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2009. március 13. –9:20

ANNALES UNIV. SCI. BUDAPEST., 50 (2007), 3–11
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TRANSCRITICAL BIFURCATION
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Abstract. In this paper, a simple mathematical model is studied that describes
the dynamics of Hantavirus epidemics in a rodent population. Sensitivity analysis
is performed on an epidemic threshold value and it is then used to show that at its
critical value a transcritical bifurcation takes place. This bifurcation is forward: a
super-threshold endemic equilibrium exists, the global asymptotic stability of which
is also shown.

1. Introduction

There are situations in many disciplines which can be described, at least
up to a crude first approximation, by a simple system of first order differential
equations. Such are for example epidemic models where the population is
divided into some groups such as susceptibles who can catch the disease and
infectives who have the disease and can transmit it. Therefore, as it is usual
in some of these models, we make the following assumptions (cf. [9], [8]):

� all newborns are susceptible and the birth rate is proportional to the total
density of the population, because all individuals contribute equally to
the procreation;

� the population is “well stirred”, meaning that every individual has an
equal chance to meet any other member of the population;

� the gain in the infective class is at a rate proportional to the member of
infectives and susceptibles;

� the incubation period is short enough to be negligible; that is a susceptible
who contracts the disease is infective right away;

� the infection is chronic, infectives do not die of it and they do not lose
the infectiousness probably for their whole life.
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Studies of the dynamical properties of such models usually consist of
finding constant equilibrium solutions, and then carrying out a linearized
analysis to determine their stability with respect to small disturbances.

In [1] the following simple mathematical model is proposed to study the
Hantavirus epidemics of a mice population:

(1)
ṀS = F1 (MS �MI ) := bM � cMS �

MSM

K
� aMSMI �

ṀI = F2 (MS �MI ) := �cMI �
MIM

K
+ aMSMI �

�����
Here the dot means differentiation with respect to time t ; MS (t) � 0 and
MI (t) � 0 are the numbers or densities of susceptible and infected mice,
M (t) = MS (t)+MI (t) denotes the total population, respectively. a �0, b�0,
c �0 and K �0 are the infection rate (the measure of the effectiveness of
the infection between the two groups), the birth rate, the death rate and the
carrying capacity of the environment, respectively.

In [3] a short analysis of the dynamical properties of system (1) was
given (by using a Liapunov function) and two non-standard finite difference
schemes were used for the simulation of (1).

The aim of the present paper is to give a detailed analysis of dynamical
properties of (1) (by using other methods than it was used in [3]). We perform
a sensitivity analysis on the so called basic reproduction number and show
that transcritical bifurcation takes place.

2. The model

We shall present some results, including the positivity and boundedness
of solutions, furthermore existence and stability of equilibria.

First of all, Picard–Lindelöf’s Theorem guarantees that solutions of the
initial value problem for system (1) exist locally and are unique.

We show now that interior of the positive quadrant of the phase space
[MS �MI ] is an invariant region.

Lemma ���� All solutions of (1) with positive initial conditionsMS (0)�0�
MI (0) �0 remain positive for all t � 0 in their domain of existence�

Proof� Let us assume contrary to the statement that there exists t �0 at
which MS (t) or MI (t) is equal to zero. Denote

t� := min ft �0 : MS (t) �MI (t) = 0g �
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then

� assuming that MI (t�) = 0, it follows that MS (t) � 0 (t � [0� t�]). If we
define

C := min

�
aMS (t)�

MS (t) +MI (t)
K

� c : t � [0� t�]

�
then for t � [0� t�], ṀI (t) � CMI (t). Therefore

MI (t�) �MI (0) exp(Ct�) �0�

which is a contradiction. Thus MI (t) �0 for all t � 0.

� assuming that MS (t�) = 0, it follows that

ṀS (t�) = bM (t�)� cMS (t�)�
MS (t�)M (t�)

K
� aMS (t�)MI (t�) =

= bMI (t�) �0�

Since MS (0) �0, for MS (t�) = 0 we must have ṀS (t�) � 0, which is a
contradiction. Thus MS (t) �0 for all t � 0.

We shall consider system (1) restricted to R2
+ and prove that all solutions

stay bounded in t � [0�+�) which implies the existence of solutions for
every t �0.

Lemma ���� System ��� is dissipative� i�e� all solutions are bounded�

Proof� We define the function � (MS �MI ) :� MS + MI . The time
derivative along a solution of (1) is

(2) �̇ (MS �MI ) = ṀS + ṀI = M

�
b � c �

M

K

�
�

Thus, if b � c or if b �c but MS + MI �K (b � c) then this derivative
is negative. This means that the trajectories of the restricted system cross the
line � (MS �MI ) = L from outside to inside if L�0 is sufficiently large.

Remark ���� Equation (2) has the same character as the logistic equation
for M . Thus, for every positive initial �(0) the solution

�(t) =
K (b � c)�(0)

�(0) +
	
K (b � c)� �(0)



e�(b�c)t

(t � [0�+�))

of (2) is positive and tends to K (b�c) or to 0 if b�c or b�c, respectively.
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On the boundary of the positive quadrant the system (1) has two equi-
librium points: the trivial equilibrium (0� 0) for all parameter values and the
uninfected equilibrium (K (b � c)� 0) provided that

(3) b�c�

A standard stability analysis based on the Jacobian

J (MS �MI ) :=

:=
1
K

�
K (b � c)� 2MS � (1 + aK )MI bK � (1 + aK )MS

(aK � 1)MI (aK � 1)MS � cK � 2MI

�
shows that (0� 0) is stable iff the inequality (3) doesn’t hold (i.e. when the birth
rate is not higher than the death rate, the whole mice population may die) and
(3) with K � b�a(b � c) imply the stability of the uninfected equilibrium,
respectively. In fact,

J (0� 0) =

�
b � c b

0 �c

�
� resp. J (K (b�c)� 0) =

�
c � b c + aK (c � b)

0 �b � aK (c � b)

�
has the eigenvalues b � c, c resp. c � b, �b � aK (c � b).

Based on the next generation approach (c.f. [5]) a valueR0 :=aK (1�c�b)
is in [3] introduced for the so called basic reproductive number which has for
this model the following interpretation: “R0 is the number of infected mice
resulting from each infected mouse during its infected lifetime”. To examine
the sensitivity of R0 to each of its parameters we calculate the normalized
sensitivity indices (cf. [4])

Ψa =
a

R0
�
	R0
	a

=
a

aK (1� c�b)
� K (1� c�b) = 1�

Ψb =
b

R0
�
	R0
	b

=
b

aK (1� c�b)
�
aKc

b2 =
c

b � c
�

Ψc =
c

R0
�
	R0
	c

=
c

aK (1� c�b)
�

�
�
aK

b

�
=

c

c � b
�

ΨK =
K

R0
�
	R0
	K

=
K

aK (1� c�b)
� a(1� c�b) = 1�

For the values of the parameters used in this model, the sensitivity indices Ψa

resp. ΨK are unit (which means that an increase in a or K of 1% will result
in an increase on R0 1%), Ψb = �Ψc . Furthermore, since both of the indices
Ψb , Ψc are functions of the parameters, these sensitivity indices will change
as the parameter values change.
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Clearly, the uninfected boundary equilibrium is locally asymptotically
stable if R0 �1 holds; whereas if R0 �1 then it is unstable. Thus, R0 is a
threshold parameter for this model. The following analysis of the local center
manifold yields the existence and local stability of a super-threshold endemic
equilibrium for R0 near one.

Let us denote by A the Jacobian of F := col(F1� F2) evaluated at the
critical value K � := b�(a(b � c)) (i.e. when R0 = 1) and at the equilibrium
point (K �(b � c)� 0), i.e.

A :=
h
c � b c � b

0 0

i
�

Clearly, the zero eigenvalue of A is simple, the other eigenvalue of A is
negative and the vectors

q :=
h
�1
1

i
� p :=

h
0
1

i
are right and left nullvectors of A, i.e. Aq = 0� ATp = 0 such that pTq �
� hp�qi = 1. Let


 :=
hp�B(q�q)i

2
� � :=

D
p� eB(q)

E
where the functions B : R2 	 R

2 
 R
2 , eB : R2 
 R

2 are given by

Bi (x� y) :=
2X

j�k=1

	2Fi (�� K
�)

	�j 	�k

������
�=(K �(b�c)�0)

xj yk (i � f1� 2g)�

eBi (x) :=
2X
j=1

	2Fi (�� K
�)

	�j 	K

������
�=(K �(b�c)�0)

xj (i � f1� 2g)�

All second derivatives of Fi are the following:

	2F1(�� K �)
	MS	MI

�����
�

=
1
K �

� a =
	2F1(�� K �)
	MI 	MS

�����
�

�

	2F1(�� K �)

	M 2
S

�����
�

=
2
K �

�
	2F1(�� K �)

	M 2
I

�����
�

= 0�

	2F2(�� K �)
	MS	MI

�����
�

= a �
1
K �

=
	2F2(�� K �)
	MI 	MS

�����
�

�
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	2F2(�� K �)

	M 2
S

�����
�

= 0�
	2F2(�� K �)

	M 2
I

�����
�

= �
2
K �

;

resp.

	2F1(�� K �)
	MS	K

�����
�

=
2(b � c)
K �

�
	2F1(�� K �)
	MI 	K

�����
�

=
b � c

K �
�

	2F2(�� K �)
	MS	K

�����
�

= 0�
	2F2(�� K �)
	MI 	K

�����
�

=
b � c

K �
�

Hence


 = �a �0 and � =
b � c

K �
�0�

As a consequence (cf. Therorem 4 in [6]) there exists a  �0 such that for
1 �R0 � system (1) has at least one locally asymptotically stable endemic
equilibrium, i.e. a transcritical bifurcation takes place which is forward mea-
ning that there is a transfer of stability from the infection-free steady state to
the endemic equilibrium, and vice versa (cf. [2]). The interior equilibria are
the intersections of the susceptibles null-cline

MI = h1(MS ) :=
K (b � c)MS �M 2

S

(aK + a)MS � bK

and the infecteds null-cline

MI = h2(MS ) := (aK � 1)MS � cK

(c.f. Fig. 1). The intersection (M S �M I ) := (b�a�K (b� c)� b�a) lies in the
interior of the positive quadrant if and only if

(4) b�c and K �
b

a(b � c)
�

The Jacobian

J
�
M S �M I


=

=
1
aK

�
a2K 2(c � b) + b(aK � 1) �b

b(1� 2aK ) + acK � a2K 2(c � b) acK � b(aK � 1)

�
of F evaluated at

�
M S �M I


has the eigenvalues c � b and b + aK (c � b)

(cf. [3]) which proves again that
�
M S �M I


is locally asymptotically stable

if R0 �1 i.e. (4) holds.
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2 4 6 8 10 12 14
M_S

5

10

15

20

25

30
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Fig� �� The zero isoclines (dashed: h2, bold: h1) and the endemic equilibrium of

system (1) (MATHEMATICA R )

Summarizing the results about the local stability of the two essential
equilibria we can establish the following: If (3) holds then (K (b � c)� 0) is
stable along the MS -direction and stable or unstable along the MI -direction
according as K � or �b�(a(b� c)). Thus, if

�
M S �M I


does not exist, then

(K (b�c)� 0) is an attractor or sink. But if
�
M S �M I


exists, then (K (b�c)� 0)

is a saddle point with ingoing trajectories on the MS -axis. The phase portrait
of system (1) for given values a = 0�2, b = 0�9, c = 0�45 and K = 10 resp.
K = 50 is shown in Fig. 2.

By showing that system (1) admits no periodic orbits we extend the local
stability result to a global one.

Lemma ���� The system (1) has no limit cycle in the positive quadrant

of the phase plane�

Proof� Let us define the function h by

h (MS �MI ) :=
1

MS �MI
(MS �0�MI �0)�
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Fig� �� Phase portraits of the system (1) for K �b�(a(b� c)) in the left-hand graph and
K �b�(a(b � c)) in the right-hand graph (MAPLE R )

Then, we have

(div(hF)) (MS �MI ) = (	1(hF1)) (MS �MI ) + (	2(hF2)) (MS �MI ) =

= �
b

MS
�

1
KMI

�
1

KMS
�0�

Therefore by the Dulac’s negative criterion (see e.g. [7]) system (1) has no
limit cycle in the positive quadrant of the

	
MS �MS



plane.

Thus, we can summarize our results in the following:

Theorem ���� If

�� b � c then system (1) has only the trivial equilibrium which is globally

asymptotically stable�

�� b�c and

�a� K �b�(a(b � c)) then apart from the trivial �unstable� one there

is only the uninfected equilibrium (K (b � c)� 0)� which is globally

asymptotically stable�

�b� K � b�(a(b � c)) then a new �endemic� equilibrium (M S �M I )
bifurcates from (K (b � c)� 0)

((M S �M I ) = (K (b � c)� 0)

as K = b�(a(b � c)) by a forward transcritical bifurcation and the

new equilibrium becomes the globally asymptotically stable one as

K �b�(a(b � c))� whereas (K (b � c)� 0) is a repeller as

K �b�(a(b � c))�

In a subsequent paper we are going to study what happens if delay is
introduced into the system. It will be shown that at the critical value Poincaré–
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Andronov–Hopf bifurcation takes place: a small amplitude periodic solution
occurs.

Aknowledgement� We thank prof. L. Simon for his comments and
suggestions.
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Abstract. It was proven in 1915 by Leopold Theisinger that the Hn harmonic
numbers are never integers. In 1996 Conway and Guy have defined the concept
of hyperharmonic numbers. The question naturally arises: are there any integer
hyperharmonic numbers? The author gives a partial answer to this question and
conjectures that the answer is “no”.

The n-th harmonic number is the n-th partial sum of the harmonic series:

Hn =
nX

k=1

1
k
�

Conway and Guy in [2] defined the harmonic numbers of higher orders,

also known as the hyperharmonic numbers: H (1)
n := Hn , and for all r �1 let

H (r )
n =

nX
k=1

H (r�1)
k

be the n-th harmonic number of order r . These numbers can be expressed by
binomial coefficients and ordinary harmonic numbers:

H (r )
n =

�
n + r � 1
r � 1

�
(Hn+r�1 �Hr�1)�

The prominent role of these numbers has been realized recently in com-

binatory. The
h
n
k

i
r
r -Stirling number is the number of the permutations of

AMS Subject Classification (2000): 11B83
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the set f1� � � � � ng having k disjoint, non-empty cycles, in which the elements
1 through r are restricted to appear in different cycles.

In [7] one can find the following interesting equality:

H (r )
n =

h
n + r
r + 1

i
r

n!
�

Let us turn our attention to the main question of this paper. It is known
that any number of consecutive terms not necessarily beginning with 1 will
never sum to an integer (see [4] ). As a corollary, we get that the Hn harmo-
nic numbers are never integers (n �1). Theisinger proved this latter result
directly in 1915 [1] . The question appears obviously: are there any integer
hyperharmonic numbers?

Theisinger’s main tool was the 2-adic norm. We give a short summary

of his method. Every rational number x�0 can be represented by x = p� r
s ,

where p is a fixed prime number, r and s are relative prime integers to p. �
is a unique integer. We can define the p-adic norm of x by

jx jp = p�� � and let j0jp = 0�

This norm fulfills the properties of the usual norms, namely

jx jp = 0 �� x = 0�

jxy jp = jx jpjy jp (x � y � Q)�

jx + y jp � jx jp + jy jp (x � y � Q)�

Furthermore, the so-called strong triangle inequality also holds:

jx + y jp � maxfjx jp � jy jpg(� jx jp + jy jp)�

We shall use the following property of integer numbers:

x � Z =� x = p�r =� jx jp =
1
p�

� 1�

where r and the prime p are relative prime integers. This means that if the
p-norm of a rational x is greater than 1 then x is necessarily non-integer.

Let us introduce the order of a natural number n: if 2m � n �2m+1, then
Ord2(n) := m . It is obvious that Ord2(n) = bln(n)� ln(2)c.
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Theorem ��

jHn j2 = 2Ord2(n) (n � N)�

that is � by our observation above � Hn is never integer�

Proof� First, let n be even. Since jx j2 = j � x j2 for all x � Q, by the
strong triangle inequality we get

max fjHn j2� j1j2g = max

�
jHn j2� j1j2�

����13
����
2
�

����15
����
2
� � � � �

���� 1
n � 1

����
2

�
�

�

����Hn � 1 �
1
3
�

1
5
� � � � �

1
n � 1

����
2

=

=

����12 +
1
4

+ � � � +
1

n � 2
+

1
n

����
2

=

=

����12
����
2

����1 +
1
2

+
1
3

+ � � � +
1
n�2

����
2

= 2
���Hn�2

���
2
�

If n is odd, the situation is the same:

max fjHn j2� j1j2g � 2
���H(n�1)�2

���
2
�

The reader may verify it.

So we get that the 2-adic norm of the harmonic numbers is monotone

increasing. Since jH2j2 =
���32
���
2

= 2, the 2-adic norm of all the harmonic num-

bers are greater than 1. As a corollary, this means that the harmonic numbers
are not integers because of the property of the 2-adic norm mentioned above.

We can continue the calculations on Hn�2 (or on H(n�1)�2) instead of

Hn . For instance let us consider that n�2 is even. Then the method described
above gives that

jHn�2j2 �

����12
����
2
jHn�4j2 = 2jHn�4j2�

This and the previous estimation implies that

jHn j2 �

����12
����
2
jHn�2j2 �

����12
����
2

����12
����
2
jHn�4j2 = 4jHn�4j2�

And so on. If n�2 is odd then we choose (n�2� 1)�2 instead of n�4. We can
perform these steps exactly Ord2(n) times.
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After all, we shall have the following:

jHn j2 �

���� 1

2Ord2(n)

����
2
jH1j2 = 2Ord2(n)�

On the other hand,

jHn j2 � max

�
j1j2�

����12
����
2
� � � � �

���� 1n
����
2

�
=

���� 1

2Ord2(n)

����
2

= 2Ord2(n)�

because the greatest 2-power occuring between 1 and n is Ord2(n).

The inequalities detailed above give the statement.

A different approach can be found in [3] , [5] and in their references.
The next proof comes from these sources.

Proof� Let us fix the order of n , i.e.: Ord2(n) := m . This implies that the

denominator of 2m�1

n is odd, unless n = 2m . We get that the number

2m�1Hn �
1
2

can be represented by the sum of rationals with odd denominators. Write

2m�1Hn �
1
2

=
a1
b1

+ � � � +
as
bs

=
c

lcm(b1� � � � � bs )
�

where bi is odd for all i = 1� � � � � s . It means that b := lcm(b1� � � � � bs ) is odd.
The last formula gives the result

Hn =
c
b + 1

2
2m�1 =

2c + b
2mb

�

Let us turn our attention to hyperharmonic numbers. We need a lemma
which can be found in [6] :

Lemma ��

jn!jp = p(Ap(n)�n)�(p�1)�

where Ap(n) is the sum of the digits of the p�adic expansion of n �

Example �� Let p = 2 and n = 11. Then n = 10112, that is, A2(n) = 3.

jn!j2 = j39916800j2 = j256 � 155925j2 = j256j2j155925j2 = j28j2 � 1 = 2�8�

We can apply the lemma: A2(n)� n = 3 � 11 = �8, whence jn!j2 = 2�8.
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Theorem �� If Ord2(n + r � 1) �Ord2(r � 1) then

jH (r )
n j2 = 2A2(n+r�1)�A2(n)�A2(r�1)+Ord2(n+r�1)�

else

jH (r )
n j2 = 2

A2(n+r�1)�A2(n)�A2(r�1)+max
n���1

r

���
2
�
��� 1
r+1

���
2
�����

��� 1
n+r�1

���
2

o
�

Proof� Let a , b, c, d be odd numbers. Then
���H (r )

n

���
2

=

����
�
n + r � 1
r � 1

�
(Hn+r�1 �Hr�1)

����
2

=

=

����
�
n + r � 1
r � 1

�����
2

���� a

2Ord2(n+r�1)b
�

c

2Ord2(r�1)d

����
2

=

=

����
�
n + r � 1
r � 1

�����
2

�����
2Ord2(r�1)ad � 2Ord2(n+r�1)bc

2Ord2(n+r�1)+Ord2(r�1)bd

�����
2

�

Because of the condition Ord2(n + r � 1) �Ord2(r � 1) we get

���H (r )
n

���
2

=

����
�
n + r � 1
r � 1

�����
2

�����
ad � 2Ord2(n+r�1)�Ord2(r�1)bc

2Ord2(n+r�1)bd

�����
2

�

Since the nominator is odd, we get the following:�����
ad � 2Ord2(n+r�1)�Ord2(r�1)bc

2Ord2(n+r�1)bd

�����
2

= 2Ord2(n+r�1)�

To compute the 2-adic norm of the binomial coefficient, we use the previous
lemma. ����

�
n + r � 1
r � 1

�����
2

=

���� (n + r � 1)!
(r � 1)!n!

����
2

=

=
2A2(n+r�1)�n�r+1

2A2(r�1)�r+12A2(n)�n
= 2A2(n+r�1)�A2(n)�A2(r�1)�

This, and the previous equality give the result with respect to the condition
Ord2(n + r � 1) �Ord2(r � 1).

Let us fix an arbitrary n for which Ord2(n + r � 1) = Ord2(r � 1).

