3) α(B∗B) ≥ α(B∗)α(B)

for every B ∈ M0.
The quasi-entropies are monotone and jointly convex [18, 20].

Theorem 1. Assume that f : R+ → R is an operator monotone function with
f(0) ≥ 0 and α : M0 → M is a unital Schwarz mapping. Then

(4) SAf (α
∗(ρ1)∥α∗(ρ2)) ≥ Sα(A)f (ρ1∥ρ2)

holds for A ∈ M0 and for invertible density matrices ρ1 and ρ2 from the matrix
algebra M.

Proof. The proof is based on inequalities for operator monotone and operator
concave functions. First note that

SAf+c(α
∗(ρ1)∥α∗(ρ2)) = SAf (α

∗(ρ1)∥α∗(ρ2)) + c Tr ρ1α(A∗A))
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and
Sα(A)f+c (ρ1∥ρ2) = Sα(A)f (ρ1∥ρ2) + c Tr ρ1(α(A)∗α(A))

for a positive constant c. Due to the Schwarz inequality (3), we may assume that
f(0) = 0.

Let∆ := ∆(ρ1/ρ2) and ∆0 := ∆(α∗(ρ1)/α
∗(ρ2)). The operator

(5) VXα∗(ρ2)
1/2 = α(X)ρ1/22 (X ∈ M0)

is a contraction:

∥α(X)ρ1/22 ∥2 = Tr ρ2(α(X)∗α(X))

≤ Tr ρ2(α(X∗X) = Trα∗(ρ2)X∗X = ∥Xα∗(ρ2)
1/2∥2

since the Schwarz inequality is applicable to α. A similar simple computation
gives that

(6) V∗∆V ≤ ∆0 .

Since f is operator monotone, we have f(∆0) ≥ f(V∗∆V). Recall that f is
operator concave, therefore f(V∗∆V) ≥ V∗f(∆)V and we conclude

(7) f(∆0) ≥ V∗f(∆)V .

Application to the vector Aα∗(ρ2)
1/2 gives the statement.

It is remarkable that for a multiplicative α we do not need the condition
f(0) ≥ 0.Moreover,V∗∆V = ∆0 andwe do not need thematrixmonotonicity of
the function f. In this case the only condition is thematrix concavity, analogously
to Theorem 1. If we apply the monotonicity (4) to the embedding α(X) = X⊕X
of M into M ⊕ M and to the densities ρ1 = λE1 ⊕ (1 − λ)F1, ρ2 = λE2 ⊕
(1− λ)F2, then we obtain the joint concavity of the quasi-entropy:

Theorem 2. If f : R+ → R is an operator convex, then SAf (ρ1∥ρ2) is jointly
convex in the variables ρ1 and ρ2.

If we consider the quasi-entropy in the terminology of means, then we can
have another proof. The joint convexity of the mean is the inequality

f(L(A1+A2)/2R
−1
(B1+B2)/2)R(B1+B2)/2 ≤

1
2f(LA1R

−1
B1 )RB1 +

1
2f(LA2R

−1
B2 )RB2

which can be simplied as

f(LA1+A2R
−1
B1+B2)

≤ R−1/2
B1+B2R

1/2
B1 f(LA1R

−1
B1 )R

1/2
B1 R

−1/2
B1+B2 + R−1/2

B1+B2R
1/2
B2 f(LA2R

−1
B2 )R

1/2
B2 R

−1/2
B1+B2

≤ Cf(LA1R
−1
B1 )C

∗ + Df(LA2R
−1
B2 )D

∗.
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Here CC∗ + DD∗ = I and
C(LA1R

−1
B1 )C

∗ + D(LA2R
−1
B2 )D

∗ = LA1+A2R
−1
B1+B2 .

So the joint convexity of the quasi-entropy has the form
f(CXC∗ + DYD∗) ≤ Cf(X)C∗ + Df(Y)D∗

which is true for an operator convex function f [5, 24].
If f is operator monotone function, then it is operator concave and we have

joint concavity in the previous theorem. The book [24] contains information
about operator monotone functions. The standard useful properties are integral
representations. The Löwner theorem is

f(x) = f(0) + βx+
∫ ∞

0

λx
λ+ x

dµ(λ) .

An operator monotone function f : R+ → R+ will be called standard if
xf(x−1) = f(x) and f(1) = 1. A standard function f admits a canonical repre-
sentation

(8) f(t) =
1+ t
2

exp

∫ 1

0
(1− t)2

λ2 − 1
(λ+ t)(1+ λt)(λ+ 1)2

h(λ) dλ,

where h : [0, 1] → [0, 1] is a measurable function [6].
The concept of quasi-entropy includes many important special cases.

2. f-divergences

If ρ2 and ρ1 are different and A = I, then we have a kind of relative
entropy. For f(x) = x log x we have Umegaki's relative entropy S(ρ1∥ρ2) =
Tr ρ1(log ρ1−log ρ2). (If we want a matrix monotone function, then we can take
f(x) = log x and then we get S(ρ2∥ρ1).) Umegaki's relative entropy is the most
important example, therefore the function f will be chosen to be matrix convex.
This makes the probabilistic and non-commutative situation compatible as one
can see in the next argument.

Let ρ1 and ρ2 be densitymatrices inM. If in certain basis they have diagonal
p = (p1.p2, . . . , pn) and q = (q1, q2, . . . , qn), then the monotonicity theorem
gives the inequality
(9) Df(p∥q) ≤ Sf(ρ1∥ρ2)
for a matrix convex function f. If ρ1 and ρ2 commute, them we can take the
common eigenbasis and in (9) the equality appears. It is not trivial that otherwise
the inequality is strict.
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If ρ1 and ρ2 are different, then there is a choice for p and q such that they
are different as well. Then

0 < Df(p∥q) ≤ Sf(ρ1∥ρ2).

Conversely, if Sf(ρ1∥ρ2) = 0, then p = q for every basis and this implies
ρ1 = ρ2. For the relative entropy, a deeper result is known. The Pinsker-Csiszár
inequality says that

(10) ∥p− q∥21 ≤ 2D(p∥q).

This extends to the quantum case as

(11) ∥ρ1 − ρ2∥21 ≤ 2S(ρ1∥ρ2),

see [8], or [24, Chap. 3].

Example 1. The f-divergence with f(x) = x log x is the relative entropy. It is
rather popular the modication of the logarithm as

logβ x =
xβ − 1

β
(β ∈ (0, 1))

and the limit β → 0 is the log. If we take fβ(x) = x logβ x, then

Sβ(ρ1∥ρ2) =
Tr ρ1+β

1 ρ−β
2 − 1

β
.

Since fβ is operator convex, this is a good generalized entropy. It appeared in
the paper [28], see also [18, Chap. 3], there γ is written instead of β and

S(ρ1∥ρ2) ≤ Sβ(ρ1∥ρ2) (β ∈ (0, 1))

is proven.
The relative entropies of degree α

Sα(ρ2∥ρ1) :=
1

α(1− α)
Tr(I− ρα1 ρ

−α
2 )ρ2.

are essentially the same.
The f-divergence is contained in details in the recent papers [26, 10].
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3. WYD information

In the paper [12] the functions

gp(x) =


1

p(1−p)(x− xp) if p ̸= 1,

x log x if p = 1

are used, this is a small reparametrization of Example 1. (Note that gp is well-
dened for x > 0 and p ̸= 0.) The considered case is p ∈ [1/2, 2], then gp is
operator concave.

For strictly positive A and B, Jenčová and Ruskai dene

Jp(K,A,B) = Tr
√
BK∗ gp

(
LAR−1

B
)
(K

√
B)

which is the particular case of the quasi-entropy SKf (A∥B) with f = gp.
The joint concavity of Jp(K,A,B) is stated in Theorem 2 in [12] and this is

a particular case of Theorem 2 above. For K = K∗, we have

Jp(K,A,A) = − 1
2p(1− p)

Tr[K,Ap][K,A1−p]

which is the Wigner-Yanase-Dyson information (up to a constant) and extends
it to the range (0, 2].

4. Monotone metrics

Let Mn be the set of positive denite density matrices in Mn. This is a
manifold and the set of tangent vectors is {A = A∗ ∈ Mn : TrA = 0}. A
Riemannian geometry is a set of real inner products γD(A,B) on the tangent
vectors [17]. By monotone metrics we mean inner product for all matrix spaces
such that

(12) γβ(D)(β(A), β(A)) ≤ γD(A,A)
for every completely positive trace preserving mapping β : Mn → Mm.

Dene JfD : Mn → Mn as

(13) JfD = f(LDR−1
D )RD = LDmfRD ,

where f : R+ → R+ and mf is the mean induced by the function f.
It was obtained in the paper [22] that monotone metrics with the property

(14) γD(A,A) = TrD−1A2 if AD = DA
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has the form

(15) γD(A,B) = TrA(JfD)
−1(B)

where f is a standard matrix monotone function. These monotone metrics are
abstract Fisher informations, the condition (14) tells that in the commutative
case the classical Fisher information is required. The popular case in physics
corresponds to f(x) = (1+ x)/2, this gives the SSA Fisher information.

Since

TrA(JfD)
−1(B) = ⟨(AD−1)D1/2,

1
f
(∆(D/D))(AD−1)D1/2⟩,

we have
γD(A,A) = SAD

−1

1/f (D∥D).
So the monotone metric is a particular case of the quasi-entropy, but there is
another relation. The next example has been well-known.

Example 2. The Boguliubov-Kubo-Mori Fisher information is induced by the
function

f(x) =
x− 1
log x

=

∫ 1

0
xt dt.

Then

JfDA =

∫ 1

0
(LDR−1

D )tRDAdt =
∫ 1

0
DtAD1−t dt

and computing the inverse we have

γBKMD (A,A) =
∫ ∞

0
Tr(D+ tI)−1A(D+ tI)−1Adt.

A characterization is in the paper [4] and the relation with the relative entropy is

γBKMD (A,B) =
∂2

∂t∂s
S(D+ tA∥D+ sB).

Ruskai and Lesniewski discovered that all monotone Fisher informations
are obtained from an f-divergence by derivation [14]:

γ
f
D(A,B) =

∂2

∂t∂s
SF(D+ tA∥D+ sB)

The relation of the function F to the function f in this formula is

(16)
1
f(t)

=
F(t) + tF(t−1)

(t− 1)2
.
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IfD runs on all positive denite matrices, conditions γD(A,A) ∈ R for self-
adjoint A and (14) are not required, but the monotonicity (12) is assumed, then
we have the generalized monotone metric characterized by Kumagai [13]. They
have the form

Kρ(A,B) = b(Tr ρ)TrA∗TrB+ c⟨A, (Jfρ)−1(B)⟩,

where f : R+ → R+ is matrix monotone, f(1) = 1, b : R+ → R+ and c > 0.
Let β : Mn ⊗M2 → Mm be dened as[

B11 B12
B21 B22

]
7→ B11 + B22.

This is completely positive and trace-preserving, it is a so-called partial trace.
For

D =

[
λD1 0
0 (1− λ)D2

]
, A =

[
λB 0
0 (1− λ)B

]
the inequality (12) gives

γλD1+(1−λ)D2(B,B) ≤ γλD1(λB, λB) + γ(1−λ)D2((1− λ)B, (1− λ)B).

Since γtD(tA, tB) = tγD(A,B), we obtained the convexity.

Theorem 3. For a standard matrix monotone function f and for a self-adjoint
matrix A the monotone metric γfD(A,A) is a convex function of D.

This convexity relation can be reformulated from formula (15). We have the
convexity of the operator (JfD)−1 in the positive denite D.

5. Generalized covariance

If ρ2 = ρ1 = ρ and A,B ∈ M are arbitrary, then one can approach to the
generalized covariance [23].

(17) qCovfρ(A,B) := ⟨Aρ1/2, f(∆(ρ/ρ))(Bρ1/2)⟩ − (Tr ρA∗)(Tr ρB).

is a generalized covariance. The rst term is ⟨A, JfρB⟩ and the covariance has
some similarity to the monotone metrics.

If ρ,A and B commute, then this becomes f(1)Tr ρA∗B− (Tr ρA∗)(Tr ρB).
This shows that the normalization f(1) = 1 is natural. The generalized covari-
ance qCovfρ(A,B) is a sesquilinear form and it is determined by qCovfρ(A,A)
when {A ∈ M : Tr ρA = 0}. Formally, this is a quasi-entropy and Theo-
rem 1 applies if f is matrix monotone. If we require the symmetry condition
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qCovfρ(A,A) = qCovfρ(A∗,A∗), then f should have the symmetry xf(x−1) =
f(x).

Assume that Tr ρA = Tr ρB = 0 and ρ = Diag(λ1, λ2, . . . , λn). Then

(18) qCovfρ(A,B) =
∑
ij

λif(λj/λi)A∗
ijBij.

The usual symmetrized covariance corresponds to the function f(t) =
= (t+ 1)/2:

Covρ(A,B) :=
1
2
Tr(ρ(A∗B+ BA∗))− (Tr ρA∗)(Tr ρB).

The interpretation of the covariances is not at all clear. In the next section
they will be called quadratic cost functions. It turns out that there is a one-to-one
correspondence between quadratic cost functions and Fisher informations.

Theorem 4. For a standard matrix monotone function f the covariance
qCovfρ(A,A) is a concave function of ρ for a self-adjoint A.

Proof. The argument similar to the proof of Theorem 3. Instead of the inequal-
ity β∗(Jfβ(D))

−1β ≤ (JfD)−1 we use the inequality βJfDβ∗ ≤ Jfβ(D) (see Theo-
rem 1.2 in [27] or [23]). This gives the concavity of ⟨A, Jfρa⟩. The convexity of
(Tr ρA)2 is obvious.

