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x�� Let N�Z� Q be the set of natural numbers, integers, rational numbers,
respectively. Let Q� be the multiplicative group of positive rationals.

For some subset A of Q�, let Q�(A) be the multiplicative group gener-
ated by A, that is � � Q�(A) if there exist suitable elements a1� � � � � ar � A,

and �1� � � � � �r � f�1� 1g, such that � = a
�1
1 � � � a�rr . Let furthermore Bx (A)

be the group of those � for which there exist suitable a1� � � � � ar � A, l1� � � �
� � � � lr � Z, d � N such that

�d = a l11 � � � a lrr �

Let P be the whole set of primes.

Let a � N , Ta = fn2 + a j n � Ng, Ea be the set of those primes p, for

which p j n2 + a holds for some n . Let Ea = E(1)
a � E(2)

a , where

E
(1)
a =

�
p
��� ��a

p

�
= 1� p � P

�
�

E
(2)
a = fp j pja� p � Pg �

* Research partially supported by Hungarian National Foundation for Scientific Research

Grant and by the research group Applied Number Theory of the Hungarian Academy of

Sciences.
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Let A�a be the set of those real-valued arithmetical functions f , which are
defined originally on Ea , and then extended to Q�(Ea), so that

(1�1) f (rs) = f (r ) + f (s)� f
�r
s

�
= f (r )� f (s)�

for every couple of r� s � Q�(Ea). The extension of the definition of f , by
(1.1) is unique.

Let M̃�
a be the set of those g having complex values on the unit circle,

defined originally on Ea , and extended to Q�(Ea) such that

(1�2) g(rs) = g(r )g(s)� g
� r
s

�
= g(r ) � g(s)�

x�� We shall prove

Theorem �� If f � A�a and f (n2 + a) � 0 as n ��� then f (n2 + a) = 0
for every n � N�

If g �M�
a and g(n2 + a) � 1 as n ��� then g(n2 + a) = 1 (n � N)�

The proof is based upon the following lemmas:

Let F (n) := n2 + a .

Lemma �� We have

(2�1) F (n + F (n)) = F (n)F (n + 1)�

Proof� Obvious.

Lemma �� Assume that 1 �M � N � M is not a square and the equation

(2�2) u2 + a = M (v2 + a)

has at least one solution in u� v � N � Then there is a sequence of couples of

positive integers x� � y� such that x� � y� �� and

(2�3) x2
� + a = M (y2

� + a)�

Proof� Let us write (1.2) in the form u2 � Mv2 = (M � 1)a . The
Pell-equation u2 �Mv2 = 1 has infinitely many positive solution, (�� � �� ).
Then the pair, x� � y� counted from

x� +
p
My� =

�
�� +

p
My�

��
u +

p
Mv

�
satisfies (2.3).

The proof of Lemma 2 is finished.
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Lemma �� The values F (n)� F (n + 1) cannot be squares simultaneously�

Proof� Assume indirectly that n2 + a = U 2, (n + 1)2 + a = V 2. Then

V � U + 1. Furthermore, 2n + 1 = V 2 � U 2 � V + U + 1, whence n 	U .
But it is impossible.

Lemma �� If F (n +F (n)) is a square� then none of F (n)� F (n + 1) can be

squares�

Proof� Obvious. If either F (n), or F (n + 1) would be a square, then the
other would be a square as well, which contradicts to Lemma 3.

Proof of Theorem �� We shall prove the first assertion. The second
assertion can be proved completely on the same way.

We can apply Lemma 2 for M = F (n) if M is not a square. We obtain

that f (n2+a) = 0 if n2+a 	= square. Assume that F (n) = square. Since F (n+1),
F (n + F (n)) are not squares, therefore f (F (n + 1)) = 0, f (F (n + F (N ))) = 0,
from (1.1) we obtain that f (F (n)) = 0.

The proof of Theorem 1 is completed.

x�� A subset E (
 Q�(Ea)) is called a set of uniqueness (for the class of
functions f in A�a), if f � A�a , f (E ) = 0 implies that f (Q�(Ea)) = 0.

Similarly, a subset F 
 Q�(Ea) is called a set of uniqueness mod 1
(for the class of functions g in M�

a), if g � M�
a , g(F ) = 1 implies that

g(Q�(Ea)) = 1.

It is known that Ea is a set of uniqueness mod 1, if and only if

(3�1) Q�(Ta) = Q�(Ea)�

and that Ea is a set of uniqueness, if

(3�2) B�(Ta) = Q�(Ea)�

The notion of “set of uniqueness” for completely additive functions was
introduced by Kátai [1]. The assertion formulated in (3.2) is proved by
D. Wolke. Relation (3.1) was proved in [4], [5], [7].

We can suggest to read the relevant further papers [8], [9], [10], [11].

x�� The assertion, formulated in the next lemma, is clear.
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Lemma �� Let p � P� p	2
p
ap
3
�

��a
p

�
= 1� Let x0 be the smallest pos�

itive integer� for which p j x2 + a � Let x2
0 + a = Kp � p� Then Kp =

x2
0 + a

p
�p�

Proof� We have x0 � p
2. The assertion is obvious.