Hn+r�1 �Hr�1 =
1
r

+
1

r + 1
+ � � � +

1
n + r � 1

�
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Let us substract all of the fractions with odd denominators. Then we can take
1
2 out of the remainder and continue the recursive method described in the
first proof of Theorem 1. We can make such substraction steps

max

�����1r
����
2
�

���� 1
r + 1

����
2
� � � � �

���� 1
n + r � 1

����
2

�

times. The result:

jHn+r�1 �Hr�1j2 � max

�����1r
����
2
�

���� 1
r + 1

����
2
� � � � �

���� 1
n + r � 1

����
2

�
�

On the other hand, by the strong triangle inequality

jHn+r�1 �Hr�1j2 � max

�����1r
����
2
�

���� 1
r + 1

����
2
� � � � �

���� 1
n + r � 1

����
2

�
�

Corollary �� The sum of the harmonic numbers cannot be integer�

H1 +H2 + � � � +Hn �� N (n�1)�

Proof�H1 +H2 + � � �+Hn = H (2)
n . The condition with respect to the order

of n and r holds because Ord2(n + 2 � 1) �Ord2(2 � 1) = 0 for all n � 1.
Furthermore, ���H (2)

n

���
2

= 2A2(n+1)�A2(n)�A2(1)+Ord2(n+1)�

Let m = Ord2(n +1). Our goal is to minimize the power of 2. Ord2(n +1) = m

implies that n+1 �2m+1, therefore 1 � A2(n+1) � m+1 and 1 � A2(n) � m .
The minimum in the power is taken when A2(n) = m and A2(n + 1) = 1. It is
possible if and only if n = 2m � 1. In this case

A2(n + 1) �A2(n) �A2(1) + Ord2(n + 1) = 1 � m � 1 + m = 0�

We get that if n�2m�1 for some m , then jH (2)
n j2 �1, that is, H (2)

n �� N.
On the other hand, let us assume that n has the form 2m � 1. This implies
that

H (2)
n =

�
n + 2 � 1

2 � 1

�
(Hn+2�1 �H2�1) =

= (n + 1)(Hn+1 � 1) = 2m
�

a

2Ord2(n+1)b
� 1

�
=
a

b
� 2m �� N�

One can easily prove the following, using the method in the previous
proof.
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Corollary �� H (3)
n �� N for all n �1�

As we can see, the method to prove the non-integer property of harmonic
numbers does not work for hyperharmonic numbers, because there are n

and r integers for which jH (r )
n j2 = 1. In spite of this fact, we believe that

Theisinger’s theorem holds for all hyperharmonic numbers, too.

Conjecture 	� None of the hyperharmonic numbers can be integers

�r� n � 2��

Example 
� We demonstrate that the theorem described above simplifies
the calculation of the 2-norm of hyperharmonic numbers.

For instance,

H (8)
18 =

�
18 + 8 � 1

8 � 1

�
(H18+8�1 �H8�1) =

= 480700

�
34052522467
8923714800

�
363
140

�
=

10914604807
18564

�

Since j18564j2 = 2�2, we get that jH (8)
18 j2 = 22 = 4.

On the other hand, A2(18+8�1) = A2(16+8+1) = 3, A2(8�1) = A2(4+
+ 2 + 1) = 3, A2(18) = A2(16 + 2) = 2 and Ord2(18 + 8�1) = Ord2(16 + 9) = 4.
By theorem 5,

jH (8)
18 j2 = 23�3�2+4 = 22 = 4�

Finally, we pose an interesting question:

Problem �� For which n1�n2 and r1�r2 does the equality

H
(r1)
n1

= H (r2)
n2

stand?
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Abstract. We define and discuss the various characterizations and properties of
some kind of sets in monotonic spaces, weak envelope spaces and envelope spaces
which are similar to that of dense sets, nowheredense sets and �-sets in topological
spaces.

1. Introduction and preliminaries

Let X be a nonempty set and �:�(X ) � �(X ). We say that � � Γ(X )
or simply � � Γ if �(A) � �(B) whenever A � B where A and B are
subsets of X . If � � Γ, we call the pair (X� �), a monotonic space. A subset
A of X is �-open [1] if A � �(A). The complement of a �-open set is

said to be a �-closed set. If � � Γ, then ��:�(X ) � �(X ) is defined by

��(A) = X � �(X � A) and �� � Γ [1]. A subset A of X is ��-closed if
and only if �(A) � A [1, Proposition 1.8]. Let � = fA � X j A = �(A)g.
� is called the family of all �-regularclosed (�-regular [1]) sets. Therefore, a

subset A of X is �-regularclosed if and only if A is �-open and ��-closed.
The complement of a �-regularclosed set is called a �-regularopen set. Let �

be the family of all �-regularopen sets. Then, A � � if and only if A = ��(A)

if and only if A is �-closed and ��-open. We have the following subclasses
of Γ.

Γ0 = f� � Γ j �(�) = �g,

Γ1 = f� � Γ j �(X ) = X g,

Γ2 = f� � Γ j �(�(A)) = �(A) for every subset A of X g,

AMS Subject Classification (2000): 54A05.
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Γ
�

= f� � Γ j �(A) � A for every subset A of X g and

Γ+ = f� � Γ j A � �(A) for every subset A of X g. If I = f0� 1� 2�+��g
and A � I , then � � ΓA if and only if � � Γi for every i � A. If � � Γ+,
then � is called a weak envelope [3]. The pair (X� �) is called a weak envelope

space. If � � Γ2+, then � is called an envelope [3]. The pair (X� �) is called an
envelope space. Weak envelope and envelope operations are further studied
by �A� Cs�asz�ar, in [4].

A subset � of �(X ) is called a generalized topology (briefly GT)[2] if
� � � and arbitrary union of members of � is again in � . Elements of � are
called �-open sets. Complements of �-open sets are called �-closed sets. In
this paper, we define and discuss the various characterizations and properties
of sets in monotonic spaces, weak envelope spaces and envelope spaces which
are similar to that of dense sets, nowheredense sets and �-sets in topological
spaces.

2. rc-dense and rc-nwdense sets

Let (X� �) be a monotonic space. A subset A of X is said to be rc�dense

if �(A) = X . It is clear that �(A) = X if and only if ��(X � A) = �. Since
� � Γ, it follows that every superset of an rc-dense set is rc-dense and so the
existence of an rc-dense set implies that �(X ) = X and so � � Γ1 which says

that, by Proposition 1.7(b) of [1], �� � Γ0. Equivalently, if �� �� Γ0, then no
rc-dense sets exist. The following Theorem 2.1 gives a property of rc-dense
sets. Example 2.2 shows that the converse of Theorem 2.1 is not true.

Theorem ���� Let (X� �) be a monotonic space� If a subset A of X is

rc�dense� then A �V �= � for every nonempty ��regularopen set V �

Proof� Suppose A � V = � for some nonempty �-regularopen set V .

A � V = � implies that V � X � A and so V � ��(X � A). Therefore,

X � ��(X � A) � X � V and so X = �(A) � X � V which implies that
V = �, a contradiction to the hypothesis. Therefore, A � V �= � for every
nonempty �-regularopen set V .

Example ���� Let X = fa� b� cg and �:�(X ) � �(X ) be
defined by �(�) = fbg, �(fag) = fa� bg, �(fbg) = fb� cg, �(fcg) = fb� cg,
�(fa� bg) = X , �(fa� cg) = X , �(fb� cg) = fb� cg, �(X ) = X . Then � � Γ,
� �� Γ2, � = ffb� cg� X g and � = f�� fagg. Now V = fag is the only
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nonempty �-regularopen set such that V � fag�� but fag is not rc-dense.
Note that fa� bg, fa� cg and X are rc-dense sets.

Theorem ���� Let (X� �) be a weak envelope space� If A is a subset

of X such that A � V �= � for every nonempty ��regularopen set V � then

�(A) �V �= � for every non�empty ��regularopen set V �

Proof� The proof follows from the fact that � � Γ+.

The following Example 2.4 shows that the condition � � Γ+ in Theo-
rem 2.3 cannot be dropped.

Example ���� Let X = fa� b� cg and �:�(X ) � �(X ) be defined by
�(�) = fag, �(fag) = fag, �(fbg) = fag, �(fcg) = X , �(fa� bg) = fag,
�(fa� cg) = X , �(fb� cg) = X , �(X ) = X . Then � � Γ, � 	� Γ+, � = ffag� X g
and � = f�� fb� cgg. Let A = fa� bg. V = fb� cg is the only nonempty
�-regularopen set such that V � A = fbg��. But �(A) = fag and so
�(A) �V = �.

Theorem ���� Let (X� �) be a monotonic space and A � X � Then the

following hold�

(a) If A is rc�dense� then �(A)�V �= � for every nonempty ��regularopen set

V �

(b) If � � Γ2 and �(A) � V �= � for every nonempty ��regularopen set V �

then A is rc�dense�

Proof� (a) The proof is clear.

(b) Suppose �(A) � V �= � for every nonempty �-regularopen set V and

A is not rc-dense. Then X � �(A)��. If V = X � �(A), then ��(V ) =

= ��(X � �(A)) = X � �(X � (X � �(A))) = X � �(�(A)) = X � �(A) = V
and so V is �-regularopen. But V � �(A) = (X � �(A)) � �(A) = �, a
contradiction to the hypothesis. Therefore, A is rc-dense.

The following Example 2.6 shows that the condition � � Γ2 in the above
Theorem 2.5(b) cannot be dropped. The proof of the Corollary 2.7 below
follows from Theorems 2.1, 2.3 and 2.5.

Example ���� Let (X� �) be the monotonic space of Example 2.2. � 	� Γ2,
V = fag is the only nonempty �-regularopen set such that V ��(fag)�� but
fag is not rc-dense.
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Corollary ��	� Let (X� �) be an envelope space and A � X � Then the

following are equivalent�

(a) A is rc�dense�

(b) A �V�� for every nonempty ��regularopen set V �

(c) �(A) �V�� for every nonempty ��regularopen set V �

Let (X� �) be a monotonic space. We say that a subset A of X is said

to be rc�nowheredense (in short, rc�nwdense) if ���(A) = �. It is clear that

���(A) = � if and only if ���(X � A) = X . We will denote the family
of all rc-nwdense sets in a monotonic space (X� �) by N. Since � � Γ, it
follows that every subset of an rc-nwdense set is an rc-nwdense set and so the

existence of an rc-nwdense set implies that � is rc-nwdense and ��� � Γ0. In

other words, if ��� 	� Γ0, then rc-nwdense sets will not exist and so N = �.
The following Example 2.8 shows that in monotonic spaces, we can have
either N = � or N = f�g or N has more than one element. Theorem 2.9
below gives a property of rc-nwdense sets.

Example ��
� (a) [1, Example 1.12] Let X = R be the set of all real
numbers and �:�(X ) � �(X ) be defined by �(A) = f0g if 0 � A and �
otherwise. In this space, N = �.

(b) Consider the monotonic space of Example 2.2. In this space, N = f�g.

(c) Consider the monotonic space of Example 2.4. In this space,

N = f�� fag� fbg� fa� bgg


Theorem ���� Let (X� �) be a monotonic space and A � X be rc�

nwdense� If V is a nonempty ��regularopen set� then V is not a subset of

�(A)�

Proof� Since A is rc-nwdense, ���(A) = � and so ���(X � A) = X

which implies that ��(X � A) = X � �(A) is rc-dense. By Theorem 2.1,
V � (X � �(A))�� for every nonempty �-regularopen set V . Therefore,
V ��(A)��which implies that V �� �(A) for every nonempty �-regularopen
set V . This completes the proof.

The following Example 2.10 shows that the converse of the above Theo-
rem 2.9 is not true even if the space is a weak envelope space. Theorem 2.11
below shows that the converse is true if (X� �) is an envelope space. Example
2.12 shows that either the condition � � Γ2 or the condition � � Γ+ cannot
be dropped from Theorem 2.11.
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Example ����� Let (X� �) be the monotonic space of Example 2.2. If
A = fb� cg, then V = fag is the only nonempty �-regularopen set such that

V �� �(A). But ���(A) = ��(fb� cg) = fcg�� and so A is not rc-nwdense.

Theorem ����� Let (X� �) be an envelope space and A � X � If for

every nonempty ��regularopen set V � V is not a subset of �(A)� then A is

rc�nwdense�

Proof� If V is a nonempty �-regularopen set such that V is not a subset
of �(A), then V � �(A)�� which implies that V � (X � �(A))��. Since
� � Γ+, by Theorem 2.3, V � �(X � �(A))��. Since � � Γ2, by Theorem
2.5, X � �(A) is rc-dense and so �(X � �(A)) = X which implies that

X � ���(A) = X . Therefore, ���(A) = � and so A is rc-nwdense.

Example ����� (a) Example 2.10 shows that the condition Γ2 cannot be
dropped in Theorem 2.11.

(b) Consider the monotonic space of Example 2.8(a). Then � = fR�R�f0gg.
Clearly, � � Γ2. If B � X such that 0 � B and B has more than one point,
then �(B) = f0g �� B and so � 	� Γ+. If A is a nonempty subset of R not
containing 0, then R �� �(A). But A is not rc-nwdense.

Let (X� �) be a monotonic space. A subset A of X is said to be weak

rc�nwdense (in short, wrc�nwdense) if for every nonempty V � � , there
exists a nonempty W � � with W � V such that W �A = �. The following
Examples 2.13 and 2.14 shows that rc-nwdenseness and wrc-nwdenseness are
independent concepts.

Example ����� Consider the monotonic space of Example 2.8(a). Then
� = fR�R � f0gg and f0g is wrc-nwdense but not rc-nwdense. Therefore, a
wrc-nwdense set need not be an rc-nwdense set.

Example ����� Let X = fa� b� cg and �:�(X ) � �(X ) be defined by
�(�) = �, �(fag) = fag, �(fbg) = fa� bg, �(fcg) = X , �(fa� bg) = X ,
�(fa� cg) = X , �(fb� cg) = X , �(X ) = X . Then � = f�� X� fb� cgg. If
A = fbg, then A is rc-nwdense but not wrc-nwdense.

Let (X� �) be a monotonic space. We say that � is subadditive if
�(A 	 B) � �(A) 	 �(B) for every subsets A and B of X . Since � is mono-
tonic, if � is subadditive, then � is additive. That is, �(A	B) = �(A) 	 �(B)
for every subsets A and B of X . The following Lemma 2.15 is essential to
characterize rc-nwdense sets in Theorem 2.17 below.
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Lemma ����� Let (X� �) be a monotonic space and A � X �

(a) � � Γ2 if and only if �(A) is ��regularclosed for every subset A of X �

(b) If � is subadditive� then the intersection of two ��regularopen sets is a

��regularopen set�

(c) If G �A = �� then G � �(A) = � for every nonempty ��regularopen set G �

The reverse direction is true� if � � Γ+�

(d) If x � �(A)� then G �A�� for every ��regularopen set G containing x �

(e) If � � Γ2+ and G �A�� for every ��regularopen set G containing x � then
x � �(A)�

(f) A is rc�nwdense if and only if X � �(A) is rc�dense�

Proof� (a) The proof is clear.

(b) Let U and V be �-regularopen. Now

��(U �V ) = X � �(X � (U �V )) = X � �((X �U ) 	 (X �V )) =

= X � (�(X �U ) 	 �(X �V )) = (X � �(X �U )) � (X � �(X �V )) =

= ��(U ) � ��(V ) = U �V

and so U �V is �-regularopen.

(c) If G �A = �, then A � X �G and so �(A) � �(X �G) = X � ��(G) =
= X �G . Therefore, G � �(A) = �. The proof of the converse is clear.

(d) If G is a �-regularopen set containing x , then �(A) � G��. By (c),
G �A��.

(e) Suppose x 	� �(A). Since � � Γ2� G = X � �(A) is a �-regularopen set
containing x by (a), such that G � �(A) = �. Since � � Γ+, by (c), G �A = �,
a contradiction to the hypothesis which proves (e).

(f) A is rc-nwdense if and only if ���(A) = � if and only if X ����(A) = X
if and only if X � (X � �(X � �(A))) = X if and only if �(X � �(A)) = X
if and only if X � �(A) is rc-dense.

Example 2.16(a) shows that the condition � � Γ+ cannot be dropped to
prove the reverse direction in Lemma 2.15(c). Example 2.16(b) shows that the
subadditivity cannot be dropped in the above Lemma 2.15(b). Also, it shows
that in an envelope space the intersection of two ��regularopen sets need not

be a ��regularopen set� Example 2.16(c) shows that the condition � � Γ2
cannot be dropped in Lemma 2.15(e). That is, Lemma 2.15(e) is not true in a
weak envelope space.
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Example ����� (a) Let X = fa� b� cg and define �:�(X ) � �(X ) by
�(A) = fag for every subset A of X . Then � = f fb� cgg and � 	� Γ+. If
A = fbg, then G � �(A) = � for every G � � but G �A��.

(b) Consider X = fa� b� cg and define �:�(X ) � �(X ) by �(�) = �,
�(fag)=fag, �(fbg) = fbg, �(fcg) = fcg, �(fa� bg) = fa� bg, �(fa� cg) =
= fa� cg, �(fb� cg) = �(X ) = X . Then � � Γ+ and � � Γ2. If A = fbg and
B = fcg, then �(A)	�(B) = fb� cg. But �(A	B) = �(fb� cg) = X �
 fb� cg =
= �(A) 	 �(B). Therefore, � is not subadditive. Here

� = f�� fag� fbg� fcg� fa� bg� fa� cg� X g

and

� = f�� fbg� fcg� fa� bg� fa� cg� fb� cg� X g


If U = fa� bg and V = fa� cg, then U and V are �-regularopen sets but
U �V = fag is not a �-regularopen set.

(c) Consider the monotonic space (X� �) of Example 2.14. Then � � Γ+
+� � 	� Γ2 and � = f�� X� fb� cgg. If A = fbg, then G � A�� for every
nonempty �-regularopen set G containing c. Since �(A) = �(fbg) = fa� bg,
c 	� �(A).

Theorem ���	� Let (X� �) be an envelope space and A � X � Then the

following hold�

(a) If A is wrc�nwdense� then A is rc�nwdense�

(b) If � is subadditive and A is rc�nwdense� then A is wrc�nwdense�

Proof� (a) Suppose A is not rc-nwdense. Then G = ���(A)��. Since

� � Γ2, by Proposition 1.7(c) of [1], �� � Γ2 and so ��(G) = ��(���(A)) =

= ���(A) = G and so G is a nonempty �-regularopen set. Since � � Γ+, by

Proposition 1.7(d) of [1], �� � Γ
�

and so ���(A) � �(A) which implies that
G � �(A). Then for every nonempty W � � with W � G� W � �(A)��
and so by Lemma 2.15(c), W �A��, a contradiction to the hypothesis.

(b) Suppose A is rc-nwdense. Then by Lemma 2.15(a), X � �(A) is a �-
regularopen set. By Lemma 2.15(f), X � �(A) is rc-dense. By Theorem 2.1,
(X � �(A)) � V = W is nonempty and W � V for every nonempty �-
regularopen set V . By Lemma 2.15(b), W is �-regularopen. Since � � Γ+,
A �W = A � ((X � �(A)) �V ) = �. Therefore, A is wrc-nwdense.

Corollary ���
� Let (X� �) be an envelope space� A � X and � be

subadditive� Then the following are equivalent�



2009. március 13. –9:20

28 V. RENUKADEVI

(a) A is wrc�nwdense�

(b) A is rc�nwdense�

(c) If V is a nonempty ��regularopen set� then V is not a subset of �(A)�

Proof� The proof follows from Theorems 2.17, 2.9 and 2.11.

The following Example 2.19 shows that in Theorem 2.17(a), the conditi-
on envelope cannot be replaced by weak envelope. Example 2.20 shows that
in Theorem 2.17(b), the condition subadditive on � cannot be dropped.

Example ����� Let X = fa� b� cg and �:�(X ) � �(X ) be defined by
�(�) = fag, �(fag) = fa� bg, �(fbg) = fa� bg, �(fcg) = X , �(fa� bg) =
= �(fa� cg) = �(fb� cg) = �(X ) = X . Then (X� �) is a weak envelope space.
Since � = f�g, every nonempty subset of X is wrc-nwdense and so fcg is
wrc-nwdense but it is not rc-nwdense.

Example ����� Let (X� �) be an envelope space where X = fa� b� c� dg
and �:�(X ) � �(X ) be defined by

�(�) = �� �(fag) = fag� �(fbg) = fbg� �(fcg) = fa� b� cg� �(fdg) = fa� dg�

�(fa� bg) = �(fa� cg) = �(fb� cg) = fa� b� cg�

�(fa� dg) = fa� dg� �(fb� dg) = �(fc� dg) = �(X ) = X�

�(fa� b� cg) = fa� b� cg� �(fa� b� dg) = �(fa� c� dg) = �(fb� c� dg) = X


Then � = f�� fdg� fb� cg� fa� c� dg� fb� c� dg� X g. We show that � is not
subadditive. If A = fag and B = fbg, then �(A 	 B) = fa� b� cg and
�(A) 	 �(B) = fa� bg. Therefore, � is not subadditive. If A = fbg, then

���(A) = ��(fbg) = � and so A is rc-nwdense. If V = fb� cg, then V �A��
and so A is not wrc-nwdense.