6. χ2-divergence

The χ2-divergence

χ2(p, q) =
∑
i

(pi − qi)2

qi
=
∑
i

(
pi
qi

− 1
)2

qi

was rst introduced by Karl Pearson in 1900. Since(∑
i
|pi − qi|

)2

=

(∑
i

∣∣∣∣piqi − 1
∣∣∣∣ qi
)2

≤
∑
i

(
pi
qi

− 1
)2

qi,

we have

(19) ∥p− q∥21 ≤ χ2(p, q).
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We also remark that the χ2-divergence is an f-divergence of Csiszár with
f(x) = (x− 1)2 which is a (matrix) convex function. In the quantum case de-
nition (1) gives

Sf(ρ, σ) = Tr ρ2σ−1 − 1.

Another quantum generalization was introduced very recently in [29]:

χ2
α(ρ, σ) = Tr

(
ρ− σ)σ−α(ρ− σ)σα−1) = Tr ρσ−αρσα−1 − 1

where α ∈ [0, 1]. If ρ and σ commute, then this formula is independent of α.
In the general case the above Sf(ρ, σ) comes for α = 0.

More generally, they dened

χ2
k(ρ, σ) :=

⟨
ρ− σ,Ωk

σ(ρ− σ)
⟩
,

where Ωk
σ = R−1

σ k(∆(σ/σ)) and 1/k is a standard matrix monotone function.
In the present notation Ωk

σ = (J1/kσ )−1 and for density matrices we have

χ2
k(ρ, σ) = ⟨ρ,Ωk

σρ⟩ − 1 = ⟨ρ, (J1/kσ )−1ρ⟩ − 1 = γ1/kσ (ρ, ρ)− 1.

Up to the additive constant this is a monotone metric. The monotonicity of the
χ2-divergence follows from (12) and monotonicity is stated as Theorem 4 in the
paper [29], where the important function k is

kα(x) =
1
2
(
x−α + xα−1) and χ2

kα = χ2
α.

1/kα is a standard matrix monotone function for α ∈ [0, 1] and kα(x) is convex
in the variableα. The latter implies thatχ2

α is convex inα. Theχ2-divergenceχ2
α

is minimal if α = 1/2. (It is interesting that this appeared in [27] as Example 4.)
When 1/k(x) = (1+x)/2 is the largest standard matrix monotone function,

then the corresponding χ2-divergence is the smallest and in the paper [29] the
notation χ2

Bures(ρ, σ) is used. Actually,

χ2
Bures(ρ, σ) = 2

∫ ∞

0
Tr ρ exp(−tω)ρ exp(−tω) dt− 1,

see Example 1 in [27].
The monotonicity and the classical inequality (19) imply

∥ρ− σ∥21 ≤ χ2(ρ, σ)

(when the conditional expectation onto the commutative algebra generated by
ρ− σ is used).
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1. Introduction

By combining the methods of time series analysis and extreme value theory
I investigate probabilistic properties, extremal behaviour and parameter estima-
tion of certain nonlinear time series models in this dissertation. My theoretical
contributions were initially motivated by an applied hydrological project that
– somewhat unusually in the hydrological literature – aimed to build models
to capture both the times series dynamics and the extremal behaviour of water
discharge data sets of Danube and Tisza. The coupling of the two theories may
lead to a more precise description of time series extremes than their separate
application would do. Purely time series models concentrate on the "typical" be-
haviour of the series and thus give too little weight to large observations, while
purely extreme value models tend to neglect the information in the dynamics of
the process, or make too general assumptions on it. The two methodologies are
combined quite often in mathematical nance, actuarial studies, telecommuni-
cations but less usually in hydrological models.

The thesis summary follows the structure of the dissertation. I review the
necessary preliminaries in section 2 and present my empirical ndings on the
properties of water discharge series in section 3. I givemy theoretical and applied
results on conditionally heteroscedastic models in section 4 and on Markov-
switching models in section 5. Finally, section 6 reveals the relationship between
the two model families and outlines directions of future research.

The results of section 4 are joint work with László Márkus, while those of
section 5 are joint work with my supervisor András Zempléni.
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2. Preliminaries

Although the dissertation uses preliminaries from both time series analysis
and extreme value theory (EVT), I only review the basic concepts and scope
of the latter eld in the thesis summary. Time series analysis is a much more
traditional research area hence its classical results can be found in numerous
monographs.

Basically, EVT deals with two types of research problems.1 First, the tail of
a distribution (i.e. the rate of decay of the F̄ (u) = 1−F (u) survival function as
u → ∞) can be examined, and second, the clustering of high observations in a
stationary series (i.e. to what extent they form groups) can also be analysed.

As far as the tail of a distribution is concerned, the theorem of Balkema-de
Haan-Pickands is a basic result in EVT (Balkema and de Haan, 1974; Pickands,
1975). For any random variable X satisfying some general conditions there ex-
ists a measurable function a(u) such that the distribution of normalised threshold
exceedances tends to the generalised Pareto distribution (GPD) with shape pa-
rameter ξ as u tends to the upper end point of the support of the distribution:

((X− u) /a (u)) | (X > u) → dGPDξ.

The shape parameter of the GPD obtained in the limit greatly determines
the extremal properties of the original distribution as well. If ξ > 0 the survival
function is regularly varying with parameter 1/ξ (it follows that E

(
X+
)m

= ∞
for m > 1/ξ values),2 while for ξ < 0 the support of the distribution is bounded
from above and the survival function (after a simple transformation) is regularly
varying around the upper end point. The ξ = 0 case – when the obtained GPD
is the exponential distribution – can be characterised with more difculty. Al-
though the distributions in this group share the common feature that all of their
moments are nite one can nd heavy and and also light tailed distributions
among them.3 The exponential and the normal laws are examples for the light-
tailed case, while the Weibull distribution with exponent smaller than one for
the heavy-tailed case.4

1The book of Embrechts et al. (1997) is a basic monograph of EVT.
2The notations x+ = max (x, 0) and x− = max (−x, 0) are used.
3A distribution is light-tailed if there exists an s > 0 such that the LX (s) = E exp (sX)moment

generating function is nite. If such an s does not exist the distribution is heavy-tailed.
4According to the terminology of the dissertation the survival function of the Weibull distri-

bution is F̄ (u) = exp
(
−λud

)
where d is the exponent parameter. A distribution has Weibull-like

tail if there exist K1 > 0, K2, λ > 0 and d > 0 constants such that F̄ (u) ∼ K1uK2 exp
(
−λud

)
as

u → ∞.
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During the commonly used threshold-based estimation method high quan-
tiles of a distribution are estimated from the parameters of a GPD tted to ex-
ceedances above a high threshold. This is an appropriate procedure in the ab-
sence of other information but leads to highly variable or (if a relatively low
reference threshold was chosen) biased quantile estimates. If additional infor-
mation is available on the distribution (e.g. if we not only know that it belongs
to the domain of attraction of the GPD with ξ = 0 but know its decay more
accurately) then we can obtain more precise quantile estimates. Besides theoret-
ical interest, this gives the motivation to study the rate of decay of the stationary
distribution of certain theoretical time series models – a research area that has
reached deep results e.g. in mathematical nance.

Turning to the other direction of EVT, clustering of large observations in a
time series means more precisely the following. Let us examine a Cn extremal
functional of a stationary process Xt :

Cn(u) =
n−m+1∑
t=1

g (Xt − u, . . . ,Xt+m−1 − u) ,

where g is a Rm → R+ function satisfying g(x) = 0 for all x /∈ Rm
+. Let

us choose the {un} sequence such that limn→∞ nF̄ (un) → τ > 0. Then under
general conditions the distribution ofCn(un) tends to the distribution ofC∗

1+C∗
2+

+ · · ·+C∗
L, where L is a Poisson-distributed random variable and C∗

1, C∗
2, . . . are

i.i.d. variables, independent of L as well (Smith et al., 1997). Heuristically this
means that large observations in a stationary time series occur in clusters, and
these clusters are asymptotically independent of each other. Thus the distribu-
tion of C∗

i contains essential information about the time-dependence of extreme
observations of the process. For instance, if m = 1 and g(x) = χ{x>0} then C∗

i
corresponds to the size of an extremal cluster in the limit (e.g. to the duration of
a large ood in the hydrological context) and if m = 1 and g(x) = x+ then the
aggregate excess during an extreme event (e.g. the ood volume in hydrology)
is obtained. In this case C∗ will be denoted byW∗.

The simplest measure of extremal dependence is the extremal index (θ),
which is obtained – under some assumptions – from the relationship E (L) = θτ

or as the reciprocal of the expectation of the limiting cluster size: θ = E (C∗
i )

−1 if
g(x) = χ{x>0}. Apart from pathological cases 0 < θ ≤ 1 and a smaller extremal
index implies a stronger extremal dependence.

Since the extremal index and the other characteristics of extremal depen-
dence are asymptotic concepts they can be estimated from nite samples (simi-
larly to high quantiles) only with large uncertainty. Things are made even more
complicated because – contrary to the GPD in the estimation of high quantiles



96 PÉTER ELEK

– the limiting cluster size and limiting aggregate excess distributions generally
cannot be described with parametric families. The problem is often tackled by
restricting the set of examinedmodels, deriving theoretical extremal dependence
properties for the special models and then developing methods for estimating
cluster characteristics based on these results. If model specication is correct
these procedures are more accurate than the methods applicable for more general
series as well.

A good example for this research direction is the analysis of extremal de-
pendence of Markov chains. Under general conditions Smith et al. (1997) have
shown that a Markov chain with exponential tail behaves asymptotically (above
high thresholds) as a random walk. Based on this result, an estimation and sim-
ulation method has been developed for the analysis of the extremal clusters of
Markov chains.

3. Empirical features of water discharge data

In the dissertation I use daily water discharge data of three monitoring sta-
tions at river Danube (Komárom, Nagymaros, Budapest) and three at river Tisza
(Tivadar, Vásárosnamény, Záhony). My rst results concern the empirical prop-
erties of the series. First I t ARMA models with seasonal components to the
data and then generate synthetic water discharge series with the tted models.
Following the hydrological literature (e.g. Montanari et al., 1997), the ARMA
innovations are not obtained from a parametric distribution but by the bootstrap
method, i.e. by resampling the tted innovations. My results show that the simu-
lated processes substantially underestimate the high quantiles and do not repro-
duce the probability density of the observed data.

Since various heuristic estimators (correlogramm-based procedure, R/S
statistic etc.) point to the presence of long memory I also estimate a fractional
ARIMA model on the data. However, the t of the high quantiles and the prob-
ability density improve only marginally. Hence, contrary to other rivers (e.g.
Montanari et al., 1997), linear models do not describe accurately the behaviour
of daily river ows of Danube and Tisza, which makes nonlinear modelling nec-
essary.

I also show in the chapter that – similarly to other rivers with medium or
large catchments – the data sets for Danube and Tisza tend to belong to the do-
main of attraction of the GPD with ξ = 0 (the ξ = 0 hypothesis cannot be
rejected for most monitoring stations and thresholds). The extremal index esti-
mates reveal that observations above high thresholds are strongly clustering over
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time. These empirical results steer the modeler in the choice among the various
possible nonlinear model families.

4. Conditionally heteroscedastic models

First I examine ARMA-β-TARCH models in the dissertation from a theo-
retical point of view:

Xt = c+
p∑

i=1

ai(Xt−i − c) +
q∑

i=1

biεt−i(1)

εt = σ(Xt−1)Zt,(2)

σ2 (x) = α0 + α1+
(
(x− m)+

)2β
+ α1−

(
(x− m)−

)2β
,(3)

where I make the following assumptions:

Assumption 4.1. Zt is an independent identically distributed random sequence
with zero mean and unit variance. The distribution of Zt is absolutely continuous
with respect to the Lebesgue-measure, and its support is the whole real line.

Assumption 4.2. For the characteristic polynomials

Φ(z) = 1−
p∑

i=1

aizi ̸= 0 and Ψ(z) = 1+
q∑

i=1

bizi ̸= 0 if |z| ≤ 1,

and Φ(z) and Ψ(z) have no common zeros.

Assumption 4.3. 0 < β < 1.

Assumption 4.4. α0 > 0, α1+ ≥ 0 and α1− ≥ 0.
Thus, in contrast to the usual (T)ARCH-type processes, the variance of the

εt innovation depends on Xt−1 and not on εt−1, and the function describing this
relationship tends to innity in a slower than quadratic rate (since β < 1).

If β = 1 the model given by (1)–(3) does not have a stationary solution for
every α1+ ≥ 0 and α1− ≥ 0, and the domain of stationarity depends not only
on the variance parameters but on the coefcients of the ARMA equation, too.
If the stationary solution exists its survival function is polynomially decaying
even for light-tailed (e.g. normally distributed) Zt noises, hence the distribution
belongs to the domain of attraction of a GPD with ξ > 0 (see e.g. Embrechts et
al. (1997) in a special case).
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Using the drift condition for the stability of Markov chains (Meyn and
Tweedie, 1993) I prove that the 0 < β < 1 case is substantially different from
the quadratic case:5

Theorem 1. If Assumptions 4.1–4.4 hold the Xt process defined by (1)–(3) is
geometrically ergodic and has a unique stationary distribution. If, moreover,
E(|Zt|r) < ∞ for an r ≥ 2 real, then E (|Xt|r) < ∞ under the stationary distri-
bution.

It follows that if all moments of the generating noise are nite then the
stationary distribution of Xt can only belong to the domain of attraction of the
GPD with ξ = 0. In the case without ARMA-terms, if the generating noise has
Weibull-like tail with exponent parameter γ then I prove a more accurate state-
ment: the tail of the stationary distribution can be approximated by Weibull-like
distributions with parameter γ (1− β).

Assumption 4.5. Zt is an i.i.d. sequence and there exist u0 > 0, γ > 0, K1 > 0
and K2 such that its probability density satisfies

fZt (u) = K1|u|K2 exp (−κ|u|γ)

for every |u| > u0.