Lemma �� Let a = b2c� Then a� b2� c � Q�(Ta)�

Proof� Let �(x ) = x2 + a . Then �(1) = 1 + a , �(a) = a2 + a , whence

a =
�(a)
�(1)

� Q�(Ta). Since �(b) = b2(1+c), �(bc) = b2c2 +b2c = b2c(1+c),

we have that c =
�(bc)
�(b)

� Q�(Ta). Thus b2 =
a

c
� Q�(Ta).

Theorem ��

�� We have Q�(T1) = Q�(E1)� i�e� T1 is a set of uniqueness mod 1�

�� Let a = b2 = p
2�1
1 � � � p2�r

r � q2�1
1 � � � q

2�s
s � where��1

pj

�
= 1 (j = 1� � � � � r );

��1
ql

�
= �1 (l = 1� � � � � s)�

Then

(4�1) Q�(Ta) = Q�(T1)�Ha �

where Ha is the group generated by fq2
1 � � � � � q

2
s g�

Proof� To prove the first assertion, we observe, that 12 + 1 � Q�(T1),

22 + 1 � Q�(T1) and by Lemma 5, if p � E(1)
a , p � 2, by using induction,

then Kp � Q�(T1) can be assumed. This completes the proof.

Let us consider now the assertion 2. We have 1 + a � Q�(Ta), a2 +
+ a = a(a + 1) � Q�(Ta), whence a � Q�(Ta). Observe furthermore that

b2T1 
 Ta . If a prime � has a representation

� =
Y�

n2
j + 1

��i
�
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then

� = a�
P

�i
Y�

(bnj )
2 + a

��i
�

which by a � Q�(Ta) implies that � � Q�(Ta).

If q ja , q 
 �1 (mod 4), then q�kn2 +a implies that 
 is an even number.

Let n = q . Then q2 + a = q2

�
1 +

�
b

q

�2
	

. We have q2 + a � Q�(Ta), and

1 +

�
b

q

�2


 Q�(T1) 
 Q�(Ta), thus q2 � Q�(Ta).

Consequently, we obtain the second assertion immediately. The theorem
is proved.

x�� Assume that

(5�1) a = �2�1
1 � � � �

2�r
r �

2�1+1
1 � � � �2�s+1

s �

where �1� � � � � �r , �1� � � � � �s � P, �� � N , �� � N0 = N � f0g.

By choosing first b = �j , c =
a

b2 , from Lemma 6, we deduce that

�2
j � Q�(Ea) (j = 1� � � � � r ). Similarly, we can choose b = �j if �j � 1, and

deduce that �2
j � Q�(Ea). Hence, the next assertion it follows immediately.

Theorem �� Let a as in ����	� Let H be the group generated by �2
1 � � � �

� � � � �2
r and those �2

j � for which �j � 1�

Let C = �1 � � � �s � Then

(5�2) Q�(Ta) � H � Q�(TC )�

x��
Theorem �� We have

O


Q�(E5) 
Q�(T5)

�
= 2�

The number 2 does not belong to Q�(T5)�

Proof� Let �(n) = n2 +5. If 2j�(n), then n is an odd number, n = 2k +1,

and �(n) = 2(3 + 2k (k + 1)), i.e.
�(n)

2

 �1 (mod 4). If n is even, then

�(n) 
 1 (mod 4).
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Assume in contrary that 2 � Q�(T5). Then

(6�1) 2 =
�(n1) � � � �(nr )
�(N1) � � � �(Ns )

� �(u1) � � � �(ut )
�(v1) � � � �(vh)

=
A

B
� C
D
�

say, where ni � Ni are odd, ul � vl even numbers.

Thus

2BD = AC�

2s+1 � B
2s
D = 2r

A

2r
� C�

Since
B

2s
� D�

A

2s
� C are odd numbers, therefore r = s + 1. Furthermore

D�C 
 1 (mod 4)
B

2s

 (�1)s (mod 4),

A

2r

 (�1)r (mod 4), this is

impossible.

To finish the proof, we observe that �(1) = 2 � 3. Let us consider the
group H generated by the union of T5 and f2g. Then 2 � H, 3 � H. By

using Lemma 5,

�
5 	

2
p

5
3

	
, we obtain that H = Q�(E5).

The proof is completed.

By the method used above we can prove the following

Lemma �� Assume that a 
 5 (mod 8)� Then 2 	� Q�(Ta)�

The following remark, which we formulate now as Lemma 8, is obvious.