A nonempty collection I of subsets of X is said to be an ideal [6] if it
satisfies the following: (i) If A � I and B � A, then B � I and (ii) A	B � I
whenever A � I and B � I. In the rest of this section, we discuss some
properties of rc-nwdense sets and analyze under what additional conditions
on �� N is an ideal on X .

Theorem ����� Let (X� �) be a monotonic space and A � X � If A is the

union of a ��regularopen set and an rc�nwdense set� then A� �(X �A) is an
rc�nwdense set�

Proof� Let A = G 	N where G is �-regularopen and N is rc-nwdense.

If M = N � G , then ���(M ) = ���(N � G) � ��(�(N ) � �(X � G)) �

� ��(�(N ))���(�(X�G)) = ����(�(X�G)) = � and so M is rc-nwdense.
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Again, M 	G = (N �G) 	G = N 	G = A. Since G is �-regularopen such

that G � A, we have G � ��(A). Now

A� �(X �A) = (G 	N )� �((X �G)� (X �N )) � (G 	N )� �(X �G) =

= (G	N )� (X���(G)) = (G	N )� (X�G) = N � (X �G) = N �G = M


Since A � �(X � A) is a subset of an rc-nwdense set M , A � �(X � A) is
rc-nwdense.

The following Theorem 2.22 shows that the converse of Theorem 2.21
is true if the space (X� �) is an envelope space. Example 2.23 below shows
that the condition envelope on the space cannot be dropped in Theorem 2.22.
Theorem 2.24 gives a characterization of rc-nwdense sets in an envelope
space.

Theorem ����� Let (X� �) be an envelope space and A � X � If

A � �(X �A) is an rc�nwdense set� then A is the union of a ��regularopen
set and an rc�nwdense set�

Proof� If A � �(X � A) = �, then A � X � �(X � A) = ��(A) which

implies that A = ��(A), since by Proposition 1.7(d) of [1] � � Γ+ if and only

if �� � Γ
�

. Now ��(A) 	 (A � �(X � A)) = A 	 (A � (X � ��(A))) = A.
Suppose A � �(X �A)��. Then

��(A) 	 (A � �(X �A)) = (��(A) 	A) � (��(A) 	 (X � ��(A))) =

= ��(A) 	A


Since � � Γ2� �
�(A) � � and since � � Γ+� �

�(A) � A. Therefore,

��(A) 	 (A � �(X �A)) = A. This completes the proof.

Example ����� (a) Let X = R be the set of all real numbers and
�:�(X ) � �(X ) be defined by �(A) = A if 0 � A and � otherwise.
Then (X� �) is a monotonic space, � � Γ2� N = f�g 	 fA j 0 	� Ag and
� = f��Rg 	 fA j 0 	� Ag. If B is a nonempty subset of R such that 0 	� B ,
then �(B) = � and so � 	� Γ+. If A = [0� 1), then A � �(X � A) = � and so
A� �(X �A) is rc-nwdense but A is not the union of an rc-nwdense set and
a �-regularopen set.

(b) Let X = fa� b� cg and �:�(X ) � �(X ) be defined by �(�) = �, �(fag) =
= fag, �(fbg) = fa� bg, �(fcg) = X , �(fa� bg) = �(fa� cg) = �(fb� cg) =
= �(X ) = X . Then � � Γ+, � = f�� fb� cg� X g and N = f�� fag� fbgg. Since
�(�(fbg))��(fbg), � 	� Γ2. If A = fa� cg, then A � �(X � A) = fag, which
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is rc-nwdense but A cannot be written as the union of an rc-nwdense set and
a �-regularopen set.

Theorem ����� Let (X� �) be an envelope space and A � X � Then A is

rc�nwdense if and only if A � �(X � �(A))�

Proof� If A is rc�nwdense, then ���(A) = �. Now,

�(X � �(A)) = X � ���(A) = X � A


Conversely, if A � �(X � �(A)), then A � X � ���(A) and so

���(A) � ���(X � ���(A)) = ��(X � �����(A)) =

= ��(X � ���(A)) � X � ���(A)
 (cf. [1], 1.7).

Therefore, ���(A) = � which implies that A is rc-nwdense.

Theorem ����� Let (X� �) be an envelope space and � be subadditive�

Then the union of two rc�nwdense sets is again an rc�nwdense set and so� if

N is nonempty� then N is an ideal�

Proof� Let A and B be two rc-nwdense subsets of X . Then ���(A) = �

and ���(B) = � and so X � ���(A) = X and X � ���(B) = X . This
implies that �(X � �(A)) = X and �(X � �(B)) = X and so X � �(A) and
X � �(B) are rc-dense sets. Let ��G � � . Since X � �(A) is rc-dense, by
Theorem 2.1, G � (X � �(A))��. Since � � Γ2� X � �(A) � � by Lemma
2.15(a). By Lemma 2.15(b), G� (X ��(A)) � � . Since X ��(B) is rc-dense,
(G�(X��(A)))�(X��(B))��which implies that G�(X�(�(A)	�(B)))��
and so G � (X � (�(A 	 B)))��, since � is additive. By Corollary 2.7,
X � (�(A 	 B)) is rc-dense and so �(X � (�(A 	 B))) = X which implies

that X � �(X � (�(A 	 B))) = �. Therefore, ���(A 	 B) = � and so A 	 B
is rc-nwdense. This completes the proof.

Example 2.23(a) above shows that if the finite union of rc-nwdense
subsets of the space (X� �) is rc-nwdense, then � need not be additive. The
following Example 2.26 shows that the condition subadditive on � in Theorem
2.25 cannot be dropped.

Example ����� Consider the monotonic space (X� �) of Example 2.19.
Then � � Γ+ and � 	� Γ2. If A = fagand B = fbg, then �(A)	 �(B) = fa� bg.
But �(A 	 B) = �(fa� bg) = X �
 fa� bg = �(A) 	 �(B). Therefore, � is not
subadditive. Here � = fX g and � = f�g. Also, N = f�� fag� fbgg
 If C = fag
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and D = fbg, then C 	D = fa� bg and ���(C 	D) = ��(X ) = X � �(�) =
= X � fag = fb� cg�� and so C 	D is not an rc-nwdense set.

Theorem ���	� Let (X� �) be an envelope space� A � X and � be

subadditive� Then the following hold�

(a) �(A) �V � �(A �V ) for every ��regularopen set V �

(b) �(�(A) �V ) = �(A �V ) for every ��regularopen set V �

(c) If A is rc�dense� then �(V ) = �(A �V ) for every ��regularopen set V �

Proof� (a) Suppose x � �(A) �V . Then x � �(A) and x � V . If G is a
�-regularopen set containing x , by Lemma 2.15(b), G �V is a �-regularopen
set containing x and so by Lemma 2.15(d), (G �V ) �A = G � (V �A)��.
By Lemma 2.15(e), x � �(V �A). Therefore, �(A) �V � �(A �V ).

(b) Since � � Γ+� A � V � �(A) � V and so �(A � V ) � �(�(A) � V ) �
� ��(A �V ) = �(A �V ) and so �(�(A) �V ) = �(A �V ).

(c) By (b), if V is �-regularopen, then

�(A �V ) = �(�(A) �V ) = �(X �V ) = �(V )

and so (c) follows.

Let � � �(X ). � � Γ is said to be ��friendly [5] if �(A)�V � �(A�V )
for every subset A of X and V � �. A generalized topology � is said to be
a quasi�topology [5] if M �M1 � � whenever M � � and M1 � � .

Theorem ���
� Let (X� �) be a monotonic space� Then the following

hold�

(a) If � is a weak envelope� then � is a generalized topology� In addition� if

� is subadditive� then � is a quasi�topology�

(b) If � is an envelope� then � is subadditive if and only if � is ��friendly�

(c) � is subadditive if and only if ��(A � B) = ��(A) � ��(B) for every

subsets A and B of X �

(d) If � is an envelope� � is subadditive� G is ��regularopen and A � X � then

G � ��(A) = ��(G �A)�

(e) If � is an envelope� � is subadditive� F is ��regularclosed and A � X �

then ��(A 	 F ) � ��(A) 	 F �

(f) If � is an envelope� � is subadditive� F is ��regularclosed and A � X �

then �(A 	 F ) = �(A) 	 F �

Proof� (a) By Lemmas 1.3 and 1.4 of [3], � is a generalized topology.
By Lemma 2.15(b), � is a quasi-topology.
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(b) If � is subadditive, then by Theorem 2.27(a), � is �-friendly. Conversely,
suppose � is �-friendly. For subsets A and B of X ,

�(A 	 B)� �(B) = �(A 	 B) � (X � �(B))


Since X � �(B) � � by Lemma 2.15(a), by Theorem 2.27(a),

�(A 	 B)� �(B) � �((A 	 B) � (X � �(B))) = �(A � (X � �(B))) � �(A)

and so �(A 	 B) � �(A) 	 �(B).

(c) The proof follows from the definition of ��.

(d) Let G be �-regularopen and A be any subset of X . Then G � ��(A) is a

�-regularopen set by Lemma 2.15(b), such that G � ��(A) � G � A, since

�� � Γ
�

. Therefore, G���(A) � ��(G�A) = ��(G)���(A) = G���(A),

by (c). Therefore, G � ��(A) = ��(G �A).

(e) Now

X���(A	F ) = �(X�(A	F )) = �((X�A)�(X�F )) � �(X�A)�(X�F )�

by Theorem 2.27(a). Therefore,

X � ��(A 	 F ) � (X � ��(A)) � (X � F ) = X � (��(A) 	 F )

and so ��(A 	 F ) � ��(A) 	 F .

(f) Now

X � �(A 	 F ) = ��(X � (A 	 F )) = ��((X �A) � (X � F )) =

= ��(X �A) � (X � F ) = (X � �(A)) � (X � F ) = X � (�(A) 	 F )

and so �(A 	 F ) = �(A) 	 F .

The following Example 2.29 shows that in a weak envelope space (X� �),
if � is �-friendly, then � need not be subadditive. Also, this example shows
that the reverse direction of Lemma 2.15(b) is not true.

Example ����� Let (X� �) be the space of Example 2.19. Then � = f�g.
Since �(A) � V � �(A � V ) for every �-regularopen set V and A � X ,
� is �-friendly. If A = fag and B = fbg, then �(fag) = fa� bg and �(fbg) =
= fa� bg so that �(A) 	 �(B) = fa� bg. But �(A 	 B) = X and so � is not
subadditive.
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3. r�-sets and r��-sets

A subset A of a monotonic space (X� �) is said to be an r��set if

���(A) � ���(A). Clearly, every rc-nwdense set is an r�-set. The following
Theorem 3.1 shows that �-regularopen sets are r�-sets, if � � Γ+.

Theorem ���� Let (X� �) be a monotonic space� If � � Γ+� then every

��regularopen set is an r��set� In particular� � is an r��set�

Proof� Suppose A is a �-regularopen set. Then ��(A) = A. Now, since

� � Γ+, ���(A) � �(A) = ���(A). Therefore, A is an r�-set.

Theorem ���� Let (X� �) be a monotonic space and � � Γ2� If A � B �
� �(A) and A is an r��set� then B � �(A) and �(B) are r��sets�

Proof� Since A is an r�-set, ���(A) � ���(A). Again, A � B implies

that ��(A) � ��(B) and so ���(A) � ���(B). Since � � Γ2� A � B �

� �(A) implies that �(A) = �(B). Now ���(B) = ���(A) � ���(A) �

� ���(B) and so B is an r�-set. Clearly, �(A) and �(B) are r�-sets.

Corollary ���� Let (X� �) be a monotonic space and � � Γ2� If A is an

r��set which is also an rc�dense set� then every superset of A is an r��set�

The following Example 3.4 shows that the condition � � Γ2 in Theorem
3.2 cannot be dropped.

Example ���� Consider the monotonic space (X� �) of Example 2.2.

Then � 	� Γ2. If A = fag, then ���(A) = fag and ���(A) = fa� bg.
Therefore, A is an r�-set. If B = fa� bg, then A � B � �(A) = fa� bg,

���(B) = fa� cg and ���(B) = fa� bg. Therefore, B is not an r�-set.

Theorem ���� Let (X� �) be a monotonic space and A � X � If A is an

r��set� then X �A is also an r��set�

Proof� If A is an r�-set, then ���(A) � ���(A) which implies that

X � ���(A) � X � ���(A) and so ��(X � ��(A)) � �(X � �(A)).

Therefore, ���(X �A) � ���(X �A) and so X �A is an r�-set.

Theorem ���� Let (X� �) be a monotonic space� If there exists a singleton

set which is both ��regularopen and rc�dense in X � then every singleton set

is an r��set�
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Proof� Suppose fxg is both �-regularopen and rc-dense. Then ��(fxg) =

= fxg and �(fxg) = X . Let y � X be arbitrary. If y = x , then ���(fyg) =

= ���(fxg) = �(fxg) = X and ���(fyg) = ���(fxg) = ��(X ). Therefore,

���(fyg) � ���(fyg) and so fyg is an r�-set. If y�x , then y � X � fxg

and so ���(fyg) � ���(X � fxg) = ��(X � ��(fxg)) = ��(X � fxg) =

= X � �(fxg) = �. Therefore, ���(fyg) � ���(fyg) and so fyg is an r�-set
in this case also.

Theorem ��	� Let (X� �) be a monotonic space and � = r�(X ) where

r�(X ) is the family of all r��sets in (X� �)� Then the following hold�

(a) If A � � � then A � ��

(b) If � � Γ+� then �
��(A)�� for every nonempty subset A of X �

Proof� (a) Suppose A � � such that A 	� �. A 	� � implies that
X �A 	� � . By hypothesis, X �A 	� r�(X ) which implies that A 	� r�(X ),
by Theorem 3.5, a contradiction to the hypothesis. This completes the proof.

(b) Suppose ���(A) = � for some nonempty subset A of X . Then A is an

r�-set and so by hypothesis, A � � which implies that ��(A) = A. Since

� � Γ+, A � �(A) which implies that ��(A) � ���(A) = � and so A = �,

a contradiction to the hypothesis. Therefore, ���(A)�� for every nonempty
subset A of X .

The following Theorem 3.8 gives a characterization of r�-sets in enve-
lope spaces. Theorem 3.9 below gives a necessary condition for a set to be
an r�-set.

Theorem ��
� Let (X� �) be an envelope space� Then a subset A of X is

an r��set if and only if ���(A) = �����(A)�

Proof� Suppose A is an r�-set. Then, ���(A) � ���(A). Since � � Γ2,

we have ���(A) � �����(A). Since � � Γ+, we have ��(A) � A which

implies that �����(A) � ���(A). Therefore, ���(A) = �����(A). Con-

versely, suppose ���(A) = �����(A). Since � � Γ+� �
��(A) � ���(A)

and so A is an r�-set.

Theorem ���� Let (X� �) be an envelope space and A � X be an r��set�
Then the following hold�



2009. március 13. –9:20

ON SUBSETS DEFINED IN TERMS OF WEAK ENVELOPES AND ENVELOPES 35

(a) A = B 	 C where B is ��regularopen� C is rc�nwdense and B � C = ��

(b) If � is subadditive� then ���(A�B) = ���(A)����(B) for every subset

B of X �

Proof� (a) Suppose that A is an r�-set. Then ���(A) � ���(A).

If B = ��(A), then ��(B) = ����(A) = ��(A) = B and so B is �-

regularopen. If C = A � ��(A), then B 	 C = ��(A) 	 (A � ��(A)) =

= A 	 ��(A) = A. Now C � A implies that �(C ) � �(A) and so ���(C ) �

� ���(A) � ���(A). Clearly, B �C = �. By Lemma 2.15(c), B � �(C ) = �

which implies that B � ���(C ) = �. Since ���(C ) is �-regularopen, by

Lemma 2.15(c), �(B) � ���(C ) = � and so ���(A) � ���(C ) = � which

implies that ���(C ) = �. Therefore, C is rc-nwdense.

(b) Suppose that A is an r�-set. Clearly, ���(A � B) � ���(A) � ���(B).
Since � � Γ2 and � is subadditive,

���(A) � ���(B) =

= ��(���(A) � ���(B)) �

� ���(���(A) � ���(B)) �

� ���(���(A) � ���(B)) =

= ���(��(A) � ���(B))�

by Theorem 2.27(b). Therefore, ���(A)� ���(B) � ���(��(A)� �(B)) �

� ����(��(A) � B) = ���(��(A) � B) � ���(A � B). Therefore,

���(A � B) = ���(A) � ���(B).

The following Theorem 3.10 shows that in an envelope space (X� �), if
� is subadditive, then the finite intersection of r�-sets is an r�-set and the
finite union of r�-sets is again an r�-set.

Theorem ����� Let (X� �) be an envelope space and � be subadditive� If

A and B are r��sets of X � then the following hold�

(a) A � B is an r��set�

(b) A 	 B is an r��set�

Proof� (a) Suppose A and B are r�-sets. Now

���(A�B) � ���(A)����(B) � ���(A)����(B) � �(��(A)����(B))�
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by Theorem 2.27(a). Since B is an r�-set,

���(A � B) � �(��(A) � ���(B)) � ��(��(A) � ��(B)) =

= �(��(A) � ��(B)) = ���(A � B)�

by Theorem 2.28(c). Hence A � B is an r�-set.

(b) Now A � A	 B implies that ��(A) � ��(A	B) which in turn implies

that ���(A) � ���(A 	 B). Similarly, ���(B) � ���(A 	 B) and so

���(A)	 ���(B) � ���(A	B)
 Since � is subadditive and hence additive,

���(A	B) = ��(�(A)	�(B)) = ����(�(A)	�(B)) � ��(�(A)	���(B)),

by Lemma 2.15(a) and Theorem 2.28(e). Since B is an r�-set, ���(A	B) �

� ��(�(A)	 ���(B)) � ���(A)	 ���(B) � ���(A)	 ���(B), since A is

an r�-set. Therefore� ���(A	B) � ���(A	B) and so A	B is an r�-set.

The following Example 3.11 shows that the condition subadditive on �
cannot be dropped in the above Theorem 3.10. Also, it shows that subsets of
an r�-set need not be an r�-set.

Example ����� Consider the monotonic space of Example 2.19. If
A = fag and B = fbg, then

���(A) = ��(fa� bg) = X � �(fcg) = X �X = � � ���(A)


Also, ���(B) = ��(fa� bg) = � � ���(B). Therefore, A and B are r�-sets.
But A 	 B = fa� bg is not an r�-set. For,

���(A 	 B) = ��(X ) = X � �(�) = X � fag = fb� cg

and

���(A 	 B) = �(X � �(fcg)) = �(X �X ) = �(�) = fag �� ���(A 	 B)

and so A 	 B is not an r�-set.

If C = fa� cg and D = fb� cg, then

���(C ) = ��(X ) = X � �(�) = X � fag = fb� cg

and

���(C ) = �(X � �(fbg)) = �(X � fa� bg) = �(fcg) = X � ���(C )


Also,

���(D) = ��(X ) = X � �(�) = X � fag = fb� cg

and
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���(D) = �(X � �(fag)) = �(X � fa� bg) = �(fcg) = X � ���(D)

and so C and D are r�-sets. But C �D = fcg is not an r�-set. For,

���(C �D) = ��(X ) = X � �(�) = X � fag = fb� cg

and

���(C �D) = �(X � �(fa� bg)) = �(X �X ) = �(�) = fag �� ���(C �D)

and so C �D is not an r�-set.

Corollary ����� Let (X� �) be an envelope space and � be subadditive�

If A = B 	 C where B is ��regularopen and C is rc�nwdense� then A is an

r� � set �

Proof� The proof follows from Theorem 3.1 and Theorem 3.10(b).

A subset A of a monotonic space (X� �) is said to be an r���set if A is
an r��set and every subset of A is also an r��set. Clearly, every rc-nwdense

set is an r���set. In fact, the following Theorem 3.13, the proof of which

follows from Theorem 3.10(b), shows that the family of all r���sets is an
ideal in an envelope space (X� �), if � is subadditive.

Theorem ����� Let (X� �) be an envelope space and � be subadditive�

Then the family of all r���sets of X is an ideal�

A subset A of a monotonic space (X� �) is said to be locally rc�closed if
A = G �F where G is a �-regularopen set and F is a �-regularclosed set. If �
is a weak envelope, then X is �-regularclosed. Therefore, every �-regularopen
set is a locally rc-closed set. Clearly, A is locally rc-closed if and only if X�A
is the union of a �-regularopen set and a �-regularclosed set. The following
Theorem 3.14, gives characterizations of locally rc-closed sets.

Theorem ����� Let (X� �) be an envelope space� � be subadditive and

A � X � Then the following are equivalent�

(a) A is locally rc�closed�

(b) A = G � �(A) for some ��regularopen set G �

(c) �(A)�A is ��regularclosed�

(d) A 	 (X � �(A)) is ��regularopen�

Proof� (a)�(b). Suppose A = G � F where G is �-regularopen and F
is �-regularclosed. A = G � F implies that A � F and so �(A) � �(F ) = F .
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By Theorem 2.27(a), �(A) = �(G � F ) � G � �(F ) = G � F = A and so
A � �(A). Now, A � �(A) implies that

A = A � �(A) = (G � F ) � �(A) = G � (F � �(A)) = G � �(A)


(b)�(c). Suppose that A = G � �(A) for some �-regularopen set G . Now,
�(A)�A = �(A)� (X �A) = �(A)� (X � (G � �(A))) = �(A)� ((X �G)	
	 (X � �(A))) = �(A) � (X � G). By Lemma 2.15(a) and Theorem 2.28(a),
�(A) � (X �G) is �-regularclosed. Hence �(A)�A is �-regularclosed.