Theorem 2. Assume ai = 0 and bi = 0 (i = 1, . . . ,max (p, q)), Assumption
4.5, α0 > 0, α1+ > 0, α1− > 0 and 0 < β < 1. Then, using the notation
αmax
1 = max (α1+, α1−),

exp

(
−(αmax

1 )−γ/2 κγβ
− β

1−β

2
uγ(1−β) + O

(
uγ(1−β)/2

))
≤ F̄Xt (u)

≤ exp

(
−(αmax

1 + α0)
−γ/2 κγβ

− β
1−β

2
uγ(1−β) + O

(
uγ(1−β)/2

))
.

Proposition 3. If the assumptions of the previous theorem hold but α1− > 0
is replaced to α1− = 0, then for every δ > 0 there exists a K > 0 such that
exp

(
−Ku(1+δ)γ(1−β)

)
≤ F̄Xt (u).

Finishing the probabilistic analysis, I illustrate the conjecture that – unlike
in the β = 1 case – the process has a unit extremal index thus asymptotically the
exceedances do not form clusters. (This does not rule out, however, clustering
above large but nite thresholds.)

5Unless stated otherwise, all probability statements in the sequel hold under the stationary
distribution.
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Turning to parameter estimation, let θ =
(
a1, . . . , ap, b1, . . . , bq

)
and

α = (α0, α1+, α1−). Denote the true ARMA parameter vector by θ0 and the
true parameters of the variance equation by α0.

For given β andm I estimate the ARMA parameters by least squares and the
parameters of the variance equation by QML (quasi maximum likelihood, i.e. by
maximising the likelihood function obtained under the assumption of normally
distributed noise sequence). In the latter part of the estimation the ε̂t innovations
calculated from the ARMA t are used. I prove the consistency and asymptotic
normality of the procedure under the following assumptions.

Assumption 4.6. There exists a δ > 0 such that θ0 ∈ Θδ where

Θδ = {θ ∈ Rp+q : the roots of Φθ(x) and Ψθ(x) have moduli ≥ 1+ δ}.

Moreover, α0 ∈ int(K), where K is a compact subset of R++ ×R+ ×R+.

Assumption 4.7. E(|Zt|4+2η) < ∞ holds for some η > 0.

Theorem 4. Under Assumptions 4.1–4.3 and 4.6 the QML estimator is con-
sistent, i.e. α̂n → α0 a.s. If in addition Assumption 4.7 holds, the resulting
estimator is asymptotically normally distributed, i.e.

√
n(α̂n −α0) → dN

(
0,H−1 (α0)V (α0)H−1 (α0))

where

V(α) = Eπ

(
∂l(εt,Xt−1,α)

∂α

∂l(εt,Xt−1,α)

∂α

T
)

H(α) = Eπ

(
−∂2l(εt,Xt−1,α)

∂2α

)
.

The H(α0) and V(α0) matrices can be consistently estimated by the empiri-
cal counterparts of H(α̂n) and V(α̂n), with expectations replaced by sample
averages.

Finally I t the ARMA-β-TARCH model (with β = 1/2) to the water dis-
charge data and obtain highly signicant heteroscedasticity for all monitoring
stations. Synthetic river ow series are generated from the tted model in such
a way that the noise sequences are obtained by resampling the {Ẑt} calculated
noises. The simulated time series approximate the probability densitis and high
quantiles of observed water discharges much better than the simulations from
the linear models do.
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5. Markov-switching autoregressive models

In this chapter the Markov-switching (MS-) AR(1) model family is exam-
ined:

Xt = a1Xt−1 + ε1,t ha It = 1,(4)
Xt = a0Xt−1 + ε0,t ha It = 0.(5)

Here It is a two-state discrete time Markov chain with pi=P(It=1− i|It−1= i)
transition probabilities (i = 0, 1), and {ε1,t}, {ε0,t} are i.i.d. sequences, inde-
pendent of each other and from {It} but not necessarily identically distributed
with each other. Let us also assume that |a1| ≥ |a0|.

The EVT literature had earlier dealt mainly with the |a0| < 1 < a1 case.
Under this assumption the stationary distribution – if it exists – is heavier tailed
than the generating ε1,t noise, moreover, the survival function is polynomially
decaying under general assumptions (Saporta, 2005). The extremal index of the
model is smaller than one. If, in contrast, |a0| ≤ |a1| < 1 the stationary distri-
bution can take many forms but it is certainly light-tailed with a unit extremal
index in case of light-tailed εi,t (i = 0, 1) noises.

I analyse the case not examined previously from an extremal point of view
where the rst regime is a random walk and the second is a stationary autore-
gression (Assumption 5.1). I also assume that ε1,t and ε0,t are light-tailed.

Assumption 5.1. a1 = 1 and 0 ≤ a0 < 1.

Assumption 5.2. The distribution of ε1,t is absolutely continuous with respect
to the Lebesgue-measure and E|ε1,t| < ∞. Moreover, there exists a κ > 0 such
that (1− p1)Lε1,t (κ) = 1 and L′ε1,t (κ) < ∞.

Assumption 5.3. The distribution of ε0,t is absolutely continuous with respect
to the Lebesgue-measure and its support is the whole real line. There exists an
s0 > κ such that L|ε0,t| (s0) < ∞.

If Assumption 5.1 holds the model always has a stationary solution. As-
sumption 5.2 plays a crucial role in examining the extremal behaviour. Let

S0 = 0, Sn = Sn−1 + εn (n = 1, 2, . . . )

be a randomwalk where the distribution of {εn} is the same as the distribution of
{ε1,t}. Furthermore, let T be a Geom (p1)-distributed random variable, indepen-
dent of {εn}. I prove a Cramer-Lundberg-type approximation for the maximum
of the random walk stopped at time T− 1 and then show the following:
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Proposition 5. Under Assumption 5.2 there exists a K > 0 such that
P (ST > u) ∼ K exp (−κu) .

This statement, combined with the drift condition for Markov chains, even-
tually leads to the following theorem:

Theorem 6. If Assumptions 5.1--5.3 hold there exists a K > 0 such that
P (Xt > u) ∼ K exp (−κu) .

Let τu denote the entrance time to (u,∞) and dene the Bu = Sτu − u
overshoot on the (τu < ∞) event. Assumption 5.2 ensures that Bu| (τu < ∞) →
→ dB∞ as u → ∞. Dene the {S∗n} random walk as

S∗0 = B∞, S∗n = S∗n−1 + εn (n = 1, 2, . . . ),
where the B∞ variable is chosen independently of the {εn} sequence. With these
notations I prove the following proposition on the extremal clustering behaviour
of the MS-AR(1) model:

Proposition 7. Let g(x) = 0 for x < 0 and g(x) = o (exp (κx)) as x → ∞.
Then as n → ∞ Cn(un) converges to a Poisson sum of independent random
variables, distributed as C∗ where

C∗ =

T−1∑
k=0

g (S∗k) .

The θ extremal index is given by

θ =

∫ 0

−∞
κ exp (κx)Q(x)dx

where Q(x) is the solution of the Wiener-Hopf-equation:

Q(x) = p1 + (1− p1)
∫ ∞

0
Q(y) fε1,t(x− y)dy.

Hence, as far as extremes are concerned, this parameter choice lies between
the two previously mentioned cases (a1 > 1 and |a1| < 1): the stationary dis-
tribution has an exponential tail but the extremal index is smaller than one. The
exponent κ can be explicitly calculated in some special cases (e.g. for normally
or Gamma-distributed noise) and the extremal index in others (e.g. for nonneg-
ative or Laplace-distributed noise).

If, for instance, ε1,t ≥ 0 a.s. the limiting cluster size distribution is geometric
with p1 parameter and the extremal index is p1. In a more special, hydrologically
important case I prove a theorem about the limiting aggregate excess distribution
using Laplace's method for sums:
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Theorem 8. If Assumptions 5.1 and 5.3 hold and ε1,t ∼ Gamma (α, λ) then
there exist Ki > 0 (i = 1, 2) constants such that

K1 exp
(
−23/2

(
λ−1
0 − αλ0

)
(λy)1/2

)
≤ F̄W∗ (y) ≤

≤ K2 exp
(
−2
(
λ−1
0 − αλ0

)
(λy)1/2

)
,

where λ0 is the unique real number satisfying

λ−2
0 − 2α log λ0 + log(1− p1)− α(1+ logα) = 0.

The examined MS-AR(1) model is interesting not only on its own right but
in the analysis of extremal dependence of more general processes as well. Let
Xt satisfy the following conditions:

Assumption 5.4. Let It be a discrete time Markov chain as above. Let Xt be a
stationary process whose conditional distribution, provided that It is known, only
depends on the value of Xt−1 (i.e. Xt is conditionally Markov in each regime).
Formally, for At ⊂ R Borel-sets and jt ∈ {0, 1},

P
(
Xt ∈ At|It = jt,Xt−i ∈ At−i, It−i = jt−i, i = 1, 2, . . .

)
=

= P (Xt ∈ At|Xt−1 ∈ At−1, It = jt) .

Moreover, for each t, conditionally on (I1, I2, . . . , It), the set of random variables
(X1,X2, . . . ,Xt) is independent of (It+1, It+2, . . . ).

Assumption 5.5. The stationary distribution ofXt is absolutely continuouswith
repsect to the Lebesgue-measure and there exist 0 < a ≤ 1, K0 > 0, K1 > 0
constants such that F̄1 (u) ∼ K1e−κu and F̄0 (u) ∼ K0e−κu/a.

Let a1 = 1 and a0 = a, and use the following notations for j = 0, 1 :

Fuj (z) = P
(
Xt < aju+ z|Xt−1 = u, It = j

)
.

If Assumptions 5.4 and 5.5 are satised and the (Xt−1,Xt) | (It = j) distribu-
tions (j = 0, 1) belong to the domain of attraction of a bivariate extreme value
law then (under further regularity conditions) Fuj (z) can be shown to have a
limit for all z as u → ∞. Instead of stating the regularity conditions precisely I
formulate this as an assumption.

Assumption 5.6. The joint distributions (Xt−1,Xt) | (It = j) (j = 0, 1) are ab-
solutely continuous with respect to the Lebesgue-measure. There exist (possi-
bly improper) distribution functions F∗

j (z) such that Fuj (z) → F∗
j (z) as u →

→ ∞ uniformly on all compact intervals (j = 0, 1). Moreover, if F∗
j (−∞) =
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= limz→−∞ F∗
j (z) > 0 for a j, then

lim
M→∞

lim sup
u→∞

sup
y≥M

P (Xt > aiu|Xt−1 = u− y, It = i) = 0

is satisfied for i = 0, 1.
Let us dene Yt as an MS-AR(1) process with a1 = 1, a0 = a and F∗

j -
distributed εj,t noises. I prove that the behaviours of Xt and Yt do not differ sub-
stantially from each other above high thresholds:

Proposition 9. If Assumptions 5.4–5.6 hold then for all p, jt ∈ {0, 1} and yt
(t = 1, . . . , p)

lim
u→∞

∣∣∣∣∣P
(
Xt <

( t∏
i=1

aji

)
u+ yt (t = 1, . . . , p) |X0 = u, It = jt (t = 1, . . . , p)

)
−

− P

(
Yt <

( t∏
i=1

aji

)
u+ yt (t = 1, . . . , p) |Y0 = u, It = jt (t = 1, . . . , p)

)∣∣∣∣∣= 0.

Hence (under regularity conditions similar to those routinely applied in the
statistical practice) the high-level clustering of Markov-switching, conditionally
Markov processes with exponential tail can be approximated by the similar be-
haviour of MS-AR models. Therefore, if the aim is to estimate the extremal de-
pendence structure of a time series then it may be more effective to t anMS-AR
model only to high-level exceedances rather than to the whole series. This way,
only the conditional Markov and not the conditional AR structure is assumed for
the process. In the dissertation I develop an approximate maximum likelihood
procedure for the threshold-based estimation of the MS-AR model, examine the
properties of the estimator by simulation and apply it to the water discharge data
at Tivadar. The ood maxima and ood volumes simulated from the estimated
model t well to the corresponding characteristics of the observed series, im-
plying that the extremes of the river ow data can be adequately described by a
simple conditionally Markov model.

6. Conclusions

Among the models presented in the dissertation the ARMA-β-TARCH
model generalises the linear family in a statistically motivated way, while the
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MS-AR process gives more "structural" insight into the behaviour of hydrolog-
ical time series. Due to this reason, and also because of its better tting theoret-
ical extremal properties, the latter model is more appropriate for hydrological
purposes. It is not surprising, however, that a purely statistical tting procedure
may easily lead to an ARCH-type process: the weak ARMA representation of
MS-ARmodels can be shown to be conditionally heteroscedastic, moreover, the
variance depends on the lagged value of the process approximately linearly in a
wide range. This relationship connects the two model families.
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1. Introduction

The thesis addresses problems from the eld of geometric measure theory.
It turns out that discrete methods can be used efciently to solve these problems.

In Chapter 2 we investigate the following question proposed by Tamás
Keleti. How large (in terms of Hausdorff dimension) can a compact set A ⊂ Rn

be if it does not contain some given angle α, that is, it does not contain distinct
points P, Q, R ∈ A with ∠PQR = α? Or equivalently, how large dimension
guarantees that our set must contain α?

We also study an approximate version of this problem, where we only want
our set to contain angles close to α rather than contain the exact angle α. This
version turns out to be completely different from the original one, which is best
illustrated by the case α = π/2. If the dimension of our set is greater than 1, then
it must contain angles arbitrarily close to π/2. However, if we want to make sure
that it contains the exact angle π/2, then we need to assume that its dimension
is greater than n/2.

Another interesting phenomenon is that different angles show different be-
haviour. In the approximate version the angles π/3, π/2 and 2π/3 play special
roles, while in the original version π/2 seems to behave differently than other
angles.