Lemma 	� If 22ka + 1� then 2 	� Q�(Ta)�

Proof� This is clear. If 2jx2 + a , then x = 2k + 1, and

22k(a + 1) + 4k (k + 1) = 22 �
�
a + 1

4
+ k (k + 1)

�
�

Thus in each expression
hQ
i=1

(n2
i + a)�i the exponent of factor 2 is an even

number, consequently 2 cannot be represented in this form.
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Lemma 
� Let a = bq � q a prime� such that

�
b

q

�
= 1� Then q 	� Q�(Ta)�

Proof� Let �(n) = n2 + a . Let us observe that
�(qm)
q

= qm2 + b,

consequently the left hand side is a quadratic nonresidue mod q . Furthermore,

if q � n , then �(n) (mod q) 
 n2, thus it is a quadratic residue mod q .

Assume indirectly that q � Q�(Ta). Then �(u1) � � � �(ur )�(qn1) � � �
�(qns) = q�(v1) � � � �(vt )�(qm1) � � � �(qmk ), where (u1 � � � ur v1 � � � vt � q) =
= 1. Since qk�(qmj ), qk�(qnl ), and (�(uh)� q) = 1, (�(vh)� q) = 1, we
obtain that s = k + 1, and that

(6�2) �(u1) � � � �(ur ) y1 � � � ys = z1 � � � zk �(v1) � � � �(vt )�

where yh =
�(qnh)
q

� zj =
�(qmj )

q
.

The value of the Legendre symbol

� �
q

�
for the integer standing on

the left is (�1)s , while the same for the right hand side is (�1)k . Thus

(�1)s = (�1)k , which is impossible.

x��
Theorem �� For every a � N � Q�(Ea)
Q�(Ta) is a 
nite group� conse�

quently

B�(Ta) = Q�(Ea)�

Proof� The assertion is a direct consequence of Lemma 5, whence we
obtain that�

1���2
p

ap
3

�

Q�(Ta) � 1



Q�(Ta)

� �
pja

�
pQ�(Ta) � 1

p
Q�(Ta)

�

covers the group Q�(Ea). The proof is completed.

Remark� Similar theorem can be proved for �a	A(n) = An2+a , if a � Z,
a �0, A = 1� 2� 3� 4.

Let

Sa :=
Q�(Ea)
Q�(Ta)

�

and for some r � Q�(Ea), let r = rQ�(Ta).
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Theorem �� For a � [1� 20]� we have

Sa = f1g� if a = 1� 2� 4� 7� 8� 16� 18�

Sa = f1� 2g� if a = 3� 5� 6� 10� 11� 12� 13� 19� 20�

Sa = f1� 3g� if a = 9� 14� 17�

Proof of Theorem �� For a � 20,
2
p
ap
3
�6. Let La be the set of those

numbers q from 2� 3� 5 for which either q ja , or

��a
q

�
= 1. Then, by Lemma

5, we obtain immediately, that Q�(Ta � La ) = Q�(Ea). Thus, to prove the
theorem, it is enough to decide, which elements of La do belong to Q�(Ta).

We proved that Q�(Ea) 	= Q�(Ta) if 22ka + 1, (Lemma 8), or if a 
 5

(mod 8) (Lemma 7), or if a = bq , where q is a prime,

�
b

q

�
= �1 (see

Lemma 9).

We shall use Lemma 5.

For shortening we write F = Q�(Ta), �(x ) = x2 + a .

�� Cases a = 1� 4� 9� 16� 25� 36� See Theorem 2.

�� Case a = 2� �(1) = 3 � F, 2 � F, apply Lemma 5.

�� Case a = 3� 3 � F, �(1) = 4, �(2) = 7, �(5) = 28, whence 22 � F.
Thus Q�(E3) = f1� 2g �Q�(T3).

�� Case a = 5� See Theorem 4.

�� Case a = 6� Since

�
2
3

�
= �1, from Lemma 9 we obtain that Sa

contain at least two elements, furthermore that q = 3 	� F. Since 6 � F,
therefore 2 = 6
3 is in the same residue class modQ(T6) as 3.

Since

�(7)
�(2)

=
11
2
�
�(7)
�(2)

� �(4) = 1 12 � F�

we obtain that 22 � F.
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Since 2

r
6
3

= 2
p

2 �3, therefore by Lemma 5 we obtain that each

prime p, such that

��a
p

�
= 1, belongs to Q�(Ta) � 2Q�(Ta).

Hence the assertion follows.

�� Case a = 7� Since �(1) = 23, �(3) = 11, therefore 2 � F. 3 � �(n),

since

��7
3

�
=

�
2
3

�
= �1. We can apply Lemma 5, and deduce the

Q�(Ta) � 2Q�(Ta) = Q�(Ea)�

�� Case a = 8� �(1) = 9, �(2) = 12, �(4) = 24, thus 2 =
�(4)
�(2)

� F,

3 =
�(4)

23 � F. We can apply Lemma 5.

	� Case a = 9� See Theorem 2.


� Case a = 10� Since

�
2
5

�
= �1, therefore 5 	� F10. Thus 2 =

10
5
	� F,

5 
 2 (mod F). Since 2

r
a

3
�4, from Lemma 5 we obtain the assertion,

stated.

��� Case a = 11� We have 22ka + 1, thus by Lemma 8, 2 	� Q�(T11).