(c)�(d). �(A) � A is �-regularclosed implies that X � (�(A) � A) is �-
regularopen which in turn implies that X � (�(A)� (X �A)) is �-regularopen
and so (X��(A))	(X�(X�A)) is �-regularopen. Therefore, (X��(A))	A
is �-regularopen.

(d)�(a). (A 	 (X � �(A))) � �(A) = (A � �(A)) 	 ((X � �(A)) � �(A)) =
= A � �(A) = A, since A � �(A). Hence A is locally rc-closed.

The following Example 3.15 shows that �-regularopen sets and locally
rc-closed sets are independent concepts. Theorem 3.16 below shows that for
rc-dense sets, �-regularopen sets and locally rc-closed sets coincide in an
envelope space (X� �) where � is subadditive. Theorem 3.17 below gives a
property of locally rc-closed sets.

Example ����� Let X = fa� b� cg and �:�(X ) � �(X ) be defined by

�(�) = �(fag) = �(fbg) = �(fcg) = �(fa� cg) = �(fb� cg) = fag

and

�(fa� bg) = �(X ) = fa� bg


Then � � Γ� � = ffag� fa� bg g and � = ffcg� fb� cgg. If A = fbg, then
A = fa� bg � fb� cg and so A is locally rc-closed but not �-regularopen. If
B = fb� cg, then B is �-regularopen but cannot be written as the intersection
of a �-regularopen set and a �-regularclosed set.

Theorem ����� Let (X� �) be a weak envelope space and A � X � Then

the following hold�

(a) Every ��regularopen set is locally rc�closed�

(b) If � � Γ2� � is subadditive and A is an rc�dense subset of X which is also

locally rc�closed� then A is ��regularopen�

Proof� (a) The proof follows from the fact that if � � Γ+, then X is
�-regularclosed.
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(b) Suppose that A is both rc-dense and locally rc-closed. Then A = G ��(A)
for some �-regularopen set G (cf. 3.14(b)). Now, A = G � �(A) implies that
A = G �X = G and so A is a �-regularopen set.

Theorem ���	� Let (X� �) be a monotonic space and � be subadditive�

If G is ��regularopen and A is locally rc�closed� then A � G is also locally

rc�closed�

Proof� A is locally rc-closed implies that A = U � F where U is
�-regularopen and F is �-regularclosed. A�G = (U �F )�G = (U �G)�F .
Since � is subadditive, U � G is �-regularopen, by Lemma 2.15(b). Hence
A �G is locally rc-closed.
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Abstract. Quite recently, Sheik and Sundaram [22] have obtained the fol-
lowing theorem: a function f : (X� �) � (Y� �) is continuous if and only if f is
� -continuous and sl c�-continuous. In this paper, by using the notion of mg�-closed
sets, we obtain the unified theory for the above decomposition of continuity in
topological spaces.

1. Introduction

In 1970, Levine [10] introduced the notion of generalized closed (g-
closed) sets in topological spaces. As modifications of g-closed sets, Muru-
galingam [13] introduced the notions of sg�-closed (resp. �g�-closed, pg�-
closed �g�-closed) sets by using semi-open (resp. �-open, preopen, �-open)
sets and studied their basic properties and characterizations. In [16], these
notions are unified by the notion of mg�-closed sets. The notion of sg�-
closed sets is also called � -closed [23], semi-star-closed [19], or ĝ-closed
[8]. Recently, by using the notion of � -closed sets, Sheik and Sundaram [22]
obtained the following theorem: a function f : (X� �) � (Y� �) is continuous
if and only if f is � -continuous and sl c�-continuous.

The present authors [17], [18] introduced and investigated the notions
of m-structures, m-spaces and m-continuity. In this paper, we introduce the
notion of mlc-sets as a general form of locally closed sets. By using mg�-
closed sets and mlc-sets, we introduce the notions of mg�-continuity and
mlc-continuity, respectively, and obtain a general decomposition of continu-
ity for the above theorem. Furthermore, we provide a sufficient condition for
an mg�-continuous function to be continuous. In the last section, we consider
new forms of decomposition of continuity.

AMS Subject Classification (2000): 54A05, 54C08.
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2. Preliminaries

Let (X� �) be a topological space and A a subset of X . The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively.

Definition ���� A subset A of a topological space (X� �) is said to be
semi�open [9] (resp. preopen [12], ��open [14], b�open [3], ��open [1]) if
A � Cl(Int(A)) (resp. A � Int(Cl(A)), A � Int(Cl(Int(A))), A � Cl(Int(A))�
� Int(Cl(A)), A � Cl(Int(Cl(A)))).

For the subsets defined in Definition 2.1, the following relations are well-
known:

DIAGRAM I

open � �-open � preopen
� �

semi-open � b-open � �-open

The family of all semi-open (resp. preopen, �-open, b-open, �-open) sets
in (X� �) is denoted by SO(X ) (resp. PO(X ), �(X ), BO(X ), �(X )).

Definition ���� Let (X� �) be a topological space. A subset A of X
is said to be g�closed [10] (resp. sg��closed, pg��closed, �g��closed, bg��
closed, �g��closed [13]) if Cl(A) � U whenever A � U and U is open
(resp. semi-open, preopen, �-open, b-open, �-open) in (X� �).

Remark ����

(1) An sg�-closed set is also called � -closed [23], semi-star-closed [19],
or ĝ-closed [8].

(2) By the definitions, we obtain the following diagram:

DIAGRAM II

g-closed � �g�-closed � pg�-closed
� �

sg�-closed � bg�-closed � �g�-closed

Throughout the present paper, (X� �) and (Y� �) always denote topologi-
cal spaces and f : (X� �) � (Y� �) presents a function.
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Definition ���� A function f : (X� �) � (Y� �) is said to be g�continuous

[4] (resp. � �continuous [21] or ĝ�continuous [8]) if f �1(F ) is g-closed (resp.
� -closed) in (X� �) for each closed set F of (Y� �).

Remark ���� It is known in [22] that the following implications hold
and the converses are not necessarily true: continuity � � -continuity �
g-continuity.

Definition ���� A subset A of a topological space (X� �) is called an
sl c�-set [22] or an sl c-set [5] if A = U 	 F , where U 
 SO(X ) and F is
closed in (X� �).

Remark ���� It is known in [22] that every closed set is an sl c�-set but
not conversely and that an � -closed set and an sl c�-set are independent.

Definition ���� A function f : (X� �) � (Y� �) is said to be sl c��conti�

nuous [22] if f �1(F ) is an sl c�-set of (X� �) for each closed set F of (Y� �).

Remark ���� It is known in [22] that every continuous function is sl c�-
continuous but not conversely and that � -continuity and sl c�-continuity are
independent.

Theorem ���� (Sheik and Sundaram [22])� A function f : (X� �) � (Y� �)
is continuous if and only if f is � �continuous and sl c��continuous�

3. m-Structures and mg�-closed sets

Definition ���� A subfamily mX of the power set P(X ) of a nonempty
set X is called a minimal structure (briefly m�structure) [17], [18] on X if
� 
 mX and X 
 mX .

By (X�mX ), we denote a nonempty set X with a minimal structure mX
on X and call it an m�space. Each member of mX is said to be mX �open and
the complement of an mX -open set is said to be mX �closed.

Definition ���� A minimal structure mX on a nonempty set X is said to
have property B [11] if the union of any family of subsets belonging to mX
belongs to mX .

Remark ���� Let (X� �) be a topological space. Then the families SO(X ),
PO(X ), �(X ), BO(X ) and �(X ) are all m-structures with property B.
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Definition ���� Let (X� �) be a topological space and mX an m-structure
on X . A subset A is said to be mg��closed [16] if Cl(A) � U whenever
A � U and U 
 mX .

Remark ���� Let (X� �) be a topological space and A a subset of X . If
mX = � (resp. SO(X ), PO(X ), �(X ), BO(X ), �(X )) and A is mg�-closed,
then A is g-closed (resp. sg�-closed, pg�-closed, �g�-closed, bg�-closed,
�g�-closed).

Lemma ���� (Noiri and Popa [16])� Let (X� �) be a topological space and

mX an m�structure on X such that � � mX � Then the following implications

hold�

closed � mg��closed � g�closed

Lemma ���� (Noiri and Popa [16])� If A is mg��closed and mX �open�

then A is closed�

Definition ���� Let (X� �) be a topological space and mX an m-structure
on X . A subset A is called an mlc�set if A = U 	 F , where U 
 mX and F

is closed in (X� �).

Remark ���� Let (X� �) be a topological space and A a subset of X .

(1) if mX = � (resp. SO(X ), PO(X ), �(X ), BO(X ), �(X )) and A is
an mlc-set, then A is called a locally closed set [6] (briefly l c-set) (resp.
an sl c�-set [22] or an sl c-set [5], a plc-set [5], an �lc-set [2], a blc-set, a
�lc-set [5]),

(2) every closed set is an mlc-set but not conversely by Remark 2.3,

(3) an mg�-closed set and an mlc-set are independent by Remark 2.3,

(4) by the definitions, we obtain the following diagram:

DIAGRAM III

l c-sets � �lc-sets � plc-sets
� �

sl c-sets � blc-sets � �lc-sets
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4. Decompositions of continuity

Theorem ���� Let (X� �) be a topological space and mX a minimal struc�

ture on X such that � � mX � Then a subset A of X is closed if and only if it

is mg��closed and an mlc�set�

Proof� Necessity� Suppose that A is closed in (X� �). Then, by Lemma
3.1, A is mg�-closed. Furthermore, A = X 	 A, where X 
 mX and A is
closed and hence A is an mlc-set.

Su�ciency. Suppose that A is mg�-closed and an mlc-set. Since A is an
mlc-set, A = U 	 F , where U 
 mX and F is closed in (X� �). Therefore,
we have A � U and A � F . By the hypothesis, we obtain Cl(A) � U and
Cl(A) � F and hence Cl(A) � U 	F = A. Thus, Cl(A) = A and A is closed.

Corollary ���� Let (X� �) be a topological space� Then� for a subset A

of X� the following properties are equivalent�

��� A is closed�

�	� A is g�closed and a locally closed set�

�
� A is �g��closed and an �lc�set�

��� A is pg��closed and a plc�set�

��� A is sg��closed �resp� � �closed� and slc�closed �resp� sl�c�set��

�� A is bg��closed and a blc�set�

��� A is �g��closed and a �lc�set�

Proof� This is an immediate consequence of Theorem 4.1.

Definition ���� Let (X� �) be a topological space and mX a minimal
structure on X . A function f : (X� �) � (Y� �) is said to be mg�-continuous
(resp. mlc�continuous) if f �1(F ) is mg�-closed (resp. an mlc-set) in (X� �)
for each closed set F of (Y� �).

Remark ���� Let (X� �) be a topological space and mX an m-structure
on X such that � � mX . Then,

(1) by Lemma 3.1, the following implications hold: continuity � mg�-
continuity � g-continuity,

(2) every continuous function is mlc-continuous but not conversely by
Remark 2.4,

(3) mg�-continuity and mlc-continuity are independent by Remark 2.4.
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Theorem ���� Let (X� �) be a topological space and mX a minimal struc�

ture on X such that � � mX � Then a function f : (X� �) � (Y� �) is continuous
if and only if it is mg��continuous and mlc�continuous�

Proof� This is an immediate consequence of Theorem 4.1

Definition ���� A function f : (X� �) � (Y� �) is said to be g�continuous
[4] (resp. �g��continuous, pg��continuous, sg��continuous or � �continuous

[21], bg��continuous, �g��continuous) if f �1(F ) is g-closed (resp. �g�-
closed, pg�-closed, sg�-closed, bg�-closed, �g�-closed) in (X� �) for each
closed set F of (Y� �).

Definition ���� A function f : (X� �) � (Y� �) is said to be LC �conti�

nuous [6] (resp. �lc�continuous, plc�continuous, sl c�continuous or sl c��

continuous [22], blc�continuous, �lc�continuous) if f �1(F ) is a locally closed
set (resp. �lc-set, plc-set, sl c-set, blc-set, �lc-set) of (X� �) for each closed
set F of (Y� �).

Corollary ���� For a function f : (X� �) � (Y� �)� the following pro�

perties are equivalent�

��� f is continuous�

�	� f is g�continuous and LC�continuous�

�
� f is �g��continuous and �lc�continuous�

��� f is pg��continuous and plc�continuous�

��� f is � �continuous and sl c��continuous�

�� f is bg��continuous and blc�continuous�

��� f is �g��continuous and �lc�continuous�

Proof. This is an immediate consequence of Corollary 4.1.

Definition ���� Let (X� �) be a topological space and mX a minimal
structure on X . A function f : (X� �) � (Y� �) is said to be contra�m�

continuous [15] at x 
 X if for each closed set F of Y containing f (x ),
there exists U 
 mX containing x such that f (U ) � F . f is said to be
contra�m�continuous if it has this property at each point x 
 X .

Lemma ���� (Noiri and Popa [15])� Let (X�mX ) be an m�space such

that mX has property B� Then a function f : (X�mX ) � (Y� �) is contra�

m�continuous if and only if f �1(F ) is mX �open for every closed set F of

(Y� �)�
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Theorem ���� Let (X� �) be a topological space and mX a minimal

structure on X such that � � mX and mX has property B� If a function

f : (X� �) � (Y� �) is mg��continuous and contra�m�continuous� then f is

continuous�

Proof� Let F be any closed set of (Y� �). Since f is contra-m-continuous

and mX has property B, by Lemma 4.1 f �1(F ) is mX -open. Since f is

mg�-continuous, f �1(F ) is mg�-closed and hence, by Lemma 3.2, f �1(F )
is closed. Therefore, f is continuous.

Remark ���� Let (X� �) be a topological space and mX = � (resp.
SO(X ), PO(X ), �(X ), BO(X ), �(X )). Then by Theorem 4.3, we can obtain
several sufficient conditions for a function to be continuous. For example, in
case mX = � we have the following.

Corollary ���� If a function f : (X� �) � (Y� �) is g�continuous and

contra�continuous� then f is continuous�

5. New forms of decomposition of continuity

First, we recall the � -closure and the 	-closure of a subset in a topological
space. Let (X� �) be a topological space and A a subset of X . A point x 
 X

is called a � -cluster (resp. 	-cluster) point of A if Cl(V ) 	 A �= � (resp.
Int(Cl(V ))	A �= �) for every open set V containing x . The set of all � -cluster
(resp. 	-cluster) points of A is called the � �closure (resp. 	�closure) of A and
is denoted by Cl� (A) (resp. Cl� (A)) [24].

Definition ���� A subset A of a topological space (X� �) is said to be

(1) 	�preopen [20] (resp. � �preopen [16]) if A � Int(Cl� (A)) (resp.
A � Int(Cl� (A))),

(2) 	���open [7] (resp. � ���open [16]) if A � Cl(Int(Cl� (A))) (resp.
A � Cl(Int(Cl� (A)))).

By 	 PO(X ) (resp. 	�(X ), � PO(X ), ��(X )), we denote the collection
of all 	-preopen (resp. 	-�-open, � -preopen, � -�-open) sets of a topological
space (X� �). These four collections are m-structures with property B. In [16],
the following diagram is known:
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DIAGRAM IV

�-open � preopen � 	-preopen � � -preopen
� � � �

semi-open � �-open � 	-�-open � � -�-open

For subsets of a topological space (X� �), we can define many new varia-
tions of g-closed sets. For example, in case mX = 	 PO(X ), 	�(X ), � PO(X ),
��(X ), we can define new types of g-closed sets as follows:

Definition ���� A subset A of a topological space (X� �) is said to be
	pg��closed (resp. �pg��closed, 	�g��closed, ��g��closed) if Cl(A) � U
whenever A � U and U is 	-preopen (resp. � -preopen, 	-�-open, � -�-open)
in (X� �).

By DIAGRAM IV and Definitions 5.2, we have the following diagram:

DIAGRAM V

g-closed��pg�-closed� pg�-closed� 	pg�-closed� �pg�-closed
� � � �

sg�-closed � �g�-closed� 	�g�-closed� ��g�-closed� closed

Definition ���� A subset A of a topological space (X� �) is called a
	plc�set (resp. �plc�set, 	�lc�set, ��lc�set) if A = U 	 F , where U is
	-preopen (resp. � -preopen, 	-�-open, � -�-open) in (X� �) and F is closed
in (X� �).

Corollary ���� For a subset A of a topological space (X� �)� the follo�

wing properties are equivalent�

��� A is closed�

�	� A is 	pg��closed and a 	plc�set�

�
� A is �pg��closed and a �plc�set�

��� A is 	�g��closed and a 	�lc�set�

��� A is ��g��closed and a ��lc�set�

Proof� Let mX = 	 PO(X ), � PO(X ), 	�(X ) and ��(X ). Then this is
an immediate consequence of Theorem 4.1.

By defining functions similarly to Definitions 4.2 and 4.3, we obtain the
following decompositions of continuity:
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Corollary ���� For a function f : (X� �) � (Y� �)� the following pro�

perties are equivalent�

��� f is continuous�

�	� f is 	pg��continuous and 	plc�continuous�

�
� f is �pg��continuous and �plc�continuous�

��� f is 	�g��continuous and 	�lc�continuous�

��� f is ��g��continuous and ��lc�continuous�

Proof� This is an immediate consequence of Theorem 4.2.
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Abstract. We improve on a previous result on iterated difference sets in arbit-
rary ��finite groups.

1. Introduction

We investigate here the concept of iterated difference sets in the follo-
wing way: for a given subset X of an arbitrary additively written group G ,
we define D(X ) = X � X = fx � x � : x � x � � X g called difference set
of X . We put D1 = D , and for k � 2, Dk (X ) = D(Dk�1(X )) for any
X � G . In the case where G is the set of integers, Stewart and Tijdeman
in [5] investigated the so-called iterated positive difference operation: for an
infinite set A of positive integers, let D+(A) be the positive difference set
defined by D+(A) = fa�a � j a � a �, a� a � � Ag. The k -fold iterated positive
difference sequence fD+

k (A); k � 0g of A is defined by D+
0(A) = A and

D+
k (A) = D+(D+

k�1(A)) for k � 1. Stewart and Tijdeman observed that if
a sequence A has positive upper density i.e.

d(A) := lim sup
n��

jA � f1� 2� � � � � ngj
n

�0�

then the sequence fD+
k (A); k � 0g is stable i.e. there exists a k0 such that,

D+
k+1(A) = D+

k (A) for every k � k0.

We define the time of stability of A by T (A) = minfk j D+
k+1(A) =

= D+
k (A)g. For instance, if d(A) �1�2, it is readily seen that D+(A) is

AMS Subject Classification (2000): 11B75, 05D10, 37A45
Research of the authors are partially supported by “Balaton Program Project” and OTKA

grants K61908, K67676. The second author is partially supported by the CNRS
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the whole set of nonnegative integers, hence T (A) � 1. In [5] Stewart and
Tijdeman gave an upper bound for T (A) if the upper density of A is positive.

They proved that if 0 �d(A) � 1�2 then T (A) � 2 log2(d(A)�1), where
log2 denotes the logarithmic function in base 2. This result was improved by

Ruzsa in [4] where it is shown that under the same assumption on d(A), we

have T (A) � 2 + log2(d(A)�1 � 1) and this bound is sharp.

At this point we note that a seemingly similar question is to consider
the sequence fDk (A); k � 1g of the iterated difference sets without any
restriction. The advantage of this question is that it can be handled in more
general groups. Let G be a countable torsion group and let H1 � H2 � � � � �
� Hn � � � � be a sequence of finite subgroups of G . Then G is said to be
�-finite with respect to fHng if G =

S�
n=1Hn �

We assume that G is a such group. Let A � G . The asymptotic upper
density of A is defined by

d(A) = lim sup
n��

jA �Hn j

jHn j
� (1)

We introduce the time of stability in groups as well.

Assume the sequence fDk (A); k � 0g is stable (i.e. for some k ,
Dk+1(A) = Dk (A)). Let T (A�G) be the time of stability defined by

T (A�G) = minfk j Dk+1(A) = Dk (A)g�

In [1] the first named author extended the results of Stewart, Tijdeman and
Ruzsa to �-finite Abelian groups. He proved

Theorem A. Let G be a ���nite abelian group with respect to fHng and let

A be a non empty subset of G � Let d(A) be the upper density of A de�ned

by ���� If d(A) �0� then

T (A�G) � log2(d(A)�1) + 2�

It is worth mentioning that generalization to arbitrary linear operations
(i.e. instead of D(X ), we consider operation Γ(X ) = aX � bX ) of this kind
of problem is investigated in [2].