The investigation of the above problems led us to the study of the so-called
acute sets. A nite setH in Rn is called an acute set if any angle determined by
three points ofH is acute. Chapter 3 of the thesis studies the maximal cardinality
α(n) of an n-dimensional acute set. The exact value of α(n) is known only for
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n ≤ 3. For each n ≥ 4 we improve on the best known lower bound for α(n).
We present different approaches. On one hand, we give a probabilistic proof
that α(n) > c · 1.2n. (This improves a random construction given by Erdős and
Füredi.) On the other hand, we give an almost exponential constructive exam-
ple which outdoes the random construction in low dimension (n ≤ 250). Both
approaches use the small dimensional examples that we found partly by hand
(n = 4, 5), partly by computer (6 ≤ n ≤ 10).

Finally, in Chapter 4 we show that the Koch curve is tube-null, that is, it can
be covered by strips of arbitrarily small total width.

Chapter 2 is based on [1] and [2]. The latter is a joint paper with Keleti,
Kiss, Maga, Máthé, Mattila and Strenner. Chapter 3 and 4 are based on [3] and
[4], respectively. (For the sake of completeness some constructions due toMáthé
are also included in the thesis.)

2. How large dimension guarantees a given angle?

An easy consequence of Lebesgue's density theorem claims that for any
Lebesgue measurable set A ⊂ Rn with positive Lebesgue measure it holds that
a similar copy of any nite conguration of points can be found in A.

What can be said about innite congurations? Erdős asked whether there
is a sequence xn → 0 such that a similar copy of this sequence can be found in
every measurable set A ⊂ R with λ(A) > 0. This question is usually referred to
as Erdős similarity problem and still unsolved.

And what about nite congurations in null sets? The following problem
was also posed by Erdős. How large (in terms of Hausdorff dimension) can a set
A ⊂ R2 be if there is no equilateral triangle with all three vertices in A? Falconer
answered this question by showing that there exists a compact set A on the plane
with Hausdorff dimension 2 such that A does not contain three points that form
an equilateral triangle. In fact, it was shown in [9, 12, 13] that for any three
points in R or in R2 there exists a compact set (in R or in R2) of full Hausdorff
dimension, which does not contain a similar copy of the three points. It is open
whether the analogous result holds in higher dimension.

It would be interesting to nd patterns, which can be found in every full
dimensional set. In this chapter we investigate such a pattern. We say that a set
A ⊂ Rn contains the angle α if there exist distinct points P,Q,R ∈ A such that
∠PQR = α. Keleti posed the following question: how large can a set A ⊂ Rn

be if it does not contain α? If there is no restriction on A, then for any given α ∈
∈ [0, π] one can use transnite recursion to construct a full dimensional set not
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containing α, see Theorem 2.14. The problem is more interesting, though, if we
restrict ourselves to, for example, compact sets. What is the smallest s for which
dim(A) > s implies that A must contain α provided that A ⊂ Rn is compact?
(Or equivalently, what is the maximal Hausdorff dimension s of a compact set
A ⊂ Rn with the property that A does not contain the angle α?) This minimal
(maximal) value of s will be denoted by C(n, α). It is not hard to show that
C(n, α) ≤ n− 1 for arbitrary α, in other words, if the Hausdorff dimension of a
compact set A ⊂ Rn is greater than n−1, then A contains every angle α ∈ [0, π].

As far as lower bounds are concerned, the line segment shows that
C(n, α) ≥ 1 for any α ∈ (0, π). Our rst goal is to improve on this obvious
lower bound by constructing a compact set of Hausdorff dimension greater than
1 which does not contain some angle α ∈ (0, π).

Theorem 2.1. There is a δ0 > 0 such that for any 0 < δ ≤ δ0 there exists a
self-similar set in Rn of dimension at least

cδn = cδ2 log−1(1/δ) · n

such that the angle determined by any three points of the set is in the δ-
neighbourhood of the set {0, π/3, π/2, 2π/3, π}.

The above theorem readily implies that C(n, α) ≥ c(α)n given that α ∈
∈ (0, π) and α ̸= π/3, π/2, 2π/3. The construction uses the following result
due to Erdős and Füredi [8]. For any δ > 0 there exist at least

(
1+ cδ2

)n points
in Rn such that the distance of any two is between 1 and 1 + δ. (This result is
also related to the problems studied in Chapter 3.)

What about the exceptional angles π/3, π/2, 2π/3? Our next goal is to
prove that there exist self-similar sets in Rn with large dimension that contain
neither π/3, nor 2π/3. We start with constructing a discrete set of points. We
need to nd asmany pointsPi as possible such that any angle determined by them
is in a small neighbourhood of π/3 but avoids an even smaller neighbourhood of
π/3. We were inspired by the following r-colouring of the complete graph on 2r
vertices. Let C1, . . . ,Cr denote the colours and let us associate to each vertex a
0-1 sequence of length r. Consider the edge between the vertices corresponding
to the sequences i1, . . . , ir and j1, . . . , jr. We colour this edge with Ck where k
denotes the rst indexwhere the sequences differ, that is, i1 = j1,…, ik−1 = jk−1,
ik ̸= jk. Let us denote this coloured graph by Gr. This colouring has the property
that there is no monochromatic triangle in the graph. Moreover, every triangle
has two sides with the same colour and a third side with a different colour of
higher index. (This is a folklore graph colouring showing that the multicolour
Ramsey number Rr(3) is greater than 2r.)
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The idea is to realize Gr geometrically in the following manner: the vertices
of the graph will be represented by points of a Euclidean space and edges with
the same colour will correspond to equal distances. The next lemma claims that
Gr can be represented in the above sense.

Lemma 2.2. Let l1 ≥ l2 ≥ . . . ≥ lr > 0 be a decreasing sequence of positive
reals. By Ir we denote the set of 0-1 sequences of length r. Then 2r pointsPi1,...,ir ,
(i1, . . . , ir) ∈ Ir can be given in some Euclidean space in such a way that for
two distinct 0-1 sequences (i1, . . . , ir) ̸= (j1, . . . , jr) the distance of Pi1,...,ir and
Pj1,...,jr is equal to lk where k denotes the first index where the sequences differ,
that is, i1 = j1, . . . , ik−1 = jk−1, ik ̸= jk.

The proof of the next theorem uses the above lemma as well as the well-
known Johnson-Lindenstrauss lemma [11].

Theorem 2.3. There exist absolute constants c, C > 0 such that for any 0 <
< δ < ε < 1 with ε/δ > C there exists a self-similar set of dimension

s ≥ cε/δ
log(1/δ)

in a Euclidean space of dimension

n ≤ Cε
δ3

such that any angle determined by three points of the set is inside the ε-
neighbourhood of {0, π/3, π/2, 2π/3, π} but outside the δ-neighbourhood of
{π/3, 2π/3}.

By xing a small ε and setting δ = c/ 3
√
n in the above theorem, we obtain

the following corollaries. As we will see, the second one is surprisingly sharp.

Corollary 2.4. A self-similar setK ⊂ Rn can be given such that the dimension
of K is at least

s ≥ c 3
√
n

log n
,

and K does not contain the angle π/3 and 2π/3 (moreover, K does not contain
any angle in the c/ 3

√
n-neighbourhood of π/3 and 2π/3).

Corollary 2.5. For any 0 < δ < 1 there exists a self-similar set K of dimen-
sion at least c

δ/ log(
1
δ ) in some Euclidean space such that K does not contain any

angle in (π/3− δ, π/3+ δ) ∪ (2π/3− δ, 2π/3+ δ).
The rest of this chapter is joint work with Keleti, Kiss, Maga,Máthé,Mattila

and Strenner. According to the following results large dimensional sets always
contain angles close to π/3, π/2 and 2π/3.
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Theorem 2.6. Any set A in Rn (n ≥ 2) with Hausdorff dimension greater than
1 contains angles arbitrarily close to the right angle.

Theorem 2.7. There exists an absolute constant C such that whenever
dim(A) > C

δ log(
1
δ ) for some set A ⊂ Rn and δ > 0 the following holds: A

contains three points that form a δ-almost regular triangle, that is, the ratio of
the longest and shortest side is at most 1+ δ.

As an immediate consequence, we can nd angles close to π/3.

Corollary 2.8. Suppose that dim(A) > C
δ log(

1
δ ) for some set A ⊂ Rn and

δ > 0. Then A contains angles from the interval (π/3 − δ, π/3] and also from
[π/3, π/3+ δ).

Remark 2.9. The above theorem and even the corollary is essentially sharp, see
Corollary 2.5.

We mention that the above results remain valid even under some-
what weaker conditions (when Hausdorff dimension is replaced with upper
Minkowski dimension).

To sum up the results we introduce the following function C̃ depending on
an angle α ∈ [0, π] and a small positive δ.

C̃(α, δ) def= sup{dim(A) : A ⊂ Rn for some n;A is analytic;
A does not contain any angle from (α− δ, α+ δ)}.

It is shown in the thesis that C̃ satises the symmetry property

C̃(α, δ) = C̃(π − α, δ).

The above constructions and results give essentially all the values of C̃(α, δ),
see Table 1.

Table 1. Smallest dimensions that guarantee angle in (α− δ, α+ δ)

α C̃(α, δ)

0, π = 0
π/2 = 1
π/3, 2π/3 ≈ 1/δ apart from a multiplicative error C · log(1/δ)
other angles = ∞ provided that δ is sufciently small

Let us now return to estimates on C(n, α). First we give a precise denition.
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Definition 2.10. If n ≥ 2 is an integer and α ∈ [0, π], then let

C(n, α) = sup{s : ∃A ⊂ Rn compact such that
dim(A) = s and A does not contain the angle α}.

We mention that we get the same denition if we consider analytic sets instead
of compact sets.

The next theorem says that if we have an analytic set in Rn of Hausdorff
dimension greater than n− 1, then it must contain every angle α ∈ [0, π].

Theorem 2.11. If n ≥ 2 and α ∈ [0, π], then C(n, α) ≤ n− 1.
We can prove a better upper bound for C(n, π/2).

Theorem 2.12. If n is even, then C(n, π/2) ≤ n/2. If n is odd, then
C(n, π/2) ≤ (n+ 1)/2.

For the sake of completeness we mention a construction due to András
Máthé. Both constructions that we have seen so far (the one for general angles
and the one for π/3, 2π/3) have the property that they avoid not only the given
angle α but also a small neighbourhood of α. The following construction does
not have this property: even though the constructed set contains angles arbitrarily
close to π/2, it succeeds to avoid π/2. It is based on number theoretic methods.

Theorem 2.13 (Máthé, [14]). There exists a compact set K ⊂ Rn such that
dim(K) = n/2 and K does not contain the angle π/2.

It follows from Theorem 2.12 that this result is sharp given that n is even.
We gathered the best known bounds for C(n, α) in Table 2.

Table 2. Best known bounds for C(n, α)

α lower bound upper bound

0, π n− 1 n− 1
α ∈ (0, π); α ̸= π/2 cn n− 1
π/2 n/2 ⌈n/2⌉

Finally, the next theorem shows that if there was no restriction on A in De-
nition 2.10, then C(n, α) would be n for any α.

Theorem 2.14. Let n ≥ 2. For any α ∈ [0, π] there exists H ⊂ Rn such that
H does not contain the angle α, and H has positive Lebesgue outer measure. In
particular, dim(H) = n.
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3. Acute sets in Euclidean spaces

Around 1950 Erdős conjectured that given more than 2d points in Rd there
must be three of them determining an obtuse angle. The vertices of the d-
dimensional cube show that 2d points exist such that the angle determined by
any three of them is at most π/2.

In 1962 Danzer and Grünbaum proved this conjecture [7]. They posed the
following question in the same paper: what is the maximal number of points in
Rd such that all angles determined are acute (in other words, this time we want
to exclude right angles as well as obtuse angles). A set of such points will be
called an acute set or acute d-set in the sequel.

The exclusion of right angles seemed to decrease the maximal number of
points dramatically: they could only give 2d − 1 points, and they conjectured
that this is the best possible. However, this was only proved for d = 2, 3 [10].

Then in 1983 Erdős and Füredi disproved the conjecture of Danzer and
Grünbaum. They used the probabilistic method to show the existence of an acute
d-set of cardinality exponential in d. Their idea was to choose random points
from the vertex set of the d-dimensional unit cube, that is {0, 1}d. Actually they
even proved the following result: for any xed δ > 0 there exist exponentially
many points inRd with the property that the angle determined by any three points
is less than π/3+δ. We used this result in the previous chapter to construct large
dimensional sets such that each angle contained by the sets is close to one of the
angles 0, π/3, π/2, 2π/3, π.

We denote the maximal size of acute sets in Rd and in {0, 1}d by α(d) and
κ(d), respectively; clearly α(d) ≥ κ(d). Our goal in this chapter is to give good
bounds for α(d) and κ(d). The random construction of Erdős and Füredi implied
the following lower bound for κ(d) (thus for α(d) as well)

(1) κ(d) >
1
2

(
2√
3

)d
> 0.5 · 1.154d.

The best known lower bound both for α(d) and for κ(d) (for large values of d) is
due to Ackerman and Ben-Zwi from 2009 [5]. They improved (1) with a factor√
d:

(2) α(d) ≥ κ(d) > c
√
d
(

2√
3

)d
.

We modify the random construction of Erdős and Füredi to obtain the fol-
lowing theorem.
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Theorem 3.1.

α(d) > c

(
10

√
144
23

)d

> c · 1.2d,

that is, there exist at least c ·1.2d points in Rd such that any angle determined by
three of these points is acute. (If d is divisible by 5, then c can be chosen to be
1/2, for general d we need to use a somewhat smaller c.)

We present another approach where we recursively construct acute sets.
These constructions outdo Theorem 3.1 up to dimension 250. We show that this
constructive lower bound is almost exponential in the following sense. Given
any positive integer r, for innitely many values of d we have an acute d-set of
cardinality at least

exp(d/ log log · · · log︸ ︷︷ ︸
r

(d)).