Since �(1) = 12, �(5) = 36, we have 3 � Q�(T11),
�(2)

3
= 5 � Q�(T11).

Apply Lemma 5.

��� Case a = 12� Observe that, if 2�k�(n), then � = even, thus 2 	� F.
�(4)
�(3)

=
28
21

=
4
3
� F,

4
3
� 1
a

=
1

32 � F, 32 � F,
�(10)
�(4)

=
112
28

= 4 � F,

a

4
= 3 � F,

�(3)
3

= 7 � F.

Since 2

r
a

3
= 2 � 2 �5, therefore, by Lemma 5 we obtain the assertion.

��� Case a = 13� Since a 
 5 (mod 8), therefore 2 	� F. Since
�(8)
�(6)

=
7 � 11

72 =
11
7
� F, 7 � 11 � F, we obtain that 112 � F, and that

72 � F. Since �2(1) = 22 � 72, therefore 22 � F.
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To finish the proof, use Lemma 5.

��� Case a = 14� 14 � F, �(1) = 15 � F, �(4) = 30 � F,
�(4)
�(1)

= 2 � F,

a

2
= 7 � F,

�(2)
2

= 32 � F, �(6) = 2 � 25, 52 � F, �(18) = 182 + 14 =

= 2 � [2 � 92 + 7] = 2 � [169] � 132 � F, �(20) = 414 = 2 � 207 = 2 � 9 � 23,
23 � F.

Since 14� 15� 30 � F, therefore
30
15

= 2 � F, 7 =
14
2
� F. Furthermore

18 � F, 18
2 = 32 � F. By using Lemma 5, we obtain that each p � E14
can be written as

p = 2� � 3���

where � � Q�(Ea). Thus S14 = f1g if 3 � Q�(E14), and S14 = f1� 3g, if
3 	� Q�(E14). We shall prove that the last assertion is true.

Assume that 3 � Q�(E14), i.e. that

(7�1) 3 =
hY
i=1

(n2
i + 14)�i � �i � f�1� 1g�

It is clear that 7jn2 + 14 if and only if 7jn , and (7m)2 + 14 = 7f7m2 + 2g,

(7m2 + 2� 7) = 1.

We can rewrite (7.1) in the following form:

3 =
tY
i=1

�
n2
i + 14

��i � sY
j=1

7�j
�

7m2
i + 2

��j

where (ni � 7) = 1, �i � �j � f�1� 1g. Furthermore, �1 + � � � + �s = 0, conse-
quently

3 =
Y

(n2
i + 14)�i

Y
(7m2

i + 2)�j �

Thus, by the Legendre symbol
� �

7

�
, we have

�
3
7

�
=
Y�

n2
i

7

	�i

�
Y�

2
7

��j
�
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Since
P
�j = 0,

�
n2
i

7

	
= 1, we obtain that

�
3
7

�
= 1, but this is not

true.

The assertion is proved.

��� Case ��� From Lemma 9, with q = 5, b = 3,

��
3
5

�
= �1

�
we

obtain that 5 	� F, consequently 3 	� F. Since �(1) = 16, �(3) = 24, we

obtain that
�(3)
�(1)

=
3
2
� F, �(7) = 64 = 26,

26

24 = 22 � F,
15 � �(5)
�(3)

= 52 � F,�
3
2

�2

� 22 = 32 � F. Thus 2 = 3. By Lemma 5 we deduce that S15 has two

elements.

The assertion is proved.

��� Case ��� We obtain that �(1) = 18, �(2) = 21, �(5) = 42, and so
�(5)
�(2)

= 2 � F, 32 � F. We shall prove that 3 	� Q�(Ta). Assume indirectly

that

3 =
hY
i=1

�
n2
i + 17

��i � kY
j=1

�
(17mi )

2 + 17
��j

�

where (ni � 17) = 1. Since

(17mi )
2 + 17 = 17(17m2

i + 1)�

we obtain that

(6�2) 3 = A � B � 17� �

where

� =
kX
j=1

�j � A =
Y�

n2
i + 17

��i
�

B =
kY
j=1

�
17m2

i + 1
��j

�
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Let us consider the Legendre-symbol
� �

17

�
. Since (A� 17) = (B� 17) =

= (3� 17) = 1, therefore � = 0, furthermore

�
3

17

�
=

�
A

17

��
B

17

�
�

Since �
A

17

�
=
Y�

n2
i

17

	
= 1�

�
B

17

�
=
Y�

1
17

�
= 1�

we deduce that �
3

17

�
= 1�

but this is not true.

Hence we obtain easily the assertion.

��� Case �	� Since 18 � F, �(2) = 22 � F, �(3) = 27 � F, we obtain

that
�(3)
18

=
3
2
� F. Furthermore

�(6)
a

=
54
18

= 3 � F, and so 2 � F. By

using Lemma 5, we deduce that S18 is trivial.

��� Case �
� From Lemma 8 we obtain that 2 	� Q�(T19). Furthermore,

�(11) = 140, �(1) = 20, hence 7 � F,
�(3)

7
= 22 � F,

�(4)
7

= 5 � F,

�(3)
18

=
3
2
� F.