In the next section, we present some basic multiplicative results which
are used in the rest of the section in order to show that Theorem A holds with
an optimal bound in some sense without assuming G to be abelian.
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2. Iterated difference sets in finite group and �-finite group

In this section, groups are not necessarily abelian and are written mul-
tiplicatively with identity element denoted by 1. Let G be any group and
A�A1� A2� � � � � Ak be subsets of G . We denote by A1A2 � � �Ak the subset of
G of all products x1x2 � � � xk with xj � Aj , j = 1 � � � � k . We also define for

k � 1, the k -fold product set Ak = A � � �A (k times), A�1 = fx�1 j x � Ag,

and we put D(A) = AA�1. We denote by jAj the cardinality of A. Finally let
D0(A) = A, D1(A) = D(A) and Dk (A) = D(Dk�1(A)) for k � 2.

2.1. Preliminary results

Lemma ���� Let A and B be subsets of a �nite group G such that jAj +
+ jB j � jGj + 1� Then AB = G �

Proof� Indeed if there is a g � G which is not in AB , then A�1g�B = �

and so jA�1g j + jB j = jAj + jB j � jGj, a contradiction.

Lemma ���� Let A be a generating subset of a �nite group G such that

1 � A� For any non�empty subset X of G

jXAj � minfjGj� jX j + jAj�2g�

Proof� It is Theorem 1 in [3].

A straightforward consequence, which is obtained by an iterated applica-
tion of this lemma, is that for any generating subsets A1� � � � � Aj of a finite
group G such that 1 � Ai , i = 1� � � � � j , one has

jA1A2 � � � Aj j � min

�
jGj� jA1j +

jA2j + � � � + jAj j

2

�
�
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2.2. Results for finite and �-finite groups

We extend Theorem A to arbitrary finite groups and �-finite groups. We
first consider the case of arbitrary groups.

Theorem ���� Let A be a generating subset of a �nite group G such that

1 � A� Let k0 de�ned by

k0 =

�
1 if jGj�2 �jAj � jGj�j

log2

�
jGj
jAj

� 1
�k

+ 2 if jAj � jGj�2

where buc denotes the greatest integer less than or equal to the real number u �

Then� for any integer k � k0

(2) Dk (A) = G�

Proof� If jAj �jGj�2 then by Lemma 2.1. with B = A�1, we get
D1(A) = G . In the remaining of the proof, we assume that jAj � jGj�2.
To see that (2) holds if k � k0, we shall use the remark following Lemma

2.2. For any k � 1, Dk�1(A) is a product of 2k�1 subsets, the factors being

alternativelyA or A�1, which are both generating subsets of G and containing
1. It follows that jDk�1(A)j�jGj�2 whenever k �log2(jGj�jAj � 1) + 1. By
Lemma 2.1., we conclude that Dk (A) = G under the same assumption on k .
This gives our theorem.

These bounds allow us to improve that on [1, Proposition1]. We obtain
for k0 defined in Theorem 2.3. that

(3) T (A�G) � k0

for any subset A of an arbitrary finite group G .

We now show that Theorem A holds for any non abelian �-finite group as
well. In the case where A is a subset of a �-finite group G with upper density
d(A) larger than 1�2, it is readily seen that A�A = G , hence T (A�G) � 1.
We then formulate the remaining case:

Theorem ���� Let G be a ���nite group with respect to fHng and let A
be a non empty subset of G � Assume that A has a positive upper density such

that � := d(A)�1 � 2� Then

(4) T (A�G) � blog2(� � 1)c + 2�
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Proof� Since the function b c is right-continuous, there exists a real
number 0 �� �1 such that the right-hand side of (4) is equal to

k := blog2(� � �)c + 2�

Let

(5) 	 := min(� log2(�)� 1 � flog2(� � �)g)

where fug = u � buc denotes the fractional part of u . Note that 	 �0 hence
2� �1, hence there exists an increasing sequence of integers fn1 �n2 �

�� � ��ni �� � �g such that

(6) d(A) �2�
jA �Hni

j

jHni
j
� i � 1�

We claim that T (A�G) � k . Suppose that it is not the case. Thus

(7) Dk (A) 	= Dk+1(A)�

Let An = A�Hn � By (7) we infer that there exists an integer n � fni ; i � 1g
such that (6) holds and

(8) Dk (An) 	= Dk+1(An)�

Then by (5) and (6), we get

� � � �2��
jHn j

jAn j
� � � 2��

�
jHn j

jAn j
� 1

�
�

hence, by (5) again,

k � log2 (� � �) + 1 + 	 �log2

�
jHn j

jAn j
� 1

�
+ 1 + 	 � log2(2� ) =

= log2

�
jHn j

jAn j
� 1

�
+ 1�

By Theorem 2.3. and (3), we get k � T (An � Hn ), i.e. An is stable after k
steps, a contradiction to (8). This ends the proof.
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3. Concluding remarks

In order to show that bounds (3) for T (A�G) deduced from Theorem 2.3.
(and thus the bounds in Theorem 2.4.) are sharp, we provide the following
example:

Let m be a positive integer and put n = 2m+1 + 1. We denote by Un the
abelian multiplicative group formed by the complex n-th roots of unity and
let A = f1� 
 := exp(2i��n)g. It is clear that for any k � 1

Dk (A) = f
 j � �2k�1 � j � 2k�1g�

hence T (A�Un) = m+1, which coincides with the corresponding upper bound
given in Theorem 2.3.

We may extend this example as follows. Let G be a finite group and H be
a normal subgroup of G such that the factor group G�H is cyclic generated by
gH for some g � G . We letA = H
gH . Then clearly T (A�G) = T (A�G�H )
where A is the image of A by the canonical morphism from G onto G�H . If

we assume further that G�H has order n = 2m+1 + 1 for some m � 1, we get

T (A�G) = T (A�G�H ) = T (f1� 
g� Un) = m + 1 =

�
log2

�
jGj

jAj
� 1

��
+ 2�

To conclude, we stress the fact that upper bounds in Theorems 2.3.
and 2.4. can be sligthly improved if we consider particular groups G and
subsets A of G . For instance, we easily deduce from Cauchy-Davenport

theorem that T (A�Z�pZ) � log2

�
p�1
k�1

�
where p is a prime number and

A any subset of Z�pZ with cardinality k � 2. Another way to derive better
bounds is to observe that in fact we have jXAj � min(jGj� jX j + djAj�2e)
in Lemma 2.2. where due denotes the smallest integer larger than or equal to
the real number u .
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Loránd Eötvös University,
Faculty of Sciences
Institute of Mathematics
H-1117 Pázmány st. 1/c
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Abstract. Recently Ekici [9] has introduced the notion of upper/lower nearly
continuous multifunctions as a generalization of continuous multifunctions and N -
continuous functions [16]. In this paper, we obtain the unified form of several
generalizations of upper/lower nearly continuous multifunctions.

1. Introduction

The notion of N -closed sets in a topological space is introduced in
[6] and studied in [20], [21] and other papers. Ekici [9] introduced and
studied upper/lower nearly continuous multifunctions as a generalization of
upper/lower semi-continuous multifunctions and N -continuous functions. In
[26], the present authors introduced the notion of upper/lower m-continuous
multifunctions.

In this paper we introduce and study the notion of upper/lower nearly
m-continuous multifunctions as multifunctions from a set satisfying some
minimal conditions into a topological space. The multifunction is a genera-
lization of upper/lower m-continuous multifunctions and upper/lower nearly
continuous multifunctions. We obtain several characterizations and properties
of such multifunctions by generalizing the results established in [9] and other
results. In the last section, we recall some types of modifications of open sets
and point out the possibility for new forms of nearly continuous multifuncti-
ons.
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2. Preliminaries

Let (X� �) be a topological space and A a subset of X . The closure of A
and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset
A is said to be regular open (resp. regular closed) if Int(Cl(A)) = A (resp.
Cl(Int(A)) = A).

Definition ���� A subset A of a topological space (X� �) is said to be
N �closed relative to X (briefly N �closed) [6] if every cover of A by regular
open sets of X has a finite subcover.

Definition ���� Let (X� �) be a topological space. A subset A of X is
said to be ��open [19] (resp. semi�open [14], preopen [17], ��open [1] or
semi�preopen [3], b�open [4]) if A � Int(Cl(Int(A))) (resp. A � Cl(Int(A)),
A � Int(Cl(A)), A � Cl(Int(Cl(A))), A � Int(Cl(A)) � Cl(Int(A))).

The family of all semi-open (resp. preopen, �-open, �-open, semi-pre-
open, b-open) sets in X is denoted by SO(X ) (resp. PO(X ), �(X ), �(X ),
SPO(X ), BO(X )).

Definition ���� The complement of a semi-open (resp. preopen, �-open,
�-open, semi-preopen, b-open) set is said to be semi�closed [8] (resp. preclo�
sed [11], ��closed [18], ��closed [1], semi�preclosed [3], b�closed [4]).

Definition ���� The intersection of all semi-closed (resp. preclosed, �-
closed, �-closed, semi-preclosed, b-closed) sets of X containing A is called
the semi�closure [8] (resp. preclosure [11], ��closure [18], ��closure [2],
semi�preclosure [3], b�closure [4]) of A and is denoted by sCl(A) (resp.
pCl(A), � Cl(A), � Cl(A), spCl(A), bCl(A)).

Definition ���� The union of all semi-open (resp. preopen, �-open, �-
open, semi-preopen, b-open) sets of X contained in A is called the semi�

interior (resp. preinterior, ��interior, ��interior, semi�preinterior, b�interior)
of A and is denoted by sInt(A) (resp. pInt(A), � Int(A), � Int(A), spInt(A),

bInt(A)).

Definition ���� A function f : (X� �) � (Y� �) is said to be N �continuous

at x � X [16] if for each open set V of Y containing f (x ) and having
N -closed complement, there exists an open set U containing x such that
f (U ) � V . The function is said to be N �continuous if it has this property
at each point of X .
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Throughout the present paper, (X� �) and (Y� �) (briefly X and Y ) al-
ways denote topological spaces and F :X � Y (resp. f :X � Y ) presents
a multivalued (resp. single valued) function. For a multifunction F :X � Y ,
we shall denote the upper and lower inverse of a subset B of a space Y by
F+(B) and F�(B), respectively, that is

F+(B) = fx � X : F (x ) � Bg and F�(B) = fx � X : F (x ) � B �= �g.

Definition ��	� A multifunction F : (X� �) � (Y� �) is said to be

(1) upper nearly continuous (briefly u�n�c�) at a point x � X [9] if for
each open set V containing F (x ) and having N -closed complement, there
exists an open set U of X containing x such that F (U ) � V ,

(2) lower nearly continuous (briefly l�n�c�) at a point x � X [9] if for each
open set V meeting F (x ) and having N -closed complement, there exists an
open set U of X containing x such that F (u) �V �= � for each u � U ,

(3) upper�lower nearly continuous on X if it has this property at each
point of X .

3. Nearly m-continuous multifunctions

Definition ���� A subfamily mX of the power set P(X ) of a nonempty
set X is called a minimal structure (briefly m�structure) [24], [25] on X if
� � mX and X � mX .

By (X�mX ) (briefly (X�m)), we denote a nonempty set X with a minimal
structure mX on X and call it an m�space. Each member of mX is said to be
mX �open (briefly m-open) and the complement of an mX -open set is said to
be mX �closed (briefly m�closed).

Remark ���� Let (X� �) be a topological space. Then the families � ,
SO(X ), PO(X ), �(X ), BO(X ) and SPO(X ) are all m-structures on X .

Definition ���� Let (X�mX ) be an m-space. For a subset A of X , the
mX �closure of A and the mX �interior of A are defined in [15] as follows:

(1) mCl(A) = �fF :A � F�X � F � mX g,

(2) mInt(A) = �fU : U � A�U � mX g.

Remark ���� Let (X� �) be a topological space and A be a subset of X .
If mX = � (resp. SO(X ), PO(X ), �(X ), BO(X ), SPO(X )), then we have

(a) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), � Cl(A), bCl(A), spCl(A)),
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(b) mInt(A) = Int(A) (resp. sInt(A), pInt(A), � Int(A), bInt(A), spInt(A)).

Lemma ���� (Maki et al. [15])� Let (X�mX ) be an m�space� For subsets

A and B of X � the following properties hold�

��� mCl(X �A) = X �mInt(A) and mInt(X �A) = X �mCl(A)�

��� If (X �A) � mX � then mCl(A) = A and if A � mX � then mInt(A) =
= A�

�	� mCl(�) = �� mCl(X ) = X � mInt(�) = � and mInt(X ) = X �

�
� If A � B � then mCl(A) � mCl(B) and mInt(A) � mInt(B)�

��� A � mCl(A) and mInt(A) � A�

��� mCl(mCl(A)) = mCl(A� and mInt(mInt(A)) = mInt(A)�

Lemma ���� (Popa and Noiri [25])� Let (X�mX ) be an m�space and A a

subset of X � Then x � mCl(A) if and only if U �A �= � for every U � mX
containing x �

Definition ���� A minimal structure mX on a nonempty set X is said to
have property B [15] if the union of any family of subsets belonging to mX
belongs to mX .

Remark ���� Let (X� �) be a topological space. Then the families � ,
SO(X ), PO(X ), �(X ), BO(X ) and SPO(X ) have property B.

Lemma ���� (Popa and Noiri [27])� For an m�structure mX on a no�

nempty set X � the following properties are equivalent�

��� mX has property B

��� If mInt(A) = A� then A � mX 

�	� If mCl(A) = A� then A is mX �closed�

Definition ���� Let (X�mX ) be an m�space and (Y� �) a topological

space� A multifunction F : (X�mX ) � (Y� �) is said to be

(1) upper m�continuous (briefly u�m�c�) [26] at a point x � X if for each
open set V containing F (x ), there exists an mX -open set U containing x such
that F (U ) � V ,

(2) lower m�continuous (briefly l�m�c�) [26] at a point x � X if for each
open set V meeting F (x ), there exists an mX -open set U containing x such
that F (u) �V �= � for each u � U ,

(3) upper�lower m�continuous on X if it has this property at every point
of X .
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Definition ���� Let (X�mX ) be an m�space and (Y� �) a topological

space� A multifunction F : (X�mX ) � (Y� �) is said to be

(1) upper nearly m�continuous (briefly u�n�m�c�) at a point x � X if for
each open set V containing F (x ) and having N -closed complement, there
exists an mX -open set U containing x such that F (U ) � V ,

(2) lower nearly m�continuous (briefly l�n�m�c�) at a point x � X if for
each open set V meeting F (x ) and having N -closed complement, there exists
an mX -open set U containing x such that F (u) �V �= � for each u � U ,

(3) upper�lower nearly m�continuous on X if it has this property at every
point of X .

Remark ���� Every upper/lower m-continuous multifunction is upper/lo-
wer nearly m-continuous. The converse is not true by Example 4 of [9].

Theorem ���� For a multifunction F : (X�mX ) � (Y� �)� the following

properties are equivalent�

��� F is u�n�m�c�

��� F+(V ) = mInt(F+(V )) for each open set V of Y having N �closed

complement

�	� F�(K ) = mCl(F�(K )) for every N �closed and closed set K of Y 

�
� mCl(F�(B)) � F�(Cl(B)) for every subset B of Y having the N �

closed closure

��� F+(Int(B)) � mInt(F+(B)) for every subset B of Y such that Y �
� Int(B) is N �closed�

Proof� (1) 	 (2): Let V be any open set of Y having N -closed comp-
lement and x � F+(V ). Then F (x ) � V and there exists U � mX con-
taining x such that F (U ) � V . Therefore, x � U � F+(V ) and hence
x � mInt(F+(V )). This shows that F+(V ) � mInt(F+(V )). Therefore, by
Lemma 3.1 we obtain F+(V ) = mInt(F+(V )).

(2) 	 (3): Let K be any N -closed and closed set of Y . Then, by Lemma
3.1 we have X �F�(K ) = F+(Y �K ) = mInt(F+(Y �K )) = mInt(X � F�

�(K )) = X �mCl(F�(K )). Therefore, we obtain F�(K ) = mCl(F�(K )).

(3) 	 (4): Let B be any subset of Y having the N -closed closure.
By Lemma 3.1, we have F�(B) � F�(Cl(B)) = mCl(F�(Cl(B))). Hence
mCl(F�(B)) � mCl(F�(Cl(B))) = F�(Cl(B)).
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(4) 	 (5): Let B be a subset of Y such that Y � Int(B) is N -closed.
Then by Lemma 3.1 we have

X �mInt(F+(B)) = mCl(X � F+(B)) = mCl(F�(Y � B)) �

� F�(Cl(Y � B)) � F�(Y � Int(B)) = X � F+(Int(B))�

Therefore, we obtain F+(Int(B)) � mInt(F+(B)).

(5) 	 (1): Let x � X and V be any open set of Y containing F (x )
and having N -closed complement. Then x � F+(V ) = F+(Int(V )) �
� mInt(F+(V )). There exists U � mX containing x such that U � F+(V );
lsoedhence F (U ) � V . This shows that F is u�n�m�c�

Theorem ���� For a multifunction F : (X�mX ) � (Y� �)� the following

properties are equivalent�

��� F is l�n�m�c�

��� F�(V ) = mInt(F�V )) for each open set V of Y having N �closed

complement

�	� F+(K ) = mCl(F+(K )) is for every N �closed and closed set K of Y 

�
� mCl(F+(B)) � F+(Cl(B)) for every subset B of Y having the N �

closed closure

��� F�(Int(B)) � mInt(F�(B)) for every subset B of Y such that Y �
� Int(B) is N �closed�

Proof� The proof is similar to that of Theorem 3.1.

Corollary ���� Let (X�mX ) be an m�space and mX have property

B� For a multifunction F : (X�mX ) � (Y� �)� the following properties are

equivalent�

��� F is u�n�m�c� �resp� l�n�m�c��

��� F+(V ) �resp� F�(V )� is mX �open for each open set V of Y having

N �closed complement

�	� F�(K ) �resp� F+(K )� is mX �closed for every N �closed and closed

set K of Y �

Proof� This is an immediate consequence of Theorems 3.1 and 3.2 and
Lemma 3.3.

Remark ���� Let (X� �) and (Y� �) be topological spaces. If mX = � and
F : (X�mX ) � (Y� �) is upper/lower nearly m-continuous, then by Theorems
3.1 and 3.2 we obtain the results established in Theorem 2 of [9].
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Corollary ���� A multifunction F : (X�mX ) � (Y� �) is u�n�m�c� �resp�

l�n�m�c�� if F�(K ) = mCl(F�(K )) �resp� F+(K ) = mCl(F+(K ))� for every

N �closed set K of Y �

Proof� Let G be any open set of Y having N -closed complement. Then
Y � G is N -closed and closed. By the hypothesis, X � F+(G) = F�(Y �
�G) = mCl(F�(Y �G)) = mCl(X �F+(G)) = X �mInt(F+(G)) and hence,
F+(G) = mInt(F+(G)). It follows from Theorem 3.1 that F is u�n�m�c� The
proof of lower near m-continuity is entirely similar.

Definition ���� A function f : (X�mX ) � (Y� �) is said to be nearly

m�continuous if for each point x � X and each open set V containing f (x )
and having N -closed complement, there exists an mX -open set U containing
x such that f (U ) � V .

Corollary ���� For a function f : (X�mX ) � (Y� �)� the following pro�

perties are equivalent�

��� f is nearly m�continuous

��� f �1(V ) = mInt(f �1(V )) for each open set V of Y having N �closed

complement

�	� f �1(K ) = mCl(f �1(K )) for every N �closed and closed set K of Y 

�
� mCl(f �1(B)) � f �1(Cl(B)) for every subset B of Y having the

N �closed closure

��� f �1(Int(B)) � mInt(f �1(B)) for every subset B of Y such that

Y � Int(B) is N �closed�

Corollary ���� For a function f : (X�mX ) � (Y� �)� where mX has

property B� the following properties are equivalent�

��� f is nearly m�continuous

��� f �1(V ) is mX �open for each open set V of Y having N�closed comp�

lement

�	� f �1(K ) is mX �closed for every N�closed and closed set K of Y�

Remark ���� Let (X� �) and (Y� �) be topological spaces. If mX = � and
f : (X�mX ) � (Y� �) is nearly m-continuous, then by Corollary 3.4 we obtain
the results established in Theorem 1 of [16].

Definition ��	� A subset A of a topological space (X� �) is said to be
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(1) ��paracompact [30] if every cover of A by open sets of X is refined
by a cover of A which consists of open sets of X and is locally finite in X ,

(2) ��regular [13] if for each a � A and each open set U of X containing
a , there exists an open set G of X such that a � G � Cl(G) � U .

For a multifunction F :X � (Y� �), a multifunction ClF :X � (Y� �)
is defined in [5] as follows: (ClF )(x ) = Cl(F (x )) for each point x � X .
Similarly, we can define � ClF , sClF , pClF , spClF , and bClF .

Lemma ���� (Popa and Noiri [26]). If F : (X�mX ) � (Y� �) is a multi�

function such that F (x ) is ��paracompact and ��regular for each x � X � then

for each open set V of Y F+(V ) = G+(V )� where G denotes ClF � � ClF �
sClF � pClF � bCl F or spClF �

Proof� The proof is similar to that of Lemma 3.3 of [24].