Both the probabilistic and the constructive approach use small dimensional
acute sets as building blocks. So it is crucial for us to construct small dimensional
acute sets of large cardinality. In the thesis we present an acute set of 8 points in
R4 and an acute set of 12 points in R5 (disproving the conjecture of Danzer and
Grünbaum for d ≥ 4 already). We used computer to nd acute sets in dimension
6 ≤ d ≤ 10.

As far as κ(d) is concerned, in large dimension (2) is still the best known
lower bound. Bevan used computer to determine the exact values of κ(d) for
d ≤ 9 [6]. He also gave a recursive construction improving upon the random
constructions in low dimension. Our constructive approach yields a lower bound
not only for α(d) but also for κ(d), which further improves the bounds of Bevan
in low dimension.

The following notion plays an important role in both approaches.

Definition 3.2. A triple A, B, C of three points in Rd will be called bad if for
each integer 1 ≤ i ≤ d the i-th coordinate of B equals the i-th coordinate of A
or C.

We denote by κn(d) the maximal size of a set S ⊂ {0, 1, . . . , n − 1}d that
contains no bad triples. It is easy to see that κ2(d) = κ(d) but our main motiva-
tion to investigate κn(d) is that we can use sets without bad triples to construct
acute sets recursively. We give an upper bound and two different lower bounds
for κn(d).

Theorem 3.3. For even d
κn(d) ≤ 2nd/2,
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and for odd d

κn(d) ≤ n(d+1)/2 + n(d−1)/2.

Theorem 3.4.

κn(d) >
1
2

(
n2

2n− 1

) d
2

>
1
2

(n
2

) d
2
=

(
1
2

) d+2
2

n
d
2 .

Theorem 3.5. If d ≥ 2 is an integer and n ≥ d is a prime power, then

κn(d) ≥ n⌈
d
2⌉.

Setting n = 2 and using that κ2(d) = κ(d) the next corollary readily follows
from Theorem 3.3.

Corollary 3.6. For even d

κ(d) ≤ 2(d+2)/2 = 2
(√

2
)d

,

and for odd d

κ(d) ≤ 2(d+1)/2 + 2(d−1)/2 =
3√
2

(√
2
)d

.

This corollary improves the upper bound
√
2(
√
3)d given by Erdős and

Füredi in [8].

4. The Koch curve is tube-null

Theorem 4.1 answers the following question posed by, among others, Mar-
ianna Csörnyei: is the Koch snowake curve tube-null?

Theorem 4.1. The Koch curve K is tube-null, that is, it can be covered by strips
of arbitrarily small total width.

Moreover, there exists a decomposition K = K0 ∪ K1 ∪ K2 and projec-
tions π0, π1, π2 such that the Hausdorff dimension of πi(Ki) is less than 1 for
i = 0, 1, 2.

The proof contains geometric, combinatorial, algebraic and probabilistic ar-
guments.
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Abstract. Let A be an innite sequence of positive integers and let k ≥ 2 be a
xed integer. Let R1(A,n, k) the number of solutions of a1 + a2 + · · · + ak = n, a1 ∈
∈ A,a2 ∈ A, . . . ak ∈ A. In a series of papers P. Erdős, A. Sárközy and V. T. Sós studied
the regularity properties and the monotonicity of the representation function R1(A,n, 2).
In some of my papers I extended and generalized their results to any k > 2. The aim of
this paper is to survey these results. In the last part of the paper I study the connection
between Sidon sets and asymptotic bases.

1. Introduction

Let N denote the set of positive integers, and let k ≥ 2 be a xed integer.
Let A be an innite sequence of positive integers. For any positive integer n let
R1(A,n, k), R2(A,n, k), R3(A,n, k) denote the number of solutions of the equa-
tions

a1 + a2 + · · ·+ ak = n, a1 ∈ A, . . . , ak ∈ A,

a1 + a2 + · · ·+ ak = n, a1 ∈ A, . . . , ak ∈ A, a1 < a2 < . . . < ak,
and

a1 + a2 + · · ·+ ak = n, a1 ∈ A, . . . , ak ∈ A, a1 ≤ a2 ≤ . . . ≤ ak,
respectively. If F(n) = O(G(n)) then we write F(n) << G(n). We put

A(n) =
∑
a∈A
a≤n

1.

The research of the additive representation functions began in the 1950's. Start-
ing from a problem of Sidon, P. Erdős proved that there exists a sequenceA ⊂ N
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so that there are two constans c1 and c2 for which for every n
c1 log n < R1(A,n, 2) < c2 log n.

On the other hand an old conjecture of Erdős states that for no sequence A can
we have

R1(A,n, 2)
log n

→ c (0 < c < +∞).

There are some related questions in [3], [12] and [22]. These problems led P.
Erdős, A. Sárközy and V. T. Sós to study the regularity property and the mono-
tonicity of the function R1(A,n, 2) see in [6], [7], [8], [9]. In this paper I survey
my results about the regularity properties and the monotonicity of the represen-
tation function R1(A,n, k) for k > 2 integer. I extended and generalized some
result of P. Erdős, A. Sárközy and V. T. Sós by using the generator function
method and the probabilistic method.

2. The methods

In my papers I used the generating function method. We start out from the
generating function of the sequence A:

f(z) =
∑
a∈A

za.

It is easy to see that

fk(z) =
∞∑
n=1

R1(A,n, k)zn.

We used the generating function method to prove the results about the mono-
tonicity. We also used the Hölder – inequality, the Cauchy – inequality and the
Parseval – formula. In the next step I tell a few words about the probabilistic
method [26]. An important problem in additive number theory is to prove that
a sequene with certain properties exists. One of the essential ways to obtain an
afrmative answer for such a problem is to use the probabilistic method due
to Erdős and Rényi [3]. There is an excellent summary of this method in the
Halberstam – Roth book [12]. To show that a sequence with a property P exists,
it sufcies to show that a properly dened random sequence satisesP with pos-
itive probability. Usually the property P requires that for all sufciently large
n ∈ N, some relation P(n) holds. The general strategy to handle this situation
is the following. For each n one rst shows that P(n) fails with a small proba-
bility, say pn. If pn is sufciently small so that

∑+∞
n=1 pn converges, then by the

Borel – Cantelli lemma,P(n) holds for all sufciently large nwith probability 1.
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Note that in my proofs the additive representation function is the sum of random
variables. However for k > 2 these variables are not independent. To overcome
this problems in my thesis I apply the theorems of J. H. Kim and V. H. Vu, [15],
[25], [26], [27], the Janson inequality [14] and the method of Erdős and Tetali
[2], [10].

3. The Results

Starting from a problem of Sidon, P. Erdős proved that there exists a se-
quence A ⊂ N so that there are two constans c1 and c2 for which for every n

c1 log n < R1(A,n, 2) < c2 log n.

In one of their paper [5] Erdős and Sárközy extended the above problem by
estimating |R1(A,n, 2) − F(n)| for nice arithmetic functions F(n). In [13] G.
Horváth extended their theorem to any k > 2 integer by estimating |R1(A,n, k)−
F(n)|. Later Erdős and Sárközy proved in [7] that if F(n) is a nice arithmetic
function, then there exists a sequence A such that

|R1(A,n, 2)− F(n)| <<
(
F(n) log n)

)1/2
.

In [19] I generalized their theorem by using the probabilistic method:

Theorem 1. If k > 2 is a positive integer, c8 is a constant large enough in terms
k, F(n) is an arithmetic function satisfying

F(n) > c8 log n for n > n0,

and there exists a real function g(x), defined for 0 < x < +∞, and real numbers
x0,n1 and c7,c9 costants such that

(i) 0 < g(x) ≤ (log x)
1
k

x
1− k+1

k2
< 1 for x ≥ x0,

(ii)
∣∣∣F(n) − k!

∑
x1+x2+...+xk=n

1≤x1<x2<...<xk<n
g(x1)g(x2) . . . g(xk)

∣∣∣ < c7(F(n) log n)1/2

for n > n1,
then there exists a sequence A such that

|R1(A,n, k)− F(n)| < c9(F(n) log n)1/2 for n > n2.

Let l ≥ 1 be a xed integer. If s0,s1,s2 . . . is a given sequence of real num-
bers, then let∆lsn denote the l-th difference of the sequence s0,s1,s2 . . . dened
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by∆1sn = sn+1 − sn and∆lsn = ∆1(∆l−1sn). It is well-known and it is easy to
see by induction that

∆lsn =
l∑

i=0

(−1)l−i
(
l
i

)
sn+i.

Let B(A,N) denote the number of blocks formed by consecutive integers in A
up to N, i.e.,

B(A,N) =
∑
a≤N

a−1/∈A,a∈A

1.

P. Erdős, A. Sárközy andV. T. Sós studied the following problem: what condition
is needed to ensure

lim sup
n→+∞

|R1(A,n+ 1, 2)− R1(A,n, 2)| = +∞?

They proved in [8] that if limN→∞
B(A,N)√

N = ∞, then the above holds. They also
proved that their result is nearly best possible.

In [16] I extended their Theorem to any k > 2 :

Theorem 2. If k ≥ 2 is an integer and limN→∞
B(A,N)

k√N
= ∞, and l ≤ k, then

|∆lR1(A,n, k)| cannot be bounded.
I also proved in [20] that the above result is nearly best possible:

Theorem 3. For all ε > 0, there exists an infinite sequence A such that
(i) B(A,N) ≫ N1/k−ε,
(ii) R1(A,n, k) is bounded so that also ∆lR1(A,n, k) is bounded if l ≤ k.
In the case l > k I have only a partial result [17]:

Theorem 4. If l ≥ 2 an integer and limN→∞
B(A,N)√

N =∞, then |∆l(R1(A,n, 2))|
cannot be bounded.

For i = 1, 2, 3 we say Ri(A,n, k) is monotonous increasing in n from a
certain point on, if there exists an integer n0 with

Ri(A,n+ 1, k) ≥ Ri(A,n, k) for n ≥ n0.
In a series of papers P. Erdős, A. Sárközy and V. T. Sós studied the mono-
tonicity properties of the three representation functions R1(A,n, 2), R2(A,n, 2),
R3(A,n, 2). A. Sárközy proposed the study of the monotonicity of the functions
Ri(A,n, k) for k > 2 [24, Problem 5]. He conjectured [23, p. 337] that for any
k ≥ 2 integer, if Ri(A,n, k) (i = 1, 2, 3) is monotonous increasing in n from a
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certain point on, then A(n) = O(n2/k−ε) cannot hold. I proved in [18] and Min
Tang proved independently the following slightly stronger result on R1(A,n, k):

Theorem 5. If k ∈ N, k ≥ 2, A ⊂ N and R1(A,n, k) is monotonous increasing
in n from a certain point on, then

A(n) = o
(

n2/k

(log n)2/k

)
cannot hold.

We say a setA of positive integers is an asymptotic basis of order h if every
large enough positive integer can be represented as the sum of h terms from A.
In other words A is an asymptotic bases of order h if there exists an n0 positive
integer such that R3(A,n, 2) > 0 for n > n0. A set of positive integers A is
called Sidon set if all the sums a + b with a ∈ A, b ∈ A, a ≤ b are distinct.
In other words A is a Sidon set if R3(A,n, 2) ≤ 1. In [4] and [5] P. Erdős, A.
Sárközy and V. T. Sós asked if there exists a Sidon set which is an asymptotic
basis of order 3. The problem also appears in [24] (with a typo in it: order 2 is
written instead of order 3). In [11] G. Grekos, L. Haddad, C. Helou and J. Pihko
proved that a Sidon set cannot be an asymptotic basis of order 2. Recently J. M.
Deshouillers and A. Plagne in [1] constructed a Sidon set which is an asymptotic
basis of order at most 7. In [21] I improve on this result by proving:

Theorem 6. There exists an asymptotic basis of order 5 which is a Sidon set.
Acknowledgement: I would like to thank my supervisor András Sárközy for
the helpful discussions about the additive representation functions. I would like
to thank Imre Z. Ruzsa for the helpful and valuable discussions about Sidon sets.
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1. Introduction

The numerical solution of linear elliptic partial differential equations con-
sists of two main steps: discretization and iteration, where generally some con-
jugate gradient method is used for solving the nite element discretization of
the problem. However, when for elliptic problems the discretization parameter
tends to zero, the required number of iterations for a prescribed tolerance tends to
innity. The remedy is suitable preconditioning. This can rely on the functional
analytic background of the corresponding elliptic operators, which means that
the preconditioning process takes place on the operator level. That is, we look
for a suitable preconditioning operator for the operator equation, which is close
to the original one in some sense, and use its discretization as a preconditioning
matrix. Here we use the generalized conjugate gradient, least square methods
(GCG-LS(s)) and the conjugate gradient normal (CGN) algorithm. These al-
gorithms, the coincidence of the full GCG-LS and the truncated GCG-LS(0)
methods and the related convergence theorems are discussed in [1, 2, 3, 4].

2. Preliminaries and short summary of the results

A general theory has been developed for such preconditioning using the
notion of equivalent operators, which has been introduced and investigated in
the aspect of linear convergence in [6]. As a further step, mesh independent
superlinear convergence has been proved for the GCG-LS method for elliptic
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equations with homogeneous Dirichlet and mixed boundary conditions under
FEM discretization, with severe restrictions on the coefcients (see [3, 7]). In [4]
the notion of compact-equivalence has been introduced, summarized in [5], and
superlinear mesh independence has been proved for the CGN algorithm with-
out any restrictions (with the exception of the usual smoothness and coercivity
conditions).

Based on these papers, we have compared the relation between the known
theoretical convergence estimate and the numerical results and we have shown
that the convergence rate remains valid even in cases not covered by the theory
(cf. [14, 15]). Then we have extended the scope of the theoretical results to cases
that have not been considered before: rst we have dealt with symmetric precon-
ditioning for elliptic systems using the compact normal operator framework and
the GCG-LS algorithms (see [9, 12]). Then we have considered equations with
nonhomogeneousmixed boundary conditions using operator pairs and the notion
of compact-equivalence with the CGN method (cf. [13]). In contrast with nite
element discretizations which ts in naturally with the Hilbert space background,
there is no such abstract background for nite difference discretization, only a
case-by-case study is possible. We have investigated a special model problem
(see [11]) and we have derived a convergence estimate analogous to the nite
element case. In [10] we have shown that the use of nonsymmetric precondi-
tioners is more advantageous for singularly perturbed problems than symmetric
preconditioning. Finally we have applied these results to nonlinear elliptic and
time-dependent problems (cf. [8, 13]).