Thus 2 = 3, and by Lemma 5, the assertion follows.

�	� Case ��� From Lemma 6 we obtain that 5 � F, 22 � F. Furthermore,

�(4)
22 = 32 � F. Hence, by Lemma 5 it is clear that S20 contains one or

two elements. We shall prove that 2 	� F14.

Let us assume indirectly that 2 � F14. Then

2 =
Y

�(nj )
�j = U1 �U2 �U3
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where

U1 =
Y

22jnj

��j (nj )�

U2 =
Y
2knj

��j (nj )�

U3 =
Y
2�nj

��j (nj )�

Since �(n) 
 1 (mod 4), if (n� 2) = 1, therefore U3 
 1 (mod 4).

Furthermore �(4m) = 4
�

(2m)2 + 5
�

,
�(4m)

4

 1 (mod 1), and so U1 =

= 22
P

1 . V1, where
P

1 =
P

22jnj

�j , V1 
 1 (mod 4). Finally,

�(2(2k + 1)) = 22
n

(2k + 1)2 + 5
o

= 22f6 + 4k (k + 1)g = 23f3 + 2k (k + 1)g�

and so
�(2(2k + 1))

23 
 �1 (mod 4).

Thus U2 = 22
P

2 �V2, where
P

2 =
P

2knj

�j , V2 
 (�1)
P

2 (mod 4).

Consequently

2 = 22
P

1 +3
P

2 �V1 �V2 � U3�

(V1V2U3� 2) = 1. Thus 2
P

1 +3
P

2 = 1, and so
P

2 = odd. Hence 1 =

= V1V2U3, 1 (mod 4) 
 (�1)
P

2 (mod 4), which is a contradiction.

The assertion is proved.
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H-1117 Budapest, Hungary
and
Research Group of Applied Number Theory
Hungarian Academy of Sciences
katai�compalg�inf�elte�hu
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�� Introduction

Let E be a set of positive integers. We say that E is a set of uniqueness
modulo 1 if for each completely additive function f : N � R�Z for which
f (e) � 0 (mod 1) for every e � E , we necessarily have that f (n) � 0
(mod 1) for each positive integer n . Here and in what follows, we let N, Z,
Q and R stand for the set of positive integers, all integers, rational numbers
and real numbers, respectively; also p always stands for a prime number. It
is clear that the domain of a completely additive function f can be extended
to the multiplicative group of positive rationals, simply by setting

f (m�n) = f (m)� f (n) for each m� n � N�

Let Q� be the multiplicative group of positive rationals, and for each
positive integer h , let

Q�h :=
nm
n

: m� n � N� (mn� h) = 1
o
�

Let E� be the multiplicative group generated by E . It was proved in-
dependently by several authors that E is a set of uniqueness mod 1 if and
only if E� = Q�; see for instance Indlekofer [5], Hoffman [3], Elliott [4]
and Meyer [9]. It is not known whether the set of shifted primes is a set of
uniqueness mod 1.

In Kátai [7], it was proved implicitly that the set of “primes + one”
enlarged by a suitable finite set of primes is a set of uniqueness mod 1.

* Research supported in part by a grant from NSERC.
Mathematics Subject Classi�cation ������� 11E16, 11E25, 11H55, 11J71, 11K65
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Elliott [2] proved that the set of primes up to 10387 together with the set
of shifted primes forms a set of uniqueness mod 1.

Given a binary quadratic form ax2 + bxy + cy2, let �D = 4ac� b2 stand
for its discriminant. Now assume that D is equal to 4 or 8 or an odd prime.

Let �D (n) = (�Dn ) be the Kronecker character and B(D) be the multiplicative
semigroup generated by the union of the following four sets:

fp : pjDg� fr2 : r = 1� 2� 3� � � �g� fp : ��D (p) = 1g� f0g�
From here on, when the context is clear, we shall write � instead of �D . Now
let

(2�1) w (n) :=
X
djn

�(d) =
Y
p�kn

�
1 + �(p) + � � � + �(p�)

�
�

It is clear that an integer n coprime to D belongs to B(D) if and only if
w (n) �0. Furthermore, if (n�D) = 1, then it is well known that the number
of representations of n by classes of binary quadratic forms with discriminant
�D is �w (n), where

� =

�
2 if D �4,
4 if D = 4,
6 if D = 3

(see Landau [8]). Assume that A is a positive integer and set

E (D�A) := fn + A : n � B(D)g�
Let furthermore H(D�A) be the multiplicative group generated by E (D�A).

In this paper, we study the set H(D�A) in the cases where D is 4, 8 or
an arbitrary prime number larger than 3.

Remarks�

(a) Fehér, Indlekofer and Timofeev [6] investigated the case D = 4 and
proved that H(4� A) = Q�, if A is the sum of two squares.