Theorem ���� Let F : (X�mX ) � (Y� �) be a multifunction such that

F (x ) is ��regular and ��paracompact for each x � X � Then F is u�n�m�c� if

and only if G: (X�mX ) � (Y� �) is u�n�m�c�� where G denotes ClF � � ClF �
sClF � pClF � bCl F or spClF �

Proof� Necessity. Suppose that F is u�n�m�c� Let V be any open set
of Y having N -closed complement. By Lemma 3.4 and Theorem 3.1, we
have G+(V ) = F+(V ) = mInt(F+(V )) = mInt(G+(V )). This shows that G is
u�n�m�c�

Su�ciency. Suppose that G is u�n�m�c� Let V be any open set of Y

having N -closed complement. By Lemma 3.4 and Theorem 3.1, F+(V ) =
= G+(V ) = mInt(G+(V )) = mInt(F+(V )). By Theorem 3.1, F is u�n�m�c�

Lemma ���� (Popa and Noiri [26]). If F : (X�mX ) � (Y� �) is a multi�

function� then for each open set V of Y F�(V ) = G�(V )� where G denotes

Cl F � � ClF � sClF � pClF � bClF or spClF �

Theorem ���� A multifunction F : (X�mX ) � (Y� �) is l�n�m�c� if and

only if G: (X�mX ) � (Y� �) is l�n�m�c�� where G denotes ClF � � ClF � sClF �
pClF � bClF or spClF �

Proof� By using Lemma 3.5, this is shown similarly as in Theorem 3.3.
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4. Some properties

Lemma ���� (Popa and Noiri [26]). A multifunction F : (X�mX ) � (Y� �)
is u�m�c� �resp� l�m�c�� if and only if F+(V ) = mInt(F+(V )) �resp� F�(V ) =
= mInt(F�(V ))� for every open set V of Y �

Theorem ���� Let F : (X�mX ) � (Y� �) be a multifunction such that

(Y� �) has a base of open sets having N �closed complements and mX has

property B� If F is l�n�m�c�� then F is l�m�c�

Proof� Let V be any open set of Y . By the hypothesis, V = �i�IVi ,
where Vi is an open set having N -closed complement for each i � I . Since
mX has propertyB, by Corollary 3.1 F�(Vi ) � mX for each i � I . Moreover,
F�(V ) = F�(�fVi : i � I g) = �fF�(Vi ) : i � I g. Therefore, we have
F�(V ) � mX . Then by Lemma 4.1 and Lemma 3.3 F is l�m�c�

Remark ���� Let (X� �) and (Y� �) be topological spaces and

F : (X�mX ) � (Y� �)

be l�n�m�c� If mX = � , then by Theorem 4.1 we obtain the result established
in Theorem 5 of [9].

Theorem ���� Let F : (X�mX ) � (Y� �) and G: (Y� �) � (Z� � ) be

multifunctions� If F is u�m�c� �resp� l�m�c�� and G is u�n�c� �resp� l�n�c��� then

G 
 F : (X�mX ) � (Z� � ) is u�n�m�c� �resp� l�n�m�c���

Proof� Let V be any open set of V having N -closed complement. Since
G is u�n�c� (resp. l�n�c�), by Theorem 2 of [9] F+(V ) (resp. F�(V )) is an
open set of Y . Since F is u�m�c� (resp. l�m�c�), by Lemma 4.1 (G 
 F )+(V ) =
= F+(G+(V )) = mInt(F+(G+(V ))) = mInt((G
F )+(V )) (resp. (G
F )�(V ) =
= F�(G�(V )) = mInt(F�(G�(V ))) = mInt((G 
 F )�(V ))). By Theorem 3.1
(resp. Theorem 3.2) F is u�n�m�c� (resp. l�n�m�c�).

Remark ���� If F : (X� �) � (Y� �) is a multifunction and mX = � , then
by Theorem 4.2 we obtain the result established in Theorem 6 of [9].

Definition ���� A topological space (Y� �) is said to be N �normal [9] if
for each disjoint closed sets K and H of Y , there exist open sets U and V
having N -closed complement such that K � U , H � V and U �V = �.

Definition ���� An m-space (X�mX ) is said to be m-T2 [24] if for each
distinct points x � y � X , there exist U�V � mX such that x � U , y � V and
U �V = �.
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Theorem ���� If F : (X�mX ) � (Y� �) is an u�n�m�c� multifunction sa�

tisfying the following conditions�

��� F (x ) is closed in Y for each x � X �

��� F (x ) � F (y) = � for each distinct points x � y � X �

�	� mX has property B� and

�
� (Y� �) is an N �normal space�

then (X�mX ) is m�T2�

Proof� Let x and y be distinct points of X . Then, we have F (x )�F (y) =
= �. Since F (x ) and F (y) are closed and Y is N -normal, there exist disjoint
open sets U and V having N -closed complement such that F (x ) � U and
F (y) � V . By Corollary 3.1, we obtain x � F+(U ) � mX , y � F+(V ) � mX
and F+(U ) � F+(V ) = �. This shows that X is m-T2.

Remark ���� If F : (X� �) � (Y� �) is a multifunction and mX = � , then
by Theorem 4.3 we obtain the result established in Theorem 19 of [9].

Theorem ���� Let (X�mX ) be an m�space� If for each pair of distinct

points x1 and x2 in X � there exists a multifunction F from (X�mX ) into an

N �normal space (Y� �) satisfying the following conditions�

��� F (x1) and F (x2) are closed in Y �

��� F is u�n�m�c� at x1 and x2� and

�	� F (x1) � F (x2) = ��

then (X�mX ) is m�T2�

Proof� Let x1 and x2 be distinct points of X . Then, we have F (x1) �
� F (x2) = �. Since F (x1) and F (2) are closed and Y is N -normal, there exist
disjoint open sets V1 and V2 having N -closed complement such that F (x1) �
� V1 and F (x2) � V2. Since F is u�n�m�c� at x1 and x2, there exist U1 � mX
and U2 � mX containing x1 and x2, respectively, such that F (U1) � V1 and
F (U2) � V2. This implies that U1�U2 = �. Hence (X�mX ) is an m-T2-space.

Definition ���� A subset A of an m-space (X�mX ) is said to be m-
dense on X if mCl(A) = X .

Theorem ���� Let X be a nonempty set with two minimal structures m1
and m2 such that U �V � m2 whenever U � m1 and V � m2 and (Y� �) be
an N �normal space� If the following conditions are satis�ed�

��� F : (X�m1) � (Y� �) is u�n�m�c��

��� G: (X�m2) � (Y� �) is u�n�m�c��
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�	� F (x ) and G(x ) are closed in Y for each x � X � and

�
� A = fx � X : F (x ) �G(x ) �= �g�

then A = m2 Cl(A)� If F (x )�G(x ) �= � for each point in an m�dense set D of

(X�m2)� then F (x ) �G(x ) �= � for each point x � X �

Proof� Suppose that x � X � A. Then F (x ) � G(x ) = �. Since F (x )
and G(x ) are closed sets and Y is N -normal, there exist disjoint open sets
V and W in Y having N -closed complement such that F (x ) � V and
G(x ) � W . Since F is u�n�m�c� at x , there exists U1 � m1 containing
x such that F (U1) � V . Since G is u�n�m�c� at x , there exists U2 � m2
containing x such that G(U2) � W . Now set U = U1 � U2, then U � m2
and U � A = �. Therefore, by Lemma 3.2 we have x � X � m2 Cl(A) and
hence A = m2 Cl(A). On the other hand, if F (x ) � G(x ) �= � on an m-dense
set D of an m-space (X�m2), then we have X = m2 Cl(D) � m2 Cl(A) = A.
Therefore, F (x ) �G(x ) �= � for each x � X .

Corollary ���� (Ekici [9]). Let F and G be upper nearly continuous and

point closed multifunctions from a topological space (X� �) into an N �normal

space (Y� �)� Then the set fx : F (x ) �G(x ) �= �g is closed in X �

Definition ���� A topological space (X� �) is said to be N �connected

[10] if X cannot be written as the union of two disjoint nonempty open sets
having N -closed complements.

Definition ���� An m-space (X�mX ) is said to be m�connected [22] if
X cannot be written as the union of two disjoint nonempty mX -open sets.

Theorem ���� Let (X�mX ) be an m�space� where mX has property B� If

F : (X�mX ) � (Y� �) is an u�n�m�c� or l�n�m�c� surjective multifunction such

that F (x ) is connected for each x � X and (X�mX ) is m�connected� then

(Y� �) is N �connected�

Proof� Suppose that (Y� �) is not N -connected. There exist nonempty
open sets U and V of Y having N -closed complement such that U �V = �
and U �V = Y . Since F (x ) is connected for each x � X , either F (x ) � U
or F (x ) � V . If x � F+(U � V ), then F (x ) � U � V and hence x �
� F+(U ) � F+(V ). Moreover, since F is surjective, there exist x and y such
that F (x ) � U and F (y) � V ; hence x � F+(U ) and y � F+(V ). Therefore,
we obtain the following:

(1) F+(U ) � F+(V ) = F+(U �V ) = X ,
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(2) F+(U ) � F+(V ) = �,

(3) F+(U ) �= � and F+(V ) �= �.

Next, we show that F+(U ) and F+(V ) are mX -open sets. (i) In case
F is u�n�m�c� by Corollary 3.1 F+(U ) and F+(V ) are mX -open sets. (ii)
In case F is l�n�m�c� by Corollary 3.1 F+(V ) is mX -closed because U is
clopen in (Y� �), therefore, F+(V ) is mX -open. Similarly F+(U ) is mX -open.
Therefore, (X�mX ) is not m-connected.

Definition ���� Let (X�mX ) be an m-space and A a subset of X . The
m�frontier of A [25], denoted by mFr(A), is defined as follows:

mFr(A) = mCl(A) �mCl(X �A) = mCl(A)�mInt(A).

Theorem ��	� The set of all points x � X at which a multifunction

F : (X�mX ) � (Y� �) is not u�n�m�c� �resp� l�n�m�c�� is identical with the

union of the m�frontiers of the upper �resp� lower� inverse images of open

sets containing �resp� meeting� F (x ) and having N �closed complement�

Proof� Let x be a point of X at which F is not u�n�m�c� Then, there exists
an open set V of Y containing F (x ) and having N -closed complement such
that U � (X � F+(V )) �= � for every mX -open set U containing x . Hence,
by Lemma 3.2 we have x � mCl(X � F+(V )). On the other hand, we have
x � F+(V ) � mCl(F+(V )) and hence x � mFr(F+(V )).

Conversely, suppose that F is u�n�m�c� Then for each open set V having
N -closed complement and containing F (x ), we have x � mInt(F+(V )). This
is a contradiction. In case F is l�n�m�c�, the proof is similar.

5. New forms of nearly m-continuous multifunctions

For modifications of open sets defined in Definition 2.1, the following
relationships are known:

open 	 �-open 	 preopen
� �

semi-open 	 b-open 	 semi-preopen

First, we can define the following modifications of upper/lower nearly
continuous multifunctions.

Definition ���� A multifunction F : (X� �) � (Y� �) is said to be

(1) upper nearly ��continuous (resp. upper nearly precontinuous, up�

per nearly semi�continuous, upper nearly b�continuous, upper nearly sp�
continuous) at a point x � X if for each open set V containing F (x ) and
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having N -closed complement, there exists an �-open (resp. preopen, semi-
open, b-open, semi-preopen) set U containing x such that F (U ) � V ,

(2) lower nearly ��continuous (resp. lower nearly precontinuous, lo�

wer nearly semi�continuous, lower nearly b�continuous, lower nearly sp�
continuous) at a point x � X if for each open set V meeting F (x ) and having
N -closed complement, there exists an �-open (resp. preopen, semi-open,
b-open, semi-preopen) set U containing x such that F (u) � V �= � for each
u � U ,

(3) upper�lower nearly ��continuous (resp. upper�lower nearly preconti�

nuous, upper�lower nearly semi�continuous, upper�lower nearly b�continuous,
upper�lower nearly sp�continuous) on X if it has this property at each x � X .

For multifunctions defined in Definition 5.1, the following relationships
hold:

upper n-con.	 upper n-�-con. 	 upper n-precon.
� �

upper n-semi-con.	 upper n-b-con. 	 upper n-sp-con.

Remark ���� In the diagram above, “n” and “con.” means near and
continuity, respectively. And also the analogous diagram holds for the case
“lower”.

Let define the further modifications of upper/lower nearly continuous
multifunctions. For the purpose, we recall the definitions of the � -closure and
the 	-closure due to Veličko [29]. Let (X� �) be a topological space and A a
subset of X . A point x � X is called a � -cluster (resp. 	-cluster) point of A
if Cl(V ) �A �= � (resp. Int(Cl(V )) �A �= �) for every open set V containing
x . The set of all � -cluster (resp. 	-cluster) points of A is called the � �closure
(resp. 	�closure) of A and is denoted by Cl� (A) (resp. Cl� (A)) [29]. A subset
A is said to be � �closed (resp. 	�closed) if Cl� (A) = A (resp. Cl� (A) = A).
The complement of a � -closed (resp. 	-closed) set is said to be � �open (resp.
	�open). The union of all � -open (resp. 	-open) sets contained in the subset
A is called the � -interior (resp. 	-interior) of A and is denoted by Int� (A)
(resp. Int� (A)).

Definition ���� A subset A of a topological space (X� �) is said to be

(1) 	�semiopen [23] (resp. � �semiopen [7]) if A � Cl(Int� (A)) (resp.
A � Cl(Int� (A))),

(2) 	�preopen [28] (resp. � �preopen [22]) if A � Int(Cl� (A)) (resp.
A � Int(Cl� (A))),
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(3) 	�sp�open [12] (resp. � �sp�open [22]) if A � Cl(Int(Cl� (A))) (resp.
A � Cl(Int(Cl� (A)))).

By 	 SO(X ) (resp. 	 PO(X ), 	 SPO(X ), � SO(X ), � PO(X ), � SPO(X )),
we denote the collection of all 	-semiopen (resp. 	-preopen, 	-sp-open, � -
semiopen, � -preopen, � -sp-open) sets of a topological space (X� �). These six
collections are all m-structures with property B. It is known that the families
of all � -open sets and 	-open sets of (X� �) are topologies for X , respectively.
In [22] and [7], the following relationships are known:

� -open 	 	-open 	 open 	 preopen	 	-preopen	 � -preopen
� � � � � �

� -semiopen	 	-semiopen	 semi-open	 sp-open	 	-sp-open	 � -sp-open

Definition ���� A multifunction F : (X� �) � (Y� �) is said to be

(1) upper nearly � �continuous (resp. upper nearly � �precontinuous, up�
per nearly � �semi�continuous, upper nearly � �sp�continuous) at a point x �X
if for each open set V containing F (x ) and having N -closed complement, the-
re exists a � -open (resp. � -preopen, � -semiopen, � -sp-open) set U containing
x such that F (U ) � V ,

(2) lower nearly � �continuous (resp. lower nearly � �precontinuous, lower
nearly � �semi�continuous, lower nearly � �sp�continuous) at a point x � X if
for each open set V meeting F (x ) and having N -closed complement, there
exists a � -open (resp. � -preopen, � -semiopen, � -sp-open) set U containing
x such that F (u) �V �= � for each u � U ,

(3) upper�lower nearly � �continuous (resp. upper�lower nearly � �pre�
continuous, upper�lower nearly � �semi�continuous, upper�lower nearly � �sp�
continuous) on X if it has this property at each x � X .

Definition ���� A multifunction F : (X� �) � (Y� �) is said to be

(1) upper nearly 	�continuous (resp. upper nearly 	�precontinuous, up�
per nearly 	�semi�continuous, upper nearly 	�sp�continuous) at a point x �
� X if for each open set V containing F (x ) and having N -closed comple-
ment, there exists a 	-open (resp. 	-preopen, 	-semiopen, 	-sp-open) set U
containing x such that F (U ) � V ,

(2) lower nearly 	�continuous (resp. lower nearly 	�precontinuous, lower
nearly 	�semi�continuous, lower nearly 	�sp�continuous) at a point x � X if
for each open set V meeting F (x ) and having N -closed complement, there
exists a 	-open (resp. 	-preopen, 	-semiopen, 	-sp-open) set U containing
x such that F (u) �V �= � for each u � U ,
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(3) upper�lower nearly 	�continuous (resp. upper�lower nearly 	�pre�
continuous, upper�lower nearly 	�semi�continuous, upper�lower nearly 	�sp�
continuous) on X if it has this property at each x � X .

For the multifunctions defined above, the following diagram hold, where
u., n. and c. mean upper, near and continuity, respectively. And also the
analogous diagram holds for the case “lower”.

u.n.� -c. 	 u.n.	-c. 	 u.n.c. 	 u.n.p.c. 	 u.n.	-p.c. 	 u.n.� -p.c.
� � � � � �

u.n.� -s.c.	 u.n.	-s.c.	 u.n.s.c.	 u.n.sp.c.	 u.n.	-sp.c.	 u.n.� -sp.c.

Conclusion� We can apply the results established in Sections 3 and 4
to all multifunctions defined in Definitions 5.1, 5.2 and 5.3.
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1. Matching in graphs

In the first chapter of the thesis we discuss some matching prob-
lems in graphs, including non-bipartite matching, square-free 2-factors, path-
matching, and even factors. Our approach is slightly different from Edmonds’
[5] well-known method of alternating forests and blossoms. The point is that
our approach is easier to generalize to those more general problems, thus we
obtain simpler proofs and algorithms than known before, and we also obtain
some new results.

1.1. Restricted b-matching in bipartite graphs

Consider a simple bipartite graph G = (A�B ;E ) and let b � N
A�B . A

subset M � E of edges is called a b-matching if it satisfies �M (v ) � b(v )
for all nodes v � A � B . (Here �M (v ) denotes the number of edges in M
incident with a node v .) Furthermore, we are given a family K of some
complete bipartite subgraphs of G , which will be considered as “forbidden”.
A b-matching is calledK-free if it does not contain every edge of any member
of K. Suppose that for every K � K we have jA�V (K )j � 2, jB�V (K )j �
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� 2, b(v ) = jB � V (K )j for all v � A � V (K ), and b(v ) = jA � V (K )j for
all v � B �V (K ).

Theorem ���� (Pap, [26], [27]) If G� b�K satis�es the above assumpti�

ons� then the maximum cardinality of a K�free b�matching is equal to

(1) min
Z�A�B

b(A � B � Z ) + jE [Z ]j � cK(G[Z ])�

where cK(G[Z ]) denotes the number of those components of induced subg�

raph G[Z ] which are members of K� Moreover� a maximum K�free b�
matching can be constructed in polynomial time�

The formula generalizes a result of Frank [6] on Kt t -free t-matching,
and results of Hartvigsen [10] and Z. Király [13] on square-free 2-factor.
The algorithm generalizes Hartvigsen’s algorithm, and is conceptually simpler
than that.

1.2. Even factors

Consider a directed graph D = (V�A). A path�cycle is the arcset of a
unclosed/closed walk without repetition of nodes. An arc of a digraph is called
symmetric if its reverse is in the arcset of the digraph, too. A cycle is called
symmetric if all of its arcs are symmetric. D is called odd�cycle�symmetric

if all of its odd cycles are symmetric. An even factor is the node-disjoint
union of paths and even cycles. A source�component of a digraph is a strongly
connected component of in-degree zero.

Theorem ���� (Pap, Szegő, [19]) If D = (V�A) is odd�cycle�symmetric�

then the maximum cardinality of an even factor is equal to

(2) min
Z�V

jV j + jΓ+
D (Z )j � �odd(D[Z ])�

where �odd(D[Z ]) denotes the number of source�components of D[Z ] on an

odd number of nodes�

Our original proof is non-constructive. In the dissertation (and in [21],
[25]), we provide a simpler proof, which also implies a polynomial time
algorithm that is conceptually simpler than that of Cunningham, Geelen [4].
Our result is sloghtly more general, since Cunningham and Geelen only
claimed the result for so-called weakly-symmetric digraphs, a subclass of
odd-cycle-symmetric digraphs. The even factor algorithm also implies a new
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algorithm for path-matching. The method of proof can be extended to hypo-
matching in digraphs [20], [22], a common generalization of even factors and
hypo-matching (see Cornuéjols, Hartvigsen [3]).

2. Matroid matching

In the second chapter we discuss matroid matching, in particular we focus
on those special cases admitting a good characterization and a polynomial
time algorithm. First we propose a matroid intersection algorithm, which is
obtained from a generalization of the bipartite matching algorithm in the
first chapter. Then we discuss Lovász’ [14] linear matroid matching formula,
and its algorithmic proof given by Orlin and Vande Vate [29]. Then we
propose a new, algorithmic proof of a recent result of Makai and Szabó [17]
on polymatroid matching, which implies a polynomial time algorithm for a
theorem of Frank, Jordán, Szigeti [7]. Finally we discuss the lesser-known
matroid fractional matching problem, results of Vande Vate [31], and Gijswijt
[9]. We also provide a new application of matroid fractional matching, namely
fractional packing of A-paths.

2.1. Linear matroid matching

Let E = fl1� � � � � lng be a set of lines, i.e. a set of 2-dimensional subspaces
of a given vectorspace V . A line is assumed given by a pair of spanning
vectors. A subset M � E of lines is called a matching if r (M ) = 2jM j. Let
�(E ) denote the maximum cardinality of a matching. A pair K�� is called a
cover if K is a subspace, and � = fA1� � � � � Akg is a partition of E . The value

of a cover is defined by val (K��) := r (K ) +
P

Ai��
b1

2rV�K (Ai )c.