3. Summary of the applied methods

3.1. Compact-equivalence and the convergence of the CGN algorithm
Let H be a real Hilbert space and consider the operator equation

(1) Lu = g

with a linear unbounded operator L inH, where g ∈ H is given. We would like to
consider its preconditioned form in weak sense in an energy space of a suitable
symmetric operator S. The set of S-bounded and S-coercive operators is denoted
by BCS(H) (see [4]).

Definition 1. (cf. [4]) For a given operator L ∈ BCS(H), we call u ∈ HS the
weak solution of equation (1) if

(2) ⟨LSu, v⟩S = ⟨g, v⟩ ∀ v ∈ HS,
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where LS ∈ B(HS) represents the unique extension of the bounded bilinear form
(u, v) 7→ ⟨Lu, v⟩ from D(L) to HS.

Definition 2. (cf. [4]) The operators L,K ∈ BCS(H) are compact-equivalent
in HS if LS = µKS + QS for some constant µ > 0 and compact operator QS ∈
∈ B(HS).

As an important special case, we can consider compact-equivalence with
µ = 1 for the operators S and L ∈ BCS(H). Then

(3) LS = I+ QS

holds with some compact operator QS.
Let us consider the operator equation (1) where L ∈ BCS(H), g ∈ H and

u ∈ HS is the weak solution dened in (2). To solve it numerically, let Vh =
= span{φ1, . . . , φn} ⊂ HS be a nite dimensional subspace of dimension n
and Lh =

{⟨
LSφi, φj

⟩
S
}n
i,j=1, gh =

{⟨
g, φj

⟩}n
j=1. Then the discrete solution

uh ∈ Vh is uh =
∑n

i=1 ciφi, where c = (c1, . . . , cn) ∈ Rn is the solution of
the linear system Lhc = gh, which is the discretized form of (2). Now assume
that L and S are compact-equivalent with µ = 1, i.e. relation (3) holds. If S is
used as a preconditioner, then the discretized form of the operator decomposition
(3) becomes Lh = Sh + Qh, and the corresponding preconditioned form of
Lhc = gh has the form

(4)
(
Ih + S−1

h Qh
)
c = S−1

h gh,

where Sh =
{⟨

φi, φj
⟩
S
}n
i,j=1,Qh =

{⟨
QSφi, φj

⟩
S
}n
i,j=1.

Theorem 3. (cf. [4, Thm. 4.1]) Assume that L ∈ BCS(H), L and S are compact-
equivalent with µ = 1, i.e. (3) holds. Then the CGN algorithm for system (4)
yields

(5)

(
∥rk∥Sh

∥r0∥Sh

)1/k

≤ 2
m2

(
1
k

k∑
i=1

(
|λi(Q∗

S + QS)|+ λi(Q∗
SQS)

)) k→∞−−−→ 0,

where rk is the residual vector, m > 0 comes from the S-coercivity of L and the
right-hand side is independent of the subspace Vh.

3.2. The compact normal operator approach and the convergence of the
GCG-LS algorithm

Let H be a complex Hilbert space and consider the operator equation (1)
with an unbounded linear operator L : D ⊂ H → H dened on a dense domain
D, and with some g ∈ H. Equation (1) is assumed to satisfy the following
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Assumptions 4.

(i) The operator L is decomposed in L = S+Q on its domain D where S is
a self-adjoint operator in H

(ii) S is a strongly positive operator, i.e. ∃ p > 0 such that ⟨Su, u⟩ ≥
≥ p ∥u∥2 ∀ u ∈ D

(iii) there exists ϱ > 0 such that Re ⟨Lu, u⟩ ≥ ϱ ⟨Su, u⟩ ∀ u ∈ D
(iv) the operator Q can be extended to the energy space HS, and then S−1Q

is assumed to be a compact normal operator on HS.
Now we replace equation (1) by its preconditioned form

(6) S−1Lu = f ≡ S−1g ⇐⇒
(
I+ S−1Q

)
u = f ≡ S−1g.

Theorem 5. (cf. [3, Thm. 3]) Let Assumptions 4 hold. Then the GCG-LS algo-
rithm applied for equation (6) in HS yields for all k ∈ N

(7)
(
∥ek∥L
∥e0∥L

)1/k
≤ 2

ϱ

(
1
k

k∑
i=1

∣∣λi (S−1Q
)∣∣) k→∞−−−→ 0,

where ek = uk − u∗ is the error vector, λk
(
S−1Q

)
(k ∈ N) are the ordered

eigenvalues of the compact normal operator S−1Q.
Equation (1) can be solved numerically by using Galerkin discretization.

Let us consider the nite dimensional subspace Vh = span{φ1, . . . , φn} ⊂
⊂ HS of dimension n and Sh =

{⟨
φi, φj

⟩
S
}n
i,j=1, Qh =

{⟨
Qφi, φj

⟩}n
i,j=1,

gh =
{⟨
g, φj

⟩}n
j=1. Then the discrete solution uh ∈ Vh is uh =

∑n
i=1 ciφi,

where c = (c1, . . . , cn) ∈ Rn is the solution of the linear system Lhc = gh,
where Lh = Sh + Qh. If the operator S is used as a preconditioner, then the
discretized form of the preconditioned operator equation (6) becomes

(8)
(
Ih + S−1

h Qh
)
c = S−1

h gh.

Theorem 6. (cf. [3, Cor. 4]) Suppose that H is a complex separable Hilbert
space, Assumptions 4 are satisfied and the matrix S−1

h Qh is Sh-normal. Then
the GCG-LS algorithm for system (8) yields

(9)

(
∥ek∥Lh

∥e0∥Lh

)1/k

≤ 2
ϱ

(
1
k

k∑
i=1

∣∣λi(S−1Q)
∣∣) k→∞−−−→ 0,

where the right-hand side is independent of the subspace Vh.



OPERATOR PRECONDITIONING IN HILBERT SPACE 127

4. Main results

4.1. Equations with homogeneous boundary conditions
Using the theoretical background of Subsection 3.2 for elliptic convection-

diffusion problemswith homogeneousDirichlet andmixed boundary conditions,
rst we have investigated the relation between the known theoretical conver-
gence estimate and the numerical results. We have conrmed the mesh inde-
pendent superlinear convergence property of the GCG-LS(0) when symmetric
part preconditioning has been applied to the FEM discretization of the boundary
value problem. We have shown that the convergence rate remains valid even in
cases not covered by the theory, i.e. when another symmetric operator is used
as a preconditioner, not only the symmetric part of the operator. The numerical
computations have also yielded better results than the theoretical estimate (9).

4.2. Equations with nonhomogeneous mixed boundary conditions
Let us consider the elliptic boundary value problem

(10)
− div(A∇u) + b · ∇u+ cu = g
u
∣∣
ΓD

= 0, ∂u
∂νA

+ αu
∣∣
ΓN

= γ

}
satisfying the following assumptions:

Assumptions 7.
(i) Ω ⊂ Rd is a bounded piecewise C1 domain ΓD,ΓN are disjoint open

measurable subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN
(ii) A ∈ L∞(Ω,Rd×d) and for all x ∈ Ω the matrix A(x) is symmetric

further, b ∈ W1,∞(Ω)d, c ∈ L∞(Ω), α ∈ L∞(ΓN)
(iii) we have the coercivity properties

∃ p > 0 such that A(x)ξ · ξ ≥ p |ξ|2 ∀ x ∈ Ω, ξ ∈ Rd,(11)

ĉ := c− 1
2
divb ≥ 0 in Ω, α̂ := α+

1
2
(b · ν) ≥ 0 on ΓN;(12)

(iv) either ΓD ̸= ∅, or ĉ or α̂ has a positive lower bound.
The denition of the operator L which corresponds to equation (10) has to

be understood as a pair of operators: one acts on Ω and the other one acts on the
Neumann boundary. Formally we have

(13) L ≡
(
M
P

)
, L

(
u
η

)
=

(
Mu
Pη

)
=

(− div(A∇u) + b · ∇u+ cu
∂η
∂νA

+ αη
∣∣
ΓN

)
.
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Let us dene a symmetric elliptic operator on the same domain in an analogous
way:

(14) S ≡
(
N
R

)
, S

(
u
η

)
=

(
Nu
Rη

)
=

(− div(G∇u) + σu
∂η
∂νG

+ βη
∣∣
ΓN

)
satisfying similar assumptions as of L:

Assumptions 8.
(i) substituting G for A, Ω, ΓD, ΓN and G satisfy Assumptions 7
(ii) σ ∈ L∞(Ω), σ ≥ 0, β ∈ L∞(ΓN), β ≥ 0 further, if ΓD ̸= ∅, then σ or

β has a positive lower bound.
Let us consider the differential equation (10) with given functions g ∈

∈ L2(Ω), γ ∈ L2(ΓN). We are interested in solving the analogous operator equa-
tion

(15) L
(

u
u
∣∣
ΓN

)
=

(
g
γ

)
,

which is the appropriately modied version of the operator equation (1). Here
the Hilbert space H is dened as the product space H = L2(Ω)× L2(ΓN).

Theorem 9. If Assumptions 7-8 hold, then the operator L is S-bounded and S-
coercive in H, i.e. L ∈ BCS

(
L2(Ω)× L2(ΓN)

)
.

Consider again the differential equation (10) with the corresponding opera-
tor L in (13) and preconditioner S in (14) and assume that A = G, then it follows
from [4] that L and S are compact-equivalent with µ = 1, thus (3) holds. On the
discrete level – with the notations of Subsection 3.1 – the nite element solution
uh ∈ Vh is obtained by solving the linear system Lhc = dh, where

(Lh)ij =

∫
Ω

(
A∇φi · ∇φj +

(
b · ∇φj

)
φi + cφiφj

)
+

∫
ΓN

αφiφj,

(dh)j =

∫
Ω
gφj +

∫
ΓN

γφj.

Let us take the symmetric operator S and introduce its stiffness matrix in HS as

(Sh)ij =
⟨
φi, φj

⟩
S =

∫
Ω

(
G∇φi · ∇φj + σφiφj

)
+

∫
ΓN

βφiφj,

and consider the preconditioned equation

(16)
(
Ih + S−1

h Qh
)
c = S−1

h dh,
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where Lh and Sh come from the elliptic operators L and S and Qh = Lh − Sh.
In this case the operator QS is dened as

(17)
⟨
QS

(
u

u
∣∣
ΓN

)
,

(
v

v
∣∣
ΓN

)⟩
S
=

∫
Ω

(
(b ·∇u)v+(c−σ)uv

)
+

∫
ΓN

(α−β)uv.

Theorem 10.With Assumptions 7–8 and A = G, the CGN algorithm for sys-
tem (16) yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ 2
m2

(
1
k

k∑
i=1

(
|λi(Q∗

S + QS)|+ λi(Q∗
SQS)

)) k→∞−−−→ 0,

where m > 0 comes from the S-coercivity of L in Theorem 9.

4.3. Finite difference discretization for a model problem
Let us consider a special model problem which has been analysed in [16] in

the context of linear convergence. The convection-diffusion problem

(18)
Lu ≡ −∆u+ b · ∇u+ cu = g

u
∣∣
ΓD

= 0

}
is posed on the unit square Ω := [0, 1]2 ⊂ R2 with constant coefcients
b = (b1, b2) ∈ R2 and c ∈ R. We assume c ≥ 0, then the usual coercivity
condition c− 1

2 divb ≥ 0 holds. The FDM discretization of (18) on a given grid
ωh leads to a linear algebraic system Lhuh = gh. Our goal is to solve this equa-
tion by iteration, applying the preconditioned GCG-LS method. The proposed
preconditioner is obtained via a symmetric preconditioning operator

(19) Su := −∆u+ σu for u
∣∣
∂Ω

= 0,

where σ ∈ R, σ ≥ 0: namely, the matrix Sh is dened as the FDM discretization
of the operator S on the same grid ωh. The preconditioned form of the discretized
system is S−1

h Lhuh = fh ≡ S−1
h gh. Here we are interested in the superlinear

convergence property of the preconditioned GCG-LS, where the operators L, S
are replaced by the matrices Lh, Sh, respectively.

Let ωh be a uniform grid on [0, 1]2, b1, b2 ≥ 0 and let us dene upwind or
centered differencing for the rst order and centered differencing for the second
order derivatives, respectively. Denote by n the number of interior gridpoints
in each direction, and by h = 1/(n + 1) the grid parameter. Let Lh, Sh and Qh
denote the matrices corresponding to the discretizations of L, S and Q = L− S,
respectively.

Proposition 11. Let us consider problem (18) with a convection term b =
(b, b), where b ∈ R+ is arbitrary, and let σ := c in (19), i.e. S is the symmetric
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part of L. Then, using either centered or backward differencing, the eigenvalues
λjm(S−1

h Qh) satisfy

(20)
1
k2

k∑
j,m=1

∣∣λjm(S−1
h Qh)

∣∣ ≤ 2
√
2b

k2

⌊ k+1
2 ⌋∑

j,m=1

1√
σ + 4m2 + 4j2

(k = 1, . . . , n),

where the sequence on the right-hand side is independent of h and tends to 0 as
k → ∞.

Inequality (20) shows that the sequence of the error quotients
(

∥ek∥Lh
∥e0∥Lh

)1/k

can be estimated in a mesh uniform superlinear way, analogously to estimate (9)
for the nite element case.

4.4. Extension of the theory to systems
Let us consider systems of the form

(21)
− div(Ki ∇ui) + bi · ∇ui +

ℓ∑
j=1

Vijuj = gi

ui
∣∣
∂Ω

= 0

 (i = 1, . . . , ℓ)

satisfying the following assumptions.