(b) Indlekofer and Timofeev proved a more precise result for the set
fn + A j n � B(4)g [10], namely that for a , b � N (a� b) = 1 (ab� 2A) =
= 1, there are infinitely many n , m � B(4), such that a(n+A) = b(m+A),
(a� n + A) = 1.

(c) If the class number h(�D) = 1, then D = 4� 8 or an odd prime, and B(D)
can be interpreted as the set of those integers which can be written as the
values of one binary quadratic form of discriminant �D .
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�� Main results

Theorem �� Let D �3 be an arbitrary prime and let A be any given

positive integer� Then

H(D�A) =

�
Q�D if �D (A) = �1�
Q� otherwise�

Theorem �� Let D = 4 and let A be an arbitrary positive integer� Then

H(4� A) = Q��

Theorem �� Let D = 8 and let A be an arbitrary positive integer� Then

H(8� A) = Q��

�� Preliminary lemmas

Lemma �� Let � be the Kronecker character mod �D � where D �0� Let
U �0 and V �0 be two integers for which there is an arithmetic progression

	 (mod D) such that �(	) = 1 and such that t := U	 + V satis�es �(t) = 1�
Moreover� let

a(x ) :=
X

x�p�2x
p�� (mod D)

w (Up + V )�

where w is de�ned by ������ Then a(x ) is positive if x is su	ciently large�

We shall not prove this lemma. Indeed, the result can easily be obtained
by using the Bombieri–Vinogradov mean value theorem in the form

X
k�px�(log x )B+25

max
�

max
n�x

����
(u� k � 	)� li(x )
�(k )

����� x

logB x

(see Elliott [1], Chapter 7), where li(x ) stands for the logarithmic integral, and
the “enveloping sieve” given by Hooley (see [4], Chapter 5), which he used
to obtain an asymptotic estimate for the number of solutions of the equation

n = p + x2 + y2. A more detailed argument is given in the proof of Lemma 1.

In the following lemmas, we assume that D is an odd prime and (A�D) = 1.
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Lemma �� Let k � 1 (mod D) and (k �A) = 1� Then k � H(D�A)�

Proof� In order to prove that k � H(D�A), it is sufficient to find n1� n2 �
� B(D) such that n1 +A = k (n2 +A). Let p run over the set of primes p � 1
(mod D) (so that p � B(D)) and consider the sum

a(x ) :=
X

x�p�2x

w (kp + (k � 1)A)�

It is enough to prove that a(x ) is positive for some x .

To do so, we let 	(p) := kp + (k � 1)A and observe that 	(p) � 1

(mod D), so that �(�(p)
d ) = �(d). Consequently, using the definition of w

given in (2.1), we have

w (	(p)) = 2
X
dj�(p)
d�
p
�(p)

�(d) + Ep�

where Ep = 0 except when 	(p) is a square, in which case Ep = �
�p

	(p)
�

,

that is jEpj � 1.

Thus, given a large number B ,

a(x ) =
X

d�px� logB x

2�(d) � #fp � [x � 2x ] : 	(p) � 0 (mod d)g

+
X

p
x� logB x�d�p2kx+(k�1)A

2�(d) � #fp � [x � 2x ] : 	(p) � 0 (mod d)� d2 �	(p)g

+ O(
p
x )

= Σ1 + Σ2 + O(
p
x )�

say. Using the Bombieri–Vinogradov mean value theorem (stated above), one
can obtain that

Σ1 = 2 (li(2x )� li(x ))
X

d�px� logB x

�(d)
�(dD)

+ O

	
x

logB1 x



�

where � stands for the Euler function and where B1 can be taken arbitrarily
large provided B is large enough.
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The crucial step is the evaluation of Σ2. This can be done by using the
enveloping sieve of Hooley. We shall not go into details, but one can easily
obtain from this method that, as x ��,

a(x ) = C (D)
2x

log x
+ o

	
x

log x



�

where C (D) =
�X
d=1

�(d)
�(dD)

, which proves Lemma 1.

Lemma �� Let k � 	 (mod D) and (k	�AD) = 1� Then k�	 � H(D�A)�

Proof� Since both k	�(D)�1 and 	�(D) are � 1 (mod D) and are co-
prime to A, then they both belong to H(D�A), from which it follows that
their ratio k�	 also belongs to H(D�A).

Lemma �� Let Z�D be the set of reduced residue classes mod D and let

T be its subgroup generated by

(3�1) f
 + A : 
 = 0 or 
 = quadratic residue mod Dg n f0g�
Then T = Z�D �

Proof� Assume that T is a proper subgroup of Z�D . Then #T�D � 1,
so that #T � (D � 1)�2. On the other hand, since the set of its generating
elements contains (D � 1)�2 members, then #T must be equal to (D � 1)�2,
so that T must be the subgroup of the quadratic residues mod D . This means
that 
 +A is a quadratic residue if 
 is equal to zero or to a quadratic residue,
except when 
 = �A. (Observe that, in the case �(�A) = �1, T always has
at least (D + 1)�2 elements, so that #T = D�1, in which case T = Z�D .) Thus