Theorem ���� (Lovász, [14]) �(E ) = min val (K��)� where the mini�

mum is taken over covers K�� �

In addition to this min-max formula, Lovász also provided a polynomial
time algorithm, on the assumption that the lines are given by an explicit
representation over a specific field, and arithmetic operations over this field
take constant time.

In this section of the thesis, we discuss another matroid matching al-
gorithm provided by Orlin and Vande Vate [29], which in many regards is
analogous to those graph matching algorithms in the first chapter. It is based
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on the observation that, in Lovász’ formula, the optimum cover is attained by
a special kind of cover, a so-called very strong cover. The algorithm maintains
a very strong cover of a growing subset of lines, and concludes by exhibiting
a maximum matching and a minimum cover of the whole set of lines.

Note that, if the matroid is given by a linear representation over the
rationals, then the original statement of Lovász’ min-max formula is NOT
a good characterization, since some subspace K may only be represented by
a basis using very large numbers. Luckily, we show that its minimum attains
with a very strong cover, which, using the following theorem, implies that
Lovász’ formula is a good characterization, and that the algorithm runs in
polynomial time.

Theorem ���� If K�� = fA1� � � � � Akg is a very strong cover� then there

are maximum matchings M1� � � � �Mk such that

K =
k�
i=1

(sp(Ai ) � sp(Mi �Ai )) �

2.2. Matching in ntcdc-free polymatroids

Consider a polymatroid function b on a finite groundset S , and let P(b)
denote its induced polymatroid. A vector is called even if all of its entries are
even. Matchings are the even vectors in P(b), the size of which is defined by
half the sum of its entries. Let �(b) denote the maximum size of a matching.
A non-trivial compatible double-circuit (ntcdc, for short) is an integer vector
w � 0 such that w �� P(b), w � 	s �� P(b) for all s � S , and supp(w ) has a
partition into at least three components such that w � 	s � 	t � P(b) iff s� t
is in distinct components of the partition. A polymatroid-function is called
ntcdc�free if there is no ntcdc.

Theorem ���� (Makai, Szabó, [17], Makai, Pap, Szabó, [18]) If b is an

ntcdc�free polymatroid�function� then �(b) = min�
P

Si��
b1

2b(Si )c� where

the minimum is taken over partitions � = fS1� � � � � Stg of S �

Makai and Szabó originally provided a non-constructive proof. In the
dissertation, we provide a different, constructive proof. Special cases of this
result are: A result of T. Király, Szabó [12] on parity constrained orienta-
tions of a graph covering a given non-negative submodular function. This
generalizes to a great extent the result of Frank, Jordán, Szigeti [7], and also
Nebeský’s [28] characterization of maximum genus graph embedding.
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2.3. Matroid fractional matching

Consider an arbitrary matroid M = (S�I). Let E be a family of some
two-element subsets of S , which are called pairs. For a set K � S , let

dK � f0� 1� 2gE denote the vector such that dK (e) := r (K � sp(e)) for all

e � E . A fractional matching is a vector x � R
E satisfying x � 0 and

dK 	 x � r (K ) for all K � S . The size of a fractional matching is defined
by the sum of its entries. Let ��(E ) denote the maximum size of a fractional
matching.

Theorem ��� (Vande Vate, [31]) ��(E ) = min
K�S

r (K ) +
1
2
rM�K (fe : rV�K (e) = 2g)�

Theorem ���� (Gijswijt, Pap, [9]) The above description of the matroid

fractional matching polytope is totally dual half�integer�

Vande Vate provided two special cases of matroid fractional matching:
graph fractional matching, and matroid intersection. In the dissertation we
show that fractional packing of A-paths is also a special case.

3. Packing A-paths

In the third chapter, we consider Mader’s [16] path-packing min-max
formulae, its generalizations, and polynomial time algorithms. Consider an
undirected graph G = (V�E ) and a set A � V . A path is called an A�path if
its two distinct endpoints are in A. Let b�(G�A) denote the maximum number
of pairwise fully node-disjoint A-paths. Gallai [8] proved that determining
b�(G�A) reduces to maximum matching in an auxiliary graph. If, moreover,
we are given a partition A = fA1� A2� � � � � Akg of A, then an A-path is called
an A�path if it joins two distinct sets Ai . Let �(G�A) denote the maximum
number of pairwise fully node-disjoint A-paths. Mader provided a min-max
formula for �(G�A). A polynomial time algorithm follows from Lovász’ [15]
linear matroid matching algorithm, and Schrijver’s [30] linear representation.
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3.1. Fractional packing of A-paths

We assume G�A is given as above, and we are given a vector b � N
V

of node-capacities. A fractional b�packing of A-paths is a vector x : “all
A-paths” 
 R satisfying the inequalities (4)–(5). The linear program (3)–(5)
is called the maximum fractional b-packing problem.

max 1x(1)

x (P) � 0 for all A-paths P ,(2)

x (fP : v � V (P)g) � b(v ) for all v � V�(3)

Theorem ���� Both ���	�
�� and its dual admit a half�integral optimum

solution�

According to the following result, in case of b � 1, the fractional b-
packing problem not only admits a half-integral optimum, but the half-integral
optimum attains at a special kind of half-integral solution. A half-integral
packing is called an odd-A-cycle, if it arises in the following way. Suppose
C is a cycle and P1� � � � � P2m+1 are pairwise node-disjoint paths such that
one of its endpoints si is in A, and the other endpoint is in V (C ), in this

cyclic order. A half-integral packing is given by assigning 1
2 with those unique

si–si+1 paths. Half-integral packings of this kind are called odd�A�cycles.

Theorem ���� There is a maximum half�integral 1�packing x which de�

composes into the fully node�disjoint union of odd�A�cycles and some paths

P with x (P) = 1�

This theorem is attractive by itself, but it also proved useful in the proof
of the following result, claiming that fractional 1-packing reduces to a special
case of matroid fractional matching. Let E = E(G�A) denote the set of those
lines of a euclidian vectorspace constructed by Schrijver [30], which implies
�(G�A) = �(E)�jV�Aj. The following theorem claims that applying matroid
fractional matching for the same set of lines implies a solution of the problem
of fractional packing.

Theorem ��� The maximum size of a fractional 1�packing is equal to

��(E)� jV �Aj�
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3.2. Mader matroids are gammoids

The problem of packing A-paths induces a matroid on the set A of
terminals, which is called the Mader matroid. A subset of A is defined
independent if there is a maximum packing covering each of those nodes
in the subset. It is quite easy to show that this gives a matroid. Schrijver [30]
published as an open question whether all Mader matroids are gammoids.
(Gammoids are the minors of transversal matroids.) In the dissertation we
show that the answer is positive.

Theorem ���� Every Mader matroid is a gammoid�

3.3. Packing non-returning A-paths

We propose a model of packing A-paths which generalizes the problem
of packing A-paths. The problem is to pack a maximum number of non-
returning A-paths in a permutation-labeled graph, for which an extension of
Mader’s formula is proven, and a polynomial time algorithm is constructed.

Consider an undirected graph G = (V�E ) and a given subset A � V of
nodes. Let Ω be an arbitrary set disjoint from the graph. We assign an element

 (v ) � Ω with every node v � A. We assign with every edge ab = e � E
a reference-orientation, and a permutation �(e) of S . We define �(e� a) :=

= �(e) and �(e� b) := �(e)�1, where we take the reference-orientation into
consideration. An A-path (v1� � � � � vm ) is called non�returning if �(v1v2� v1) �
	 	 	�(vm�1vm � vm�1)(
 (v1))�
(vm) holds.

The model of A-paths easily reduces to this setting, and thus we obtain
a generalization of Mader’s formula below. This theorem is, in fact, a gene-
ralization of Chudnovsky et al.’s [2] result on packing non-zero A-paths in a
group-labeled graph.

Theorem ���� ([23], [24])The maximum number of pairwise node�

disjoint non�returning A�paths is equal to minb�(G�X�A�V (F )�X )� where

the minimum is taken over pairs X � V� F � E such that G � X � F does

not contain any non�returning A�paths� The maximum may be determined in

running time polynomial in jV j + jE j + jΩj�
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M60. Miklós Laczkovich is Sixty
A miniconference in Real Analysis. 22–23 February, 2008
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L. Lovász: Opening remarks

Á. Császár: Some results of Miklós Laczkovich

There are some common results of M. Laczkovich and the author from the
years between 1975 and 1980. Let (fn) be a sequence of real valued functions
defined on a set X . We say that a function f is the discrete limit of this
sequence iff, for each x � X , there is an index n0 such that fn(x ) = f (x )
whenever n �n0. f is the equal limit of the sequence iff there is a sequence
of positive numbers �n such that, for each x � X , there exists an index n0
such that jfn(x ) � f (x )j��n whenever n �n0. The common papers discuss
results on these sorts of convergence, in particular, they consider Baire classes
where the usual convergence is replaced with discrete or equal convergence.

P. Humke: A little bit of this and a little bit of that

Z. Daróczy: On a family of functional equations

Let I � R be a non-empty open interval. We consider the following family
of functional equations

f (px + (1� p)y)
�
r (1� q)g(y)� (1� r )qg(x )

�
=

= �[p(1� q)f (x )g(y)� (1� p)qf (y)g(x )]�

where (p� q� r ) � (0� 1)3 and ��0� 1 are constants, f � g : I � R+ are unknown
functions and the equation holds for all x � y � I . We give a review on some
special cases of this equation depending on the four parameters which are
already solved.

Sz. Révész: Integral concentration of idempotent trigonometric polynomi-
als on small sets

L. Székelyhidi: Spectral synthesis on hypergroups

Spectral analysis and spectral synthesis deal with the description of translation
invariant function spaces over locally compact Abelian groups. As translation
has a natural meaning on commutative hypergroups, too, it seems reasonable
to consider similar problems on these structures. In this talk we present re-
cent results on spectral analysis and spectral synthesis over discrete Abelian
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groups. The first problem is to define the basic building blocks of spectral
analysis and synthesis: the exponential monomials. The reasonable definition
is not straightforward. In the talk we show how to manage this in accor-
dance with the group case on polynomial hypergroups and indicate possible
extensions for Sturm–Liouville hypergroups, as well. The next problem is to
study spectral analysis and synthesis. We deal with these problems again on
polynomial hypergroups and solve them in the positive.

M. Balcerzak: On the Laczkovich–Komjáth property concerning sequen-
ces of analytic sets

The talk is based on the paper “On the Laczkovich-Komjáth property of
sigma-ideals” (joint with Szymon G�la̧b) accepted for publication in the Topo-
logy and Its Applications. In 1977 Laczkovich proved that, for each sequence
(An) of Borel subsets of a Polish apace X , if lim supn�H An is uncountable
for every H � [N]� then

T
n�G An is uncountable for some G � [N]� . In

1984 this result was generalized by Komjáth to the case when the sets An are
analytic. His theorem, by our definition, means that the �-ideal [X ]�� has the
Laczkovich-Komjáth property (in short (LK)). We prove that every �-ideal

generated by X	E has property (LK), for an equivalence relation E � X 2

of type F� with uncountably many equivalence classes. We also show the
parametric version of this result and we study the invariance of property (LK)
with respect to various operations.

Zs. Páles: The extension of Clarke’s generalized derivative of real-valued
locally Lipschitz functions to the Radon–Nikodym space-valued setting

Locally Lipschitz functions acting between infinite dimensional normed spa-
ces are considered. Clarke’s generalized Jacobian is extended to the setting
when the range is a dual space and satisfies the Radon–Nikodým property.
Characterization and fundamental properties of this extended generalized Ja-
cobian are established including nonemptiness, compactness and upper semi-
continuity with respect to a relevant topology, and a mean-value theorem.
Connection to known notions of differentiation and chain rules are provided.
The generalized Jacobian introduced is shown to enjoy all the properties
required of a derivative like-set.

P. Holický: Decompositions of Borel bimeasurable mappings

We stated the nonseparable analogue of the classical results by Luzin, Novi-
kov and Purves on the decomposition of Borel measurable mappings which
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map Borel sets to Borel sets. We demonstrated the method of proof on the
classical result on countable decompositions of Borel bimeasurable mappings
between Polish spaces, which reads as follows:

Let X , Y be Polish spaces, f : X � Y be a Borel measurable mapping.
Then the following statements are equivalent:

(a) f (Borel (X )) � Borel (Y );

(b) f (G� (X )) � Borel (Y );

(c) there are Borel subsets X0� X1� 
 
 
 of X such that
S�
i=0 Xi = X , f (X0) is

countable, and f �Xn , n = 1� 2� 
 
 
, are injective.

J. Lindenstrauss, D. Preiss, J. Tišer: Fréchet differentiability of Lipschitz
functions via a variational principle

In the talk (presented by the third author) we indicated how a new variational
principle which in particular does not assume the completeness of the domain,
can give a new, more natural, proof of the fact that a real valued Lipschitz
function on an Asplund space has points of Fréchet differentiability. In more
details, as an illustration, we showed that everywhere Gâteaux differentiable
Lipschitz function on a a space with separable dual is somewhere Fréchet
differentiable.

M. Csörnyei: Lipschitz image of sets of positive measure

We present two constructions to Laczkovich’s problem about Lipschitz map-
pings of planar sets of positive measures onto balls. The first one uses discrete
techniques, the second one (due to Khrushchev) is based on complex analytic
methods and the Hahn-Banach theorem. The higher dimensional problem
remains open.

B. Kirchheim: Convexity notions in the Calculus of Variations
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42. Jahrestagung der Gesellschaft für Didaktik der Mathematik
13.–18. März 2008 BUDAPEST

Kurzfassungen
A) HAUPTVORTRÄGE

COHORS-FRESENBORG, Elmar: Mechanismen von Metakognition
und Diskursivität im Mathematikunterricht

Es soll die Bedeutung von metakognitiven und diskursiven Aktivitäten von
Lehrenden und Lernenden für die Qualität von Mathematikunterricht heraus-
gearbeitet werden. Dazu werden die Konstrukte ”Metakognition” und ”Dis-
kursivität” im Hinblick auf ihre Bedeutung für das Lehren und Lernen von
Mathematik dekomponiert und ein Kategoriensystem zur Unterrichtsanalyse
vorgestellt.
Im Einzelnen wird über den Effekt von metakognitiven Aktivitäten für den
Lernerfolg und die Problemlösekompetenz berichtet und herausgearbeitet, in-
wieweit Diskursivität als Instrument geeignet ist, inhaltliche Klarheit (bzw.
Unklarheit) aufzudecken. Anhand von videographierten Unterrichtsszenen
wird exemplarisch dargelegt, wie Wirkmechanismen von Metakognition und
Diskursivität funktionieren. Schließlich wird dargelegt, welche Rolle die Ka-
tegorisierung von Unterrichtstranskripten nach metakognitiven und diskur-
siven Aktivitäten bei der Lehreraus- und -weiterbildung sowie der Qua-
litätsanalyse von Mathematikunterricht spielen kann.

HERBER, Hans-Jörg: Psychologische Hintergrundsparadigmen von
Innerer Differenzierung und Individualisierung

Wissenschaftlich fundierter Schulunterricht muss sich - wie die aktuelle Bil-
dungsdiskussion zeigt - zunehmend mehr der individuellen Lernvorausset-
zungen der Schüler in lern-, motivations- und entwicklungspsychologischer
Hinsicht annehmen. Unter der Annahme der Abhängigkeit des schulischen
Lernverhaltens von solchen Bedingungen, kann die Optimierung der Lehrer-
Schüler-Interaktion durch rationale Analyse der relevanten Bedingungszu-
sammenhänge und deren praktische Berücksichtigung verbessert werden: In
unserem Begriffsverständnis von schülergerechtem Unterricht soll durch sol-
cherart fundierte Maßnahmen der Inneren Differenzierung und Individua-
lisierung dem heranwachsenden Menschen gemäß seiner je individuellen
kognitiven und emotional-motivationalen Entwicklungsvoraussetzungen ei-
ne pädagogische Hilfestellung angeboten werden, durch die er seine Kom-
petenzen (intellektuelle Fähigkeiten, sachbezogne und soziale Motivatio-
nen, etc.) optimal entfalten kann. Kurz gesagt: Schulischer Unterricht soll
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nach Möglichkeit die Selbstbildungsprozesse des Individuums behutsam un-
terstützen und vor allem nicht behindern. Dies erfordert einen strukturierten
Lernraum, in dem wechselseitiges Vertrauen herrscht und selbständiges so-
wie kooperatives Lernen möglich ist. Ziel ist die Bildung von selbstverant-
wortlichen, lernmotivierten, autonomen Menschen mit hoher sozialer Kom-
petenz. Das über jahrzehntelange Forschung entwickelte Grundmodell der
Inneren Differenzierung und Individualisierung (z.B. Herber & Vásárhelyi
2002) stützt sich auf die wichtigsten Theoreme zeitgemäßer psychologischer
Hintergrundsparadigmen individueller und sozialer Lernprozesse und entsp-
rechende Feldforschung im Zusammenhang schulischen Lernens.
Im aktuellen Vortrag werden durch prototypische Schlaglichter die wichtigs-
ten Argumente für Innere Differenzierung und Individualisierung – theorien-
bezogen und empirisch gestützt – zusammengefasst und kritisch diskutiert.

Literatur: Herber, H.-J. & Vásárhelyi, É. (2002). Das Unterrichtsmodell ”In-
nere Differenzierung einschließlich Analogiebildung” - Aspekte einer empi-
risch veranlassten Modellentwicklung. Salzburger Beiträge zur Erziehungs-
wissenschaft 6, Heft 2, 5-19

LOVÁSZ, László: Trends in Mathematics, and how they Change
Education

Mathematical activity has changed a lot in the last 50 years. Some of these
changes, like the use of computers, are very visible and are being implemented
in mathematical education quite extensively. There are other, more subtle
trends that may not be so obvious. We discuss some of these trends and how
they could, or should, influence the future of mathematical education.

MEVARECH, Zemira R.: Why teaching facts is just not enough? The
effects of meta-cognitive instruction on mathematics achievement

No child left behind is one of the most challenging issues of the 21st century.
The fact that all children attend schools and the rate of dropout is quite low,
raises the question of how to provide effective education to ALL: lower and
higher achievers, LD as well as gifted children, and of course, “ordinary”
children.
The challenge of ”no child left behind” is particularly applicable to mathe-
matics education because on one hand a large proportion of school time is
devoted to the studying of mathematics, and on the other hand it is considered
to be one of the most difficult subjects taught in school.
Along the developments in the theoretical and empirical studies of cognition
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and meta-cognition, major changes have been suggested also in interventi-
on programs attempting to enhance mathematics reasoning via metacogniti-
ve guidance. The first intervention programs were based on meta-memory
and the explicit teaching of facts, strategies, and algorithms. Although these
methods have many advantages, mainly with regard to the easiness of its
implementation in classes with a large number of students, recent studies have
started to question its effectiveness. These findings raise three basic research
questions: first, how to transform recent meta-cognitive theories into effective
instructional methods? Second, who benefits from this kind of innovative
instructional methods? And finally, at what age this kind of teaching methods
are needed? The present presentation focuses on these issues with regard to
mathematics education.
The presentation includes four parts:
(a) Metacognitive Framework - an overview and rationale;
(b) IMPROVE - an effective metacognitive teaching method in which no child
left behind;
(c) Results of experimental and quasi-experimental studies showing the im-
pact of IMPROVE on various measurements of mathematics reasoning and
meta-cognitive skills of students at different age groups, and
(d) Metacognitive instructional methods - restructuring mathematics educati-
on.
The theoretical and practical implications of these studies will be discussed
at the conference.

PLÉH, Csaba: Two traditions and two strategies of cognitive science

The talk shall outline a formal and a more content oriented strategy of cogniti-
ve science. During the late 19th century these two strategies were first outlined
by Wilhelm Wundt and Gottlob Frege as the sensualistic and the propositional
theory of thought processes. Frege in this regard treated his propositions as
Platonic entities, thus denying their reality in individual minds.
The second half of the twentieth century can be seen as a renewal of Frege
where propositions are treated as actual characterizations of human thought
process. This lead to the victorious computational theories of modern cogni-
tive science illustrated by names like Noam Chomsky and David Marr.
Not only computers but humans were to be subjected to the Turing test. The
last decades of twentieth century however realized that propositions allocated
to individual minds must have an origin in themselves too. This has lead
to different levels of the Turing test and to present day neural network and
evolution anchored theories of cognition.
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ZIMMERMANN, Bernd: György Pólya, 1887-1985 – Zur Biographie,
zum Lebenswerk und zu seiner Wirkung auf die Mathematikdidaktik

György Pólya gehört zweifellos zu den bedeutendsten Persönlichkeiten, die
bis heute einen sehr starken Einfluss auf die internationale Diskussion über
Mathematikunterricht haben. Pólyas Weg zur Mathematik war keineswegs
gradlinig und zeugt von einem vielseitigem Talent und Engagement. Schon
mit Beginn seiner beruflichen Tätigkeit in Mathematik befasste er sich auch
mit Fragen des Unterrichtens von Mathematik. Seine Arbeiten in der Mathe-
matik reichen von der Analysis über die Zahlentheorie und Geometrie bis zur
Wahrscheinlichkeitsrechnung und Kombinatorik. Auch hierin erkennt man z.
T. schon sein Interesse an Methoden des Entdeckens und des Lösens von
Problemen. Hierauf konzentrieren sich seine mathematikdidaktischen Arbe-
iten, insbesondere seine unübertroffenen Werke zum mathematischen Prob-
lemlösen. Schließlich werden ein Ausblick auf die heutige Situation des Mat-
hematikunterrichts insbesondere in Deutschland gegeben sowie mögliche oder
wünschenswerte Wirkungen der Ideen von Pólya präsentiert.
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Chengbo Zhu:
Local theta correspondence: introduction and recent results

We give a brief introduction to local theta correspondence, which links rep-
resentations of certain classical groups. We then explain some of its recent
development as well as applications to the theory of invariant distributions.