Assumptions 12.
(i) The bounded domain Ω ⊂ Rd is C2-diffeomorphic to a convex domain
(ii) for all i, j = 1, . . . , ℓ the functions Ki ∈ C1(Ω), Vij ∈ L∞(Ω) and bi ∈

∈ C1(Ω)d

(iii) there exists m > 0 such that Ki ≥ m holds for all i = 1, . . . , ℓ
(iv) letting V =

{
Vij
}ℓ
i,j=1, the coercivity property λmin(V + VT) −

− max
1≤i≤ℓ

divbi ≥ 0 holds pointwise on Ω, where λmin denotes the small-

est eigenvalue
(v) gi ∈ L2(Ω) for all i = 1, . . . , ℓ.
For brevity, we write (21) – using vector notations – as

(22) Lu ≡ − div(K∇u) + b · ∇u+ Vu = g
u
∣∣
∂Ω

= 0.

}
For the numerical solution of system (22), one usually considers its FEM dis-
cretization, which leads to a linear algebraic system Lhc = gh. This can be
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solved by the CGM using some suitable preconditioner. Here we consider pre-
conditioners based on the following preconditioning operator. Letting σi ∈
∈ L∞(Ω), σi ≥ 0 be suitable functions and
(23) Siui := − div(Ki ∇ui) + σiui (i = 1, . . . , ℓ)

for ui
∣∣
∂Ω

= 0, and dene the ℓ-tuple of independent elliptic operators

(24) Su =

S1u1...
Sℓuℓ

 .

We have proved mesh independent superlinear convergence of the precondi-
tioned CGM in the framework of compact normal operators in Hilbert space.
This has been achieved in two steps: on the theoretical level, the preconditioned
form of system (22)

(25) S−1Lu = f ≡ S−1g

has been considered and we have proved that the CGM converges superlinearly
in the Sobolev space H1

0(Ω)
ℓ. Based on this, on the practically relevant discrete

level we have considered the preconditioned form

(26) S−1
h Lhc = fh ≡ S−1

h gh

of the algebraic system Lhc = gh, where Sh denotes the discretization of S
in the same FEM subspace as for Lh, and we have proved that the superlinear
convergence of the CGM ismesh independent, i.e. independent of the considered
FEM subspace. On both levels the full GCG-LS and the truncated GCG-LS(0)
algorithms has been considered, and the results have been proved under certain
special assumptions that ensure the normality of the preconditioned operator
in the corresponding Sobolev space. First we have considered symmetric part
preconditioning. The symmetric part of L falls into the type (23) coordinatewise
if and only if

(27) Vij = −Vji (i ̸= j), and σi in (23) is chosen as σi = Vii −
1
2
(divbi).

Theorem 13. Under Assumptions 12 and condition (27), the preconditioned
truncated GCG-LS(0) algorithm for system (21) with the preconditioning op-
erator (23)-(24) converges superlinearly in the space H1

0(Ω)
ℓ according to the

estimate (7).

Assumptions 14.
(i) For all i = 1, . . . , ℓ, Ki ≡ K ∈ R, σi ≡ σ ∈ R and bi ≡ b ∈ Rd

(ii) V ∈ Rℓ×ℓ is a normal matrix.
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Theorem 15. Under Assumptions 12 and 14, the preconditioned full GCG-LS
algorithm for system (21)with the preconditioning operator (23)–(24) converges
superlinearly in the space H1

0(Ω)
ℓ according to the estimate (7).

Corollary 16. Let Assumptions 12 hold. Consider the FEM discretization of
system (21), using the stiffness matrix of (24) as preconditioner, under one of
the following conditions:

(a) the requirements in (27) hold, Vh ⊂ H1
0(Ω)

ℓ is an arbitrary FEM sub-
space and the truncated GCG-LS(0) algorithm is used (here the Sh-
normality of S−1

h Qh automatically holds)
(b) Assumptions 14 hold, Vh ⊂ H1

0(Ω)
ℓ is a FEM subspace for which the

matrix S−1
h Qh is Sh-normal, and the full GCG-LS is used.

Then the mesh independent superlinear convergence estimate (9) is valid.

4.5. Systems with nonhomogeneous mixed boundary conditions
We have applied the operator pair approach for elliptic systems of the form

(28)
− div(Ai ∇ui) + bi · ∇ui +

ℓ∑
j=1

Vijuj = gi

ui
∣∣
ΓD

= 0, ∂ui
∂νAi

+ αiui
∣∣
ΓN

= γi

 (i = 1, . . . , ℓ)

satisfying the combination of Assumptions 7 and 12, where the corresponding
operator L and the preconditioner S are dened as an ℓ-tuple of operator pairs:

L = (L1, . . . , Lℓ) =
((

M1
P1

)
, . . . ,

(
Mℓ

Pℓ

))
,

S = (S1, . . . , Sℓ) =
((

N1
R1

)
, . . . ,

(
Nℓ

Rℓ

))
,

satisfying similar conditions as in Assumptions 7-8 and the operator pairs are
dened analogously to (13)-(14). As in (15) for a single equation, we look for
the weak solution of the operator equation

(29) L
(

u
u
∣∣
ΓN

)
=

(
g
γ

)
.

Extending the results for equations to systems, it is easy to verify that forGi = Ai
(i = 1, . . . , ℓ) the operators L and S are compact-equivalent with µ = 1, i.e.
LS = I + QS holds in HS with some compact operator QS. Now let us consider
the discrete equation Lhc = dh and its preconditioned form

(30) S−1
h Lhc =

(
Ih + S−1

h Qh
)
c = S−1

h dh,
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where Lh and Sh come from the elliptic operators L and S, Qh = Lh − Sh.
Symmetric part preconditioning can also be considered, analogously to the pre-
vious subsection. When S is not the symmetric part of L, then QS ∈ B (HS)
can be dened as the sum of similar operators corresponding to (17). Now the
conditions of Theorem 3 are satised, thus the CGN algorithm provides a mesh
independent superlinear convergence result.

Corollary 17.With suitable combination of Assumptions 7-8 and Ai = Gi
(i = 1, . . . , ℓ), the CGN algorithm for the system (30) yields(

∥rk∥Sh

∥r0∥Sh

)1/k

≤ 2
m2

1
k

k∑
j=1

( ∣∣λj(Q∗
S + QS)

∣∣+ λj(Q∗
SQS)

) k→∞−−−→ 0.
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1. Introduction

The thesis came about as a cooperation between the advisor, the author and
András Gács. The author wishes to thank Tamás Szőnyi for insights into prob-
lems in nite geometry that could actually be solved, and András Gács for guid-
ing him through the process all the way from research to publication.Without the
help received from Tamás Szőnyi and András Gács this thesis would not have
gone to completion. Below we sum the main results of the thesis.

In nite projective geometry several methods both from geometry and al-
gebra can be used to attain new results. The geometric methods we discuss are
embedding, partitioning, random choice, adding and deleting points and use of
subsets [15]. We also consider algebraic tools in solving such problems, like
Weil's estimate and its variants [22], a lemma of Turán and a lemma on bipartite
graphs [11]. In the thesis, that is based on four articles of the author, we concen-
trate on using these methods in the construction of minimal blocking sets and a
closely related notion, strong representative systems.

A blocking set in a projective plane is a set of points which intersects ev-
ery line. A blocking set is said to be minimal, when no proper subset of it is a
blocking set. A ag of PG(2, q) is an incident point-line pair (P, r). A set of
ags B = {(P1, r1), . . . , (Pk, rk)} is a strong representative system if and only if
Pi ∈ rj means i = j. B is maximal if it is maximal subject to inclusion [16, 7].

Firstly, an important question is on the existence of minimal blocking sets
of given size (the spectrum problem), in particular lower and upper bounds on
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the sizes. For q = 2 we have the Fano plane, and as Neumann and Morgenstern
already observed in the 1940's there are no minimal blocking sets in this case.
Therefore, we always consider q to be greater than 2 when considering minimal
blocking sets. A lower bound for the size of minimal blocking sets was given
by Bruen [8] and Pelikán, proving that non-trivial minimal blocking sets of
PG(2, q) contain at least q+√q+1 points. If there is equality, then the minimal
blocking set is a Baer subplane. Improvements on this bound were obtained by
several authors, for example Blokhuis has given improvements for the case when
q is prime [6], Szőnyi for minimal blocking sets of the Desarguesian plane [19].
Looking at the other end of the spectrum, an upper bound for the size of minimal
blocking sets was given by Bruen and Thas [9]: If B is a minimal blocking set
ofPG(2, q) then |B| ≤ q√q+1. In case of equalityB is a unital (and q is square).

An improvement on the Bruen-Thas upper bound is possible, as we show.

Theorem 1.1. (Szőnyi, Cossidente, Gács, Mengyán, Siciliano, Weiner,
[4]) Suppose B is a minimal blocking set in PG(2, q), q ̸= 5, and denote by s
the fractional part of √q. Then |B| ≤ q√q+ 1− 1

4s(1− s)q.
Note that this always implies at least a 1/8√q improvement on the

Bruen–Thas upper bound. On the other hand, it is easy to see that if q is not too
close to a square, then this implies a cq improvement. The proof uses a lemma
that was also used in the proof of Turán's theorem on graphs containing no Kr,
and it is purely combinatorial, so the result is true for any projective plane (except
possibly for q = 26).

2. Constructions in space

In relation to graphs András Gyárfás asked for the chromatic index of
the bipartite graph corresponding toPG(2, q) in [10]. Recall that a strong colour
class in a graph G is a set of independent edges with the extra property that this
set of edges is an induced subgraph of G. For the point-line incidence graph
G of PG(2, q) a strong colour class is just a strong representative system. The
strong chromatic index of a graph G is the minimum number of colours in an
edge-colouring with the property that the edges having the same colour form a
strong colour class. Geometrically, for G this is the minimum number of strong
representative systems covering the ags of PG(2, q). In [16] it is implicitly
proved that (trivially) for a general q this number is at most q2 + 2q.

Illés, Szőnyi andWettl [16] extended the Bruen–Thas upper bound and
proved that the maximal size of a strong representative system is q√q+1. From



CONSTRUCTIONAL METHODS IN FINITE PROJECTIVE GEOMETRY 137

this it follows that at least roughly q√q strong representative systems are needed
to partition all ags. They proved that this is indeed the case for q an odd square:
the flags of PG(2, q), q an odd square, can be partitioned into (q − 1)√q +
+3q strong representative systems. It is straightforward to show that substituting
Hermitian curves for the parabolas in their proof (in [16]) can be used for q an
even square, too.

We investigate the more general case when qh is not a prime. For this, we
consider the generalized Buekenhout construction from [4] which produces min-
imal blocking sets of size qh+1 + 1 in PG(2, qh). Hoping that we can repeat the
trick of partitioning the afne plane with copies of the afne part of this block-
ing set, from this size (and since the number of ags is approximately q3h) it
is natural to expect that something of order q2h−1 + E(q) holds in PG(2, qh)
with E(q)o(q2h−1). To show that this is the case, we use the embedding method
connected to the generalized Buekenhout construction.

Theorem 2.1. (Mengyán, [3]) The flags of PG(2, qh), h ≥ 2, can be parti-
tioned into q2h−1 + 2qh strong representative systems.

Theorem 2.1. gives approximately a factor of q improvement on the trivial
estimate. When h = 2 and q is a square, it is also sligthly better than the result
obtained from the Illés, Szőnyi andWettl method.

In graph theoretic terminology we thus answered the question ofGyárfás
[10] on the strong chromatic index of the point-line incidence graph ofPG(2, q),
for q not a prime.

3. Constructions in the plane

Connected to the spectrum of minimal blocking sets is the problem of
determining the number of minimal blocking sets of a given size. In particu-
lar, György Turán asked whether for any given size k the number of non-
isomorphic minimal blocking sets of size k is more than polynomial.

The term more than polynomial (or superpolynomial) refers to a function
that grows faster than any polynomial of the variable, i.e. a function of the form
f(q) = qg(q), where limq→∞ g(q) = ∞.

The answer is clearly negative for the low end of the spectrum: for k = q+1
we only have the lines as blocking sets and they are all equivalent; for k = q+
+

√q + 1 we only have Baer subplanes, which are all equivalent, too. For the
largest possible value the question is open: the number of isomorphism classes
for the known unitals in PG(2, q), q odd, is polynomial (see Baker and Ebert
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[5]) and some people conjecture that there are no more examples. On the other
hand, the situation might turn out to be similar to the situation of maximal arcs,
where recently some new examples were constructed by Mathon [18] giving
more than polynomial of them for some sizes, see [14].

The main results in this direction are the following.

Theorem 3.1. (Mengyán, [2]) Let log denote the natural base logarithm.
0) There are constants c and C such that for q ≡ 1(4), the number of

non-isomorphic minimal blocking sets in PG(2, q) of size from the interval
[cq log q,Cq log q] is more than polynomial.

1) In PG(2, q) there are more than polynomial non-isomorphic minimal
blocking sets for any size in the interval [5q log q, q√q − 2q] whenever q is a
square.

2) In PG(2, q) there are more than polynomial non-isomorphic minimal
blocking sets for any size in the interval [2q− 1, 3q− 4] whenever q is odd or q
is even and q− 1 is not a prime.

3) Let d be an arbitrary integer, 2 ≤ d ≤ √q, d | q − 1. The number of
minimal blocking sets M of size 2q+ 1− d is more than polynomial.

The proofs are given in four sections. The idea behind the four results is
similar: take a well-known construction (or density result) for minimal blocking
sets and modify/generalize it in such a way that one has a lot of choices at a cer-
tain step of the construction. However, the techniques are different (depending
on the original construction): for part 2) we use the method of subsets, for 3) we
use Megyesi's construction (a subgroup and its cosets), for 1) we use random
choice together with geometric arguments, while in the proof of part 0) besides
random choice and geometric arguments we will also need an algebraic lemma
based onWeil's estimate on the number ofGF(q)-rational points of an algebraic
curve.