(3�2)
D�1X
m=0

(�(m) + 1)(�(m + A) + 1) 	 2 + 4 � D � 3
2

�

But, since

D�1X
m=0

�(m) =
D�1X
m=0

�(m + A) = 0 and
D�1X
m=0

�(m)�(m + A) = �1�

it follows that the left hand side of (3.2) is D � 1 and therefore that D � 1 	
	 2 + 4 � D�3

2 , which is impossible if D �3.
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It remains to consider the case D = 3. If A � 1 (mod 3), then the set
f0 + 1 (mod 3)� 1 + 1 (mod 3)g generates Z�3. If A � �1 (mod 3), then (�1)

(mod 3) � T and (�1)2 (mod 3) � T, so that T = Z�3, thus completing the
proof of Lemma 3.

Lemma �� Let �(�A) = �1� Then H(D�A) 
 Q�D �

Proof� It is enough to show that (n + A�D) = 1 for every n � B(D).
Indeed, if n + A � 0 (mod D), then �(n) � �(�A) = 1 and consequently
(n�D) = 1. But n � B(D) and (n�D) = 1 imply that �(n) = 1, thus proving
Lemma 4.

Lemma �� Let SA be the multiplicative group generated by E1 � E2�

where

E1 = fp + A : �(p) = 1� p �� �A (mod D)g�
E2 = fDr + A : r = 1� 2� 3� � � �g�

Then� for every 
 � Z�D � SA contains in�nitely many integers congruent to 

(mod D)� all of which are coprime to A� Moreover� SA 
 H(D�A)�

Proof� These results are direct consequences of Lemma 3.

�� Proof of Theorem �

Assume first that (A�D) = 1. Then it follows from Lemmas 2 and 5 that

Q�AD 
 H(A�D)�

Let A = 

�1
1 


�2
2 � � � 
�rr . We shall prove that 
j � H(A�D) for j =

= 1� 2� � � � � r , which will imply that

(4�1) Q�D 
 H(A�D)�

So let 
1 be one of the prime divisors of A and write A = 

�1
1 A2.

Assume first that �1 = 1. Then for m � B(D), we have

H(A�D) 
 
2
1Dm + A = 
1 (
1Dm + A2) �

Since (
1Dm + A2� AD) = 1, it follows that 
1Dm + A2 � H(A�D), and so

1 � H(A�D).

For �1 �1, we consider separately the cases �1 odd and �1 even.



2005. április 28. –21:08

ON THE MULTIPLICATIVE GROUP GENERATED BY SHIFTED BINARY QUADRATIC FORMS 23

First assume that �1 = 2� + 1, with � 	 1. Then we have



2�+2
1 Dm + 
2�+1

1 A2 = 

2�+1
1 (
1Dm + A2) � H(A�D)�

Since (
1Dm + A2� AD) = 1, we obtain that 
1Dm + A2 � H(A�D) and

consequently that 
2�+1
1 � H(A�D). Furthermore, if m � B(D), then


2
1Dm + A � H(A�D) and 
2

1Dm + A = 
2
1 (Dm + 


2��1
1 A2), whence


2
1 � H(A�D) follows by observing that (Dm + 
2��1

1 A2� AD) = 1. Thus


1 =



2�+1
1

(
2
1 )�

� H(A�D)�

Let us now consider the case � = 2� with � 	 1. Starting with m �
� B(D), since

H(A�D) 
 
2�+2
1 Dm + A = 


2�
1

�
D
2

1m + A2

�
�

(D
2
1m +A2� AD) = 1, it follows that D
2

1m +A2 � B(D), and therefore that



2�
1 � B(D).

We shall now prove that 
2
1 � H(A�D). Since we already proved this in

the case � = 1, we may assume that � 	 2 and consider the integer 
2
1D +

+ A = 
2
1

�
D + 
2(��1)

1 A2

�
. Since 
2

1D + A � H(A�D), D + 
2(��1)
1 A2 �

� H(A�D), we obtain that 
2
1 � H(A�D), as claimed.

Finally, we observe that there is some m � B(D) such that 
1kmD +

+ A2. This is true if Dm + A2 � 
1 (mod 
2
1 ), which defines an arithmetic

progression m � s (mod 
2
1 ), where s = (
1�A2)D�1 (mod 
2

1 ), (s� 
1) =

= 1. If m is a prime p satisfying p � s (mod 
2
1 ) and p � 1 (mod D), then

it is a suitable choice for m � B(D), 
1kDm + A2.

Hence Dm +A2 = 
1� with (��DA) = 1 and � � H(A�D); furthermore,



2�
1 Dm + A = 


2�
1 (Dm + A2). Thus 
1 � H(A�D) and since 
1 was an

arbitrary prime divisor of A, our claim (4.1) is established.