István Ágoston:
On homological properties of quasi-hereditary algebras

Quasi-hereditary algebras were introduced in the late 1980’s to deal with
certain problems arising in the representation theory of complex semisimple
Lie algebras and algebraic groups. A number of ’universality’ results shows
their importance also within the class of associative algebras. For example,
every finite dimensional associative algebra is the endomorphism algebra of
a projective module over a suitable quasi-hereditary algebra. The recursive
construction of quasi-hereditary and more generally, of standardly stratified
algebras makes it possible to give an explicit bound on the finitistic dimen-
sion of standardly stratified algebras. Results about the quasi-heredity of the
Koszul dual of a quasi-hereditary algebra were also presented.

Hung Yean Loke: The smallest representation of non-linear covers of odd
orthogonal groups

In this talk, I will first explain and motivate the definition of small represen-
tations of real reductive Lie groups. Then I will describe the construction of
the smallest representation of the indefinite orthogonal groups. The latter is a
joint work with Gordan Savin.

László Verhóczki: Cohomogenenity one isometric actions on compact
symmetric spaces of type E6	K

As is well-known, the exceptional compact Lie group E6 has four symmetric
subgroups up to isomorphisms. In this talk we discuss the four Riemannian
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symmetric spaces of type E6	K and show that three of them admit a coho-
mogeneity one isometric action with a totally geodesic singular orbit. This
implies that these symmetric spaces can be thought of as compact tubes. We
describe the shape operators and the volumes of the principal orbits of the
considered isometric actions. Hence, we obtain a simple method to compute
the volumes of these exceptional symmetric spaces.

Zoltán Buczolich:
Pointwise convergence and divergence of ergodic averages

We discuss almost everywhere convergence results concerning the non-con-
ventional ergodic averages

(�)
1
N

NX
k=1

f (T nk x ) as N � �
 Motivated by questions of A. Bellow

and H. Furstenberg, J. Bourgain showed that for the sequence nk = k2 for f �
� Lp, p �1 the averages (�) converge � almost everywhere and he raised the

question of almost everywhere convergence of (�) for f � L1. In a joint paper

with D. Mauldin we showed that there are f � L1 for which the averages (�)
along the squares do not converge � almost everywhere. Answering another
related well-known problem I have managed to construct a sequence nk with
gaps nk+1�nk �� for which for any ergodic dynamical system (X�Σ� �� T )

and f � L1(�) the averages (�) converge � almost everywhere to the integral
of f and this result disproves a conjecture of J. Rosenblatt and M. Wierdl.

Péter Komjáth: Paradoxical decompositions of Euclidean spaces

Ferenc Izsák: Error estimations in the numerical solutions of the Maxwell
equations

An a posteriori error estimation technique was presented for the (finite ele-
ment) numerical solution of the time harmonic Maxwell equations. One can
prove that the estimate is a lower bound of the exact error and we exhibited
a strong correlation with this as shown in some numerical experiments.

Kwok Pui Choi:
Asymptotics of the average of functions of order stateistics

László Márkus:
On the extremes of nonlinear time series models describing river flows
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Jialiang Li, Xiao-Hua Andrew Zhou: Nonparametric and semiparametric
estimations of the three way receiver operating characteristic surface

Tamás Király: An introduction to iterative relaxation

Iterative relaxation is a new method for obtaining approximate solutions to
combinatorial optimization problems with degree constraints, when the cor-
responding feasibility problem is already NP-complete. The method allows a
slight violation of the degree constraints, and finds a solution of this relaxa-
tion that has small cost. A prime example of this approach is the Minimum
Bounded Degree Spanning Tree problem, where we have upper (and possibly
lower) bounds on the degree of the spanning tree at each node. Singh and
Lau showed that if the value of the optimal solution is OPT, then an iterative
relaxation algorithm can find a spanning tree of cost at most OPT that violates
the degree bounds by at most 1. In this talk we show how this technique can
be extended to problems involving arbitrary matroids.
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SOME ASPECTS OF GEOMETRY
THROUGH THE SCHOOL YEARS

By

RICHARD ASKEY

�Received November ��� �����

Abstract. We will focus on some aspects of triangles and some quadrilaterals
which are both of interest for their own sake and because of the ideas which are
involved. We start with early primary school and get to some results which in the
United States have disappeared from school geometry and are not known by most
high school teachers.

After students learn what a triangle is, a very important property should
be introduced: a triangle is rigid. This can be illustrated with fingers, and
contrasted with the fact that a quadrilateral is not rigid. By this I mean that
when the sides are given, a triangle is determined, but a quadrilateral is not.
Children like to show this with their fingers.

After students learn that a triangle is determined by knowing its sides, by
knowing two sides and the included angle, and by knowing two angles and
the included side, it is time to show that the sum of the angles of a triangle
is two right angles, or 180�. First, students should learn how to form a right
angle by folding paper, and then continue folding to make a rectangle so they
develop a feel for right angles and learn that a rectangle has four right angles,
and its angles add to 360�.

One way to study general triangles is to start with right triangles.

For a right triangle,

one can use it to form a rectangle by drawing lines perpendicular to the shorter
sides of the triangle.

Plenary talk of Tamás Varga Conference on Mathematics Education held
at ELTE, Budapest, November 7–8, 2008.
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b

a

b

a

The two triangles are congruent since they have sides of the same length,
so we know that they have the same area and the sum of the angles is the
same. Since the area of the rectangle is ab, and the sum of the angles is 360�,
the original right triangle has area ab/2 and the sum of its angles is 180�.

Take a general triangle, first with the longest side used as the base, and
decompose it into two right triangles by dropping a perpendicular to the
longest side from the opposite vertex.

The previous result for right triangles gives 180� + 180� for the two right
triangles. Subtract 180� for the two right angles to get 180� for the sum of
the angles in the triangle.

For the area, a different argument completes the derivation of a formula
for the area of a triangle.

x b � x

h

The area of the triangle is xh
2 + (b�x )h

2 = bh
2 .

There is another case where a similar argument works.

The area of the triangle comes from (x+b)h
2 � xh

2 = bh
2 .

x b

h

There are many ways to prove the Pythagorean theorem. Here is the URL
to a beautiful way:

http://math.berkeley.edu/�giventh/papers/eu.pdf
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This article was written for mathematicians, but if you skip the parts
which use words you do not know, the essence is still there.

Here is a sketch.

The Pythagorean theorem says that the area of the square drawn on
the hypotenuse is equal to the sum of the areas of squares drawn on the
other sides of a right triangle. Squares are similar, and a little thought along
with the knowledge that areas of similar figures scale as the square of the
corresponding sides will be used.

This is true in general when side is interpreted appropriately, but we just
use this for triangles and squares so side means what you think it does). Thus
it suffices to find similar figures placed on the sides of a right triangle so that
their areas add as they should. Here is the picture.

CA

B

D

Triangle ABC is a right triangle and it is similar to triangles ADB and
BDC . Clearly the area of triangle ADB plus the area of triangle BDC is the
area of triangle ABC .

The area of triangle ABC is a constant k times the area of the square on
AC , and this is true with the same constant k for the other two triangles and
the corresponding squares of AB and BC .

Thus k jAC j2 = k jAB j2 + k jBC j2 and this is the Pythagorean theorem.
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With some knowledge of similarity one can do much more, including
introducing trigonometric functions.

sin(A) =
a

c
cos(A) =

b

c

A C

B

b

c
a

There is an extension of the Pythagorean theorem due to Euclid. It holds
for a general triangle, but following Euclid we only give a proof in one of the
two cases and leave the other one to you.

Drop a perpendicular from B to AC and use the

x b � x

h
a c

C A

B

Pythagorean theorem twice.

a2 = h2 + x2� c2 = h2 + (b � x )2

Subtract and do a little algebra to get Euclid’s version:

c2 = a2 � x2 + b2 + x2 � 2bx � c2 = a2 + b2 � 2bx

We now rewrite this as c2 = a2 + b2 � 2ab cos(C ).

This is usually called the law of cosines or the cosine rule.

For the Greeks, trigonometry did not deal with right triangles, but with
chords in circles. This was because of their serious interest in astronomy.
When this was developed enough, they had to construct tables of lengths
of chords for different angles. About 150 AD (or CE depending on your
preference and possibly age), Ptolemy found a beautiful theorem which al-
lowed him to construct such a table. Rather than give Ptolemy’s proof, I
will give one which was likely the proof found by the Indian mathematician
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Brahmagupta [1] before 630. However, he did not give a proof, he just stated
the result.

Given a circle, mark four points A, B , C , D on it and connect them with
line segments.

A

B

C

D

AB , BC , CD , DA are the sides of this quadrilateral and AC and BD
are diagonals. Quadrilaterals whose vertices lie on a circle are called cyclic
quadrilaterals. Like triangles, they are rigid.

A

C

B

A C

B

A

C

B

A condition which tells if a quadrilateral is cyclic was given in Euclid,
the angles DAC and BCD add to 180�, and since a quadrilateral has 360�

in its angles, the other angles ABC and CDA also add to 180�. Here is a
proof without words that the inscribed angle ABC is half of the central angle
AOC .

Given a cyclic quadrilateral as above, one should be able to find the
length of the diagonal AC in terms of the lengths of the sides of the quadri-
lateral. Here is one way to do this. Use the cosine rule twice. To simplify the
typing and reading, we will use jAB j = a , jBC j = b, jCD j = c, jDAj = d,
jAC j = x , jBD j = y .

x2 = a2 + b2 � 2ab cos(B) =

= c2 + d2 � 2cd cos(D) =

= c2 + d2 + 2cd cos(B) =

since B + D = 180� and cos(180� � B) = � cos(B).
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Multiply the first equation by cd, the third by ab and add them together.
The result is

(ab + cd)x2 = cd(a2 + b2) + ab(c2 + d2)


The left side is nice, but the right hand side is not. The mixture of squares
and first powers makes this side less attractive, so let us fix it by taking each
squared term, split it into two linear factors and put one with each of the other

two factors. Thus cd(a2) becomes (ac)(ad) which looks nicer.

When this is done with each term, the right hand side becomes

(ac)(ad) + (bc)(bd) + (ac)(bc) + (ad)(bd)

Put the first and third terms together by factoring out (ac)and factor (bd) from
the other two terms. This gives

(ac)[(ad) + (bc)] + (bd)[(ad) + (bc)] = [(ac) + (bd)][(ad) + (bc)]

so

x2 =
[ac + bd][ad + bc]

ab + cd
By symmetry,

y2 =
[ac + bd][ab + cd]

ad + bc

Multiply these together and take a square root to get

xy = ac + bd�

which is Ptolemy’s theorem. Notice the importance of factoring. Without
it, the cancellation which was immediate would have been hard to see, and
might have been missed.

Similarly, divide the expressions for x2 and y2 to get

x

y
=
ad + bc
ab + cd




There are many things which can be done after getting Ptolemy’s theo-
rem. One which is little known is to find other parts of a cyclic quadrilateral.
What parts, you ask? Brahmagupta tells us what else can be found.

If you call the intersection of the diagonals P , then the lengths of AP ,
BP , CP , and DP can be found. He wrote that these can be found by pro-
portion, and they can. He also mentioned the needles. These are formed by
extending the sides of the quadrilateral until they meet. He does not seem to
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mention the third diagonal, the line segment connecting the terminal points
of the two needles. That can also be found.

There are two books on trigonometry published in England, one by Hob-
son [5] and one by Durell and Robson [2], which contain the formula for
the length of the third diagonal, but both proofs are more complicated than
necessary.

Here is a trigonometric reformulation of Ptolemy’s theorem. Take a circle
of diameter 1 to simplify formulas. Mark the angles as follows

CAB = t � ABD = u� CBD = v � ACB = w


From the inscribed angle result mentioned above, angle CAB is the same
size as an angle cutting off the chord BC with the diameter as one side so
sin t = jBC j. Doing this for not only the angles above, but all of the angles
between diagonals and sides, and sides and sides, Ptolemy’s theorem can be
given as

sin(v + t) sin(u + v ) = sin(t) sin(u) + sin(v ) sin(w )


There seem to be four variables, but there are really only three since t + u +
+ v + w = 180�. Using this and sin(180� � x ) = sin(x ), Ptolemy’s theorem is
equivalent to

sin(v + t) sin(u + v ) = sin(t) sin(u) + sin(v ) sin(t + u + v )


When u + v = 90�, which is the same as having a diagonal be a diameter of
the circle, this reduces to the well known addition formula

sin(x + y) = sin(x ) cos(y) + cos(x ) sin(y)


Other choices will give other versions of addition formulas. Thus it is
not surprising that Ptolemy could use his theorem to compute the lengths of
chords in a circle when an inscribed or central angle is given.

Ptolemy’s theorem contains the addition formulas, so it is natural to ask if
the addition formulas can be used to prove Ptolemy’s theorem. When I taught
a course which was used primarily to help prospective high school teachers
learn the mathematics they would teach, I would give this problem after
deriving the addition formulas. Here is the way I would derive the addition
formula for sin(x + y).

Draw the same picture we have used so often, this time for a general
triangle.
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h
a b

C

A

B D

Twice the area of triangle BAC is ab sin(BAC ) and is also

ah sin(BAD) + bh sin(CAD)


Replace h by b cos(CAD) and by a cos(BAD).

ab sin(BAC )ab sin(BAD) cos(CAD) + ab cos(BAD) sin(CAD)

The result is the addition formula for sin(x + y) which was given above. It is
amazing how many important results can be obtained from this simple picture.

When students tried to use the addition formulas to prove the trigono-
metric identity given above as equivalent to Ptolemy’s theorem, they would
all start by expanding sin(t + u + v ) and a few of them were able to get the
result after about three pages of calculations. However, there is a much easier
way.

cos(x � y) = cos(x ) cos(y) + sin(x ) sin(y)

cos(x + y) = cos(x ) cos(y)� sin(x ) sin(y)

Subtract the second from the first to get

2 sin(x ) sin(y) = cos(x � y)� cos(x + y)


Use this in the three terms in the identity you want to prove and the next
line completes the proof.

I told students that there are some things in mathematics which are of
primary importance, and these need to be known backwards and forwards
and in disguised forms. The addition formulas for trigonometric functions are
examples. Then there are results of secondary importance. These you do not
have to have in your working memory, but you have to know that something
like this is true and be able to derive it easily from the results of primary
importance. The linearization result above is such an example. Then there are
results of lesser importance. These you might find easier to look up than to
derive.

I recommend reading and working through Ptolemy’s proof. You can find
it on the web.

Here is one URL: http://www.cut-the-knot.org/proofs/ptolemy.shtml
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This proof is also included in a great geometry text with a very interesting
publication history. The most recent version is Kiselev’s Geometry which
was translated and edited by Alexander Givental [4]. He set up his own
publishing firm in California with the most interesting name: Sumizdat. I
highly recommend the book.

Here is an outline of one more proof of Ptolemy’s theorem.

Take a circle with radius 1 and center at (0� 0). Then take a line with
slope t which passes through the point (�1� 0). Find the point where these

two curves intersect. The coordinates of this point are
�

1�t2

1+t2
� 2t

1+t2

�
. The other

point of intersection is (�1� 0), which students find surprising until they think
a little and see why this has to be true. We are interested in the first of these
two points.

Do the same thing with a line of slope s . The distance between these two
points is

2jt � sj
�
1 + t2

�1�2
�
�
1 + s2

�1�2



Now compute the distances between each of the four points. There are
six of them, since the lines connecting each pair of points is either a side or
a diagonal of a cyclic quadrilateral.

Does this give a proof of Ptolemy’s theorem? Of course, since I would
not be writing about it if that did not happen. The question is what is needed
to show that this gives such a proof. The answer is surprising.

Consider a very large circle and draw a tangent line to it. Place four points
on the circle so that they are relatively close to the point of tangency. Then let
the radius increase to infinity and have the points approach the tangent line.
Here is what Ptolemy’s theorem becomes on the tangent line.

(c � a)(d � b) = (d � c)(b � a) + (d � a)(c � b)

a b c d

This identity is easy to prove. The right hand side can be expanded to
give

db � da � cb + ca + dc � db � ac + ab

and some terms cancel to give dc�da�cb+ab which factors as (c�a)(d�b).
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The distance between two points on the circle given above when used
for all six distances reduces to the identity just proven since the same square
roots occur for each product and the absolute values are removed by the order
of the slopes.

There is another use of the representation of the interesting point of
intersection of the line and the circle. Since this point is on the unit circle, it

satisfies x2 + y2 = 1 where (x � y) is the point
�

1�t2

1+t2
� 2t

1+t2

�
in question. Take

the values of x and y given above in terms of t and let t = p	q . A little
algebra gives

(q2 � p2)2 + (2pq)2 = (q2 + p2)2


When q = 2, p = 1, this gives 32 + 42 = 52; q = 3, p = 2 gives 52 + 122 = 132,
etc.

Of course there is a lot more. There is an extension of Ptolemy’s theorem
to a general quadrilateral. Most of the references to extensions are weak
extensions; the equality becomes an inequality when the quadrilateral is not
cyclic. However, there is an identity with a new term.

One nice way to derive it is to copy Ptolemy’s proof as far as you can,
and then complete the proof with the cosine rule as used in the first proof
above. See Hobson [5] for details.

Here is a nice problem which is easy with Ptolemy’s theorem. Inscribe
an equilateral triangle in a circle. Take another point on the circle and connect
it to the three vertices of the triangle. Show that the sum of the two shorter
line segments is equal to the length of the longest segment.

There are other comments on Ptolemy’s theorem [2].

Acknowledgments and thanks� I thank Katalin Fried for help in pre-
paring both the material for the talk on which this paper is based and for help
with the manuscript, both the technical aspects and suggestions. Also, I thank
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Budapest, to return to the place where some beautiful mathematics was done
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Péter Maga: Generalized number theoretic functions

We define the number theoretic functions over an arbitrary unique factoriza-
tion domain and study some important functions. We show that the number
theoretic functions form a ring that is isomorphic to a certain power series
ring. Finally, we prove that unique factorization holds in the ring of number
theoretic functions.

Roland Paulin: Stability constants

Dániel Soukup: Planar topologies using the idea of the Sorgenfrey line

My primary goal was to generalize the convergence idea of the Sorgenfrey-
line to the plane and investigate these new topologies. For every euclidean

closed S 	 S1 we define an R
2
S topology. In our spaces a sequence (xn)

converges to x iff (xn) converges to x from directions which are in S . The

paper deals with the characterization of the properties of R2
S with the defining

S 	 S1 subsets. We examine such properties as countability, separability,
compact subspaces and connectedness. Several interesting questions remained
unanswered, such as: how many different topologies we get this way?

Péter Maga: Covers and dimension in infinite profinite groups

Answering a question of Miklós Abért we prove that an infinite profinite gro-
up cannot be the union of less than continuum many translates of a compact
subset of box dimension less than 1. Furthermore, we show that in any infinite
profinite group there exists a compact subset C of Hausdorff dimension 0 such
that it is consistent with the axioms of set theory that less than continuum
many translates of C cover the group.

Dániel Dobos: Sylow p-subgroups never intersect in a chainlike way

Call a finite group G p�chainlike if
��Sylp(G)

�� 
 3 and the following two
conditions hold for its Sylow p-subgroups P1� 
 
 
 � P� :

��Pi � Pj
���1 � i  j � 1 (mod �) and Op(G) =

��
i=1

Pi = e

(a suitable labelling is chosen).
We prove that actually p-chainlike groups do not exist.
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György Hermann: Small lattice simplices in dimension d

Tamás Hubai: Competitive rectangle filling

Two players take alternating turns filling an n � m rectangular board with
unit squares. Each square has to be aligned parallel to the board edges, but
may otherwise be arbitrary. In particular, they are not forced to have integer
coordinates. Squares may not overlap and the game ends when there is no
space for the next one.

The result of the game is the area filled, or equivalently, the number of
turns in the game. The constructor aims to maximize this quantity while the
destructor wants to minimize it. We would like to determine this value, at
least asymptotically, provided that both players use their optimal strategy.

For the case n = 1, which corresponds to the one dimensional variant of the

problem, we show that about 3
4 of the interval can be filled, which is exact if

it evaluates to an integer. With a different and more complicated approach we
are also able to determine the exact value for the case n = 2 (and large m),

where we obtain that 9
16 of the area gets covered. This result coincides with

our conjecture for the general case when n and m are even or tend to infinity.

We also prove tight bounds for arbitrary n and m by specifying actual strate-
gies for both players. Finally we look at some multi-dimensional and discrete
variants, making some observations that lead to a conjecture for the product
of such filling games.
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