In all constructions we will try to nd more than polynomial number of
non-equivalent minimal blocking sets for a given size, that is, two blocking sets
for which there is a collineation of PG(2, q) taking one to the other are counted
once. On the other hand, since the order of the collineation group of PG(2, q)
is denitely smaller than q9, nding more than polynomial different minimal
blocking sets will automatically imply the existence of more than polynomial
non-equivalent examples.
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4. A generalization of Megyesi's construction

A different example than Megyesi's construction, contained in the union of
four lines, was constructed by Gács [12] giving an innite series of examples
determining 7q/9 directions approximately, thus yielding a minimal blocking
set of approximate size 2q − 2q/9: Let 3 be a divisor of q − 1, and let 1, α, α2

be coset represenatives of the multiplicative subgroup G of index 3. Let

Ui = {(0, 0)} ∪ {(x, 0) : x ∈ αiG} ∪ {(x, x) : x ∈ G} ∪ {(0, x) : x ∈ αiG}.

Denote by |Di| the number of directions determined by Ui. Then |D1| +
+ |D2|+ |D3| = 3q+ 1− 2(q− 1)/3, and |Di| = 7q/9+ O(√q).

In both the Megyesi and the Gács constructions a subgroup and its cosets
were placed on lines. A natural question is whether a generalization would be
possible when the number of cosets is larger than three, or when the number of
lines from which points are taken is increased. We show that this problem can be
reformulated using some trivial equations and solved byWeil's estimate. In some
sense the technique we use here is similar to techniques used by Korchmáros
in [17] and Szőnyi in [20], though our method seems distinct from theirs. Here
again we suppose that q is large enough, as the remainder term inWeil's estimate
may be too large for small values.

We also describe a simple embedding method connected to the minimal
blocking sets obtainable from the generalization of Megyesi's construction that
can give under some light conditions non-Rédei minimal blocking sets; these are
blocking sets B for which there is no line l such that |B \ l| = q. The following
result is found in [1]: Let x > 1 be an integer. If there is a minimal blocking set
of size 2q− x in PG(2, q) then there are minimal blocking sets of size 2qh − x
and 2qh − x+ 1 in PG(2, qh).

Our results indicate the existence of a large number of minimal blocking
sets slightly under the size of 2q that are non-Rédei minimal blocking sets.
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1. Introduction

Local singularity theory studies the properties of smooth (Rn, 0) →
→ (Rn+k, 0) mapping germs. Two germs are called A-equivalent if a smooth
reparametrization of the source and the target space takes one to the other. The
resulting equivalence classes are called (mono)singularities. Complete classi-
cation of singularities is currently a hopeless problem, here we will only inves-
tigate cases where the classication is already known.

Global singularity theory focuses on singular loci of mappings between
smooth manifolds. From this point of view it becomes important to consider
the local behaviour of a mapping on the full preimage of a point in the target
space. Such a description, consisting of multiple monosingularities, is called a
multisingularity.

The set of points at which a given sufciently generic map has a certain
monosingularity or multisingularity often carries information about other prop-
erties of the mapping itself as well as the source and target manifolds. The initial
question of this thesis is the following problem: given a mapping, what is the
obstruction to the existence of a mapping that is equivalent to it in some sense,
but only has certain (multi)singularities?

In the study of mappings between manifolds we aim for classications up
to so-called singular bordism and singular cobordism. That is, we consider two
mappings equivalent, if together they form the boundary of a mapping between
manifolds with boundary that only has singularities from a set xed in advance.
The reason for this choice is that while the manifolds are well understood up to
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abstract cobordism (without restrictions on the involved mappings) thanks to the
works of Thom and Wall, there is no such practically applicable classication
for a ner equivalence relation, hence the investigation of mappings would have
to be cumbersome.

2. Methods and results

The primary tool for investigation of bordism and cobordism groups is the
generalized Pontryagin-Thom construction [9], which transforms the calculation
of cobordism groups into a purely homotopy theoretical question. The investiga-
tion of this construction and the classifying spaces that play a fundamental role
in it is the main goal of this thesis.

2.1. Cobordism groups
The general construction of classifying spaces [9] glues these spaces to-

gether from blocks corresponding to the allowed multisingularities. As a conse-
quence, the homotopy groups of the resulting space are very hard to compute.
Szűcs [16] proved that when the set of allowed multisingularities consists of
all multisingularities composed from a xed set of monosingularies (there are
no global restrictions), there exists a so-called “key bration” [16, Denition
109] between the classifying spaces that makes the calculation of their homo-
topy groups more approachable. We give a new, more geometric proof of the
existence of the key bration, which stays valid under more general conditions
than the original one. For example, we can prove singularity removal theorems
in the case of negative codimensional mappings analogous to the positive codi-
mensional ones:

Theorem 1. If M is a closed 4-manifold and P is a closed 3-manifold, then
any smooth generic mapping f : M → P is cobordant to a generic mapping
without definite or indefinite swallowtail singularities. ShouldM and P be given
orientations, the source manifold of the cobordism can be chosen to be oriented
as well.

As another extension, we can handle a case with a global restriction (gen-
eralizing [16, Proposition 108]):

Theorem 2. Let η be a monosingularity of k > 0 codimensional mappings, let
τ ′ be the set of all multisingularities composed from a fixed set of monosingu-
larities, and assume that while ∂η ⊆ τ ′, η ̸∈ τ ′. Furthermore let τr for r > 0 be
the set of all multisingularities composed from a singularity in τ ′ and at most r
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points with η singularity, and denote by Γ̃r the classifying space of immersions
with a normal ξ̃η-structure and at most r-tuple self-intersection points. Then the
natural forgetful mapping Xτr → Γ̃r is a Serre fibration with fiber Xτ ′ .

Corollary 3. Under the assumptions of the previous theorem a τr-mapping is
τr-cobordant to a τ ′-mapping exactly when its singular set of η-points is null-
cobordant as an immersion with a normal ξ̃η-structure and at most r-tuple self-
intersection points.

With the help of the key bration we compute the cobordism groups of fold
maps (which may only have the simplest monosingularity apart from the regular
point) in the rst two cases when they cannot be trivially identied with the
abstract cobordism groups.

Theorem 4 ([20]). Denote by τ the set of all multisingularities composed from
regular and fold monosingularities.

(a) For all k ≥ 1 Cobτ (2k+ 1, k) ∼= N2k+1;
(b1) CobSOτ (5, 2) ∼= Ω5 ⊕ Z2 ∼= Z2 ⊕ Z2;
(b∗) For all m ≥ 2 CobSOτ (4m+ 1, 2m) ∼= Ω4m+1;
(c) For all m ≥ 1 CobSOτ (4m − 1, 2m − 1) ∼= Ω4m−1 ⊕ Z3t , where t =

= min{j | α3(2m+ j) ≤ 3j} and α3(x) denotes the sum of digits of the
natural number x in base 3.

Theorem 5.
a) Cobτ (2k+2, k) is the kernel of the characteristic number w̄2

k+1+w̄k+2w̄k,
an index 2 subgroup of N2k+2;

b2) CobSOτ (6, 2) ∼= 0;
b∗) for all even k ≥ 4 the group CobSOτ (2k+ 2, k) is the kernel of the char-

acteristic number w̄2
k+1 + w̄k+2w̄k, an index 2 subgroup of Ω2k+2;

c) for all odd k the groupCobSOτ (2k+2, k) is the kernel of the characteristic
number p̄(k+1)/2, a nontrivial subgroup of Ω2k+2.

In the rst case a small modication of the argument gives the bordism
groups of fold maps in relation to the bordism groups of all (oriented) maps [13].
Theorem 6.

(a) For all k ≥ 0 Bordτ (2k+ 1, k) ∼= N(2k+ 1, k);
(b) For all m ≥ 1 BordSOτ (4m+ 1, 2m) ∼= Ω(4m+ 1, 2m);
(c) For all m ≥ 1 the following sequence is exact:

0 → Z3u → BordSOτ (4m− 1, 2m− 1) → Ω(4m− 1, 2m− 1) → 0;
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here u satisfies the inequality 0 ≤ u ≤ t, t = min{j | α3(2m+ j) ≤ 3j},
using the notation of Theorem 4.

In the course of the proof we give new examples of mappings that have a
null-homologous cusp locus both in source and target (hence the Thom poly-
nomial [17] cannot detect the cusp singularity), but no fold mapping is even
abstractly cobordant to it.

Similar results can be proven in the case when τ is the set of all multi-
singularities composed from regular, fold and cusp points, and the goal is the
elimination from the cobordisms of the so-called III2,2 singularity, which is the
simplest corank 2 monosingularity.

If the dimension of the singularity to avoid is more than 1, the geometric
methods employed in the proofs of the theorems above fail. For relatively small
dimensions, however, we can still assign geometric meaning to the obstructions
that need to be computed. These obstructions are elements of the homotopy
groups of the form π∗(ΓTξ̃), where ξ̃ denotes the universal target bundle [9]
of the singularity; it describes the global behaviour of the singular points in the
target manifold. For a xed r denote by C the Serre class of nite abelian groups
of odd order divisible only by primes dividing r + 1 and let C+ be the class of
nite abelian groups of order divisible only by primes dividing 2(r+1). Isomor-
phism up to groups in C and C+ will be denoted by ∼=C and ∼=C+ respectively.

Theorem 7. Let ξ̃ be the universal target bundle of the Morin singularity Σ1r,0

in either the unoriented or the oriented case. For a given mapping κ : Sn+k →
→ Tξ̃, set M = M(κ) = κ−1(0ξ̃) the transverse preimage of the zero section of
ξ̃ (with the induced orientation when ξ̃ is orientable). Then for all 0 ≤ m < k
the following statements hold.

• If ξ̃ is not orientable, πm+rk+k+r(ΓTξ̃) ∈ C+.
• If ξ̃ is orientable, πm+rk+k+r(ΓTξ̃) ∼=C+ Ωm. The isomorphism is given

by the abstract oriented bordism class of M.
• If r is even and ξ̃ is not orientable, πm+rk+k+r(ΓTξ̃) ∼=C Nm(RP∞). The

isomorphism is given by the cobordism class of M decorated with the
kernel bundle of the mapping f classified by κ.

• If r is even and ξ̃ is orientable, πm+rk+k+r(ΓTξ̃) ∼=C Ωm(RP∞). The
isomorphism is given by the oriented cobordism class of M decorated
with the kernel bundle.
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2.2. Bordism groups
The singular bordism groups are somewhat easier to compute than the sin-

gular cobordism groups, since the generalized Pontryagin-Thom construction
identies the former groups with the abstract bordism groups of the correspond-
ing classifying spaces, and these can be handled even with the original block-
construction. Additionally, when looking for cohomological obstructions, inves-
tigating the so-called Kazarian space instead of the muchmore complicated clas-
sifying space already gives results. For example, with the help of the Kazarian
space we can determine the avoiding ideal of the cusp singularity. The avoiding
ideal [4] (withZ2 coefcients) of themonosingularity η is the set of those Stiefel-
Whitney characteristic classes that vanish on the virtual normal bundle of any
smooth, berwise polynomial bundle mapping between vector bundles.

Theorem 8. The avoiding ideal of the singularity Σ1,1 is generated as an
H∗(BO;Z2) ideal by the set

{wk+lwk+m + wk+qwk+r|l,m, q, r ≥ 0 and l+ m = q+ r ≥ 2}.

Corollary 9. The avoiding ideal of the singularityΣ1,1 consists exactly of the
classes of the form

∑
I∈I wI such that∑

I∈I
cSw|I+|

k wI\I+ = 0,

where I contains only index sets I with max I > k, I+ denotes the subsequence
∪{J ⊆ I|min J > k} and S =

∑
i∈I+(i− k).

As an application of this result we can obtain nearly optimal bounds on the
existence of fold mappings of real projective spaces into Euclidean spaces:

Theorem 10. Let n = 2s + t with s and t < 2s nonnegative integers. If there
exists a fold mapping from RPn to Rn+k, then

• if 4
32

s < n < 2s+1, then k ≥ 2s+1 − n− 2.

• if 2s < n < 4
32

s, then

◦ for n = 2u(8a+3)+bwith 0 ≤ b < 2u andmaximal u, k ≥ 2u+2a+
+ 2u − b− 2.

◦ if
⌊ n
2u
⌋
̸≡ 3mod 4 for all u ≥ 0, then

∗ k ≥ n−3
2 for odd n and

∗ k ≥ n
2 − 2p−1 for n = 2pm with an odd m.
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Using a deep result of [16], the so-called Kazarian conjecture, we compute
the unoriented bordism groups of fold mappings from the homology groups of
the Kazarian space of the fold mappings.

Finally we investigate the classifying space to obtain singular bordism
groups in the case when allowed mappings have only single fold points and
regular points with bounded multiplicity. For a xed codimension k > 0 denote
by I2 the set containing the fold and the regular points with multiplicity at most
2; let qm be the number of partitions of the nonnegative integer m that contain
no elements greater than k, and set dm = dimZ2 Nm.

Theorem 11.

dimBordI2(n) =
n+k∑
s=0

⌊ n−k−s−1
2 ⌋∑

j=0

qjqn−k−s−jds +
n+k∑
s=0

n−k−s−1∑
r=⌈ n−k−s

2 ⌉
qrds+

+

n+k∑
s=0

qn−sds + dn+k

We get a similar explicit formula for the I2-bordism group of cooriented
mappings, and from these we determine the rest of the unoriented, respectively
cooriented I-bordism groups for all such sets I that contain only single fold points
and regular points with bounded multiplicity. In the case of mappings between
oriented manifolds we compute the I-bordism groups rationally.
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A kézirat a nyomdába érkezett: 2012. június.

Terjedelem: 9,5 B/5 ı́v. Példányszám: 300
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