Let us now investigate whether D belongs to H(A�D) or not. Since
we already proved that it does not if �(�A) = �1, we may assume that
�(�A) = 1. Then p � �A (mod D) implies that p +A � H(A�D). There are

infinitely many primes p such that Dkp+A, that is p+A
D = �p with (�p� D) = 1
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and �p � H(A�D), and consequently D � H(A�D). Thus the theorem is
proved in the case (A�D) = 1. Hence we shall now assume that A = DrB
with (B�D) = 1 and r 	 1. We shall try to find integers n1� n2 � B(D) such
that n1 +A = D(n2 +A), that is n1�Dn2 = (D � 1)A. We shall find these by

looking for m1� m2’s such that n1 = Drm1, n2 = Dr�1m2, which leads to the
equation

(4�2) m1 � m2 = (D � 1)B�

Let 
 run over zero and the quadratic residues mod D , that is over D+1
2

integers, and let (H�D) = 1. Then the set f
 +H g contains either a quadratic
residue or zero. This is true in particular if we choose H = (D � 1)B . So let

� � be such a couple of residues for which


 � � = (D � 1)B� �(
) ��1� �(�) ��1�

If � �� 0 (mod D), consider the sum

(4�3)
X

x�p�2x
p�� (mod D)

w (p + (D � 1)B)�

If � � 0 (mod D), then consider the sum

(4�4)
X

x�p�2x
p�1 (mod D)

w (Dp + (D � 1)B)�

By using the Bombieri–Vinogradov mean value theorem and the evaluating
sieve of Hooley mentioned in Lemma 0, one can deduce that both expressions
(4.3) and (4.4) are positive provided x is large enough, in which case there
exists at least one pair of integers n1� n2 � B(D) for which

D =
n1 + A
n2 + A

�

The proof of Theorem 1 is thus complete.

�� Proof of Theorem �

Assume first that A is odd. We shall prove that

(5�1) k =
n1 + A
n2 + A

� n1� n2 � B(4)
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can be solved if k � 1 (mod 4), (k �A) = 1. Let n2 run over the primes p � 1
(mod 4) and n1 = kp + (k � 1)A. By using the method of x4, one can prove
that X

p�x
p�1 (mod 4)

w (kp + (k � 1)A) �0

provided x is large enough, in which case (5.1) has a solution.

Hence we can deduce that for k � 	 � 3 (mod 4), (k	�A) = 1, we have

(5�2) k�	 � H(4� A)�

simply by repeating the argument used in the proof of Lemma 2.

Since A + 4� A + 2 � H(4� A), there exists at least one 
 � H(4� A) for
which 
 � 3 (mod 4) and (
�A) = 1. Hence we obtain as earlier that

Q�4A 
 H(4� A)�

Let A = 

�1
1 A2, (A2� 
1) = 1, 
1 prime. We shall prove that 
1 � H(4� A).

Since 
1 is an arbitrary prime divisor of A, it will be true for each prime
divisor of A, which implies that

(5�3) Q�4 
 H(4� A)�

Assume first that �1 = 1. Then 4
2
1 + A2
1 = 
1(4
1 + A2) with (4
1 +

+ A2� 4A) = 1, whence 
1 � H(4� A).

Now consider the case �1 = 2� + 1, � 	 1. By setting 4
2
1 + A2


2�+1
1 =

= 
2
1 (4 + A2


2��1
1 ), we obtain that 
2

1 � H(4� A). Then by considering

4
2�+2
1 +
2�+1

1 A2 = 

2�+1
1 (4
1 +A2) and observing that 4
1 +A2 � H(4� A),

it follows that 
2�+1
1 � H(4� A), and hence that 
1 � H(4� A).

Finally, let � = 2� , � 	 1. Similarly, by choosing the numbers 4
2�+2
1 +

+ A and 4
2
1 + A, we first deduce that 
2

1 � H(4� A).

Arguing as in the proof of Theorem 1, we first prove that there is at least

one (actually infinitely many) m � B(4) such that Dm +A2 � 
1 (mod 
2
1 ).

If such an integer m exists, then the integer �m = Dm+A2
�1

is coprime to AD .

Consequently �m � H(4� A) and furthermore 

2�+1
1 �m = Dm


2�
1 + A �

� H(4� A), whence 
2�+1
1 � H(4� A), and so 
1 � H(4� A).
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It remains to prove the existence of such an integer m . To do so, it is
enough to observe that there is at least one (actually infinitely many) prime

p � 1 (mod 4) such that 4p + A2 � 
1 (mod 
2
1 ). Since this clearly holds,

we have thus established (5.3).

We shall now prove that 2 � H(4� A).

If A � 1 (mod 4), then 2k1 + A and 1 + A � H(4� A) imply that
2 � H(4� A).

If A � 3 (mod 4), then A = �1 + 2	B , with B odd and � 	 2. For every

� �� , the number of primes p�x for which 2
kp+A is (1+o(1))li(x )�2
�1,
which means that there exists a prime p
 and an odd integer �
 � H(4� A)
such that p
 + A = 2
�
 . It is obvious that p
 � 1 (mod 4) and thus that
p
 + A � H(4� A). Hence

2 =
2
+1

2

=
p
+1 + 1
�
+1

� �

p
 + 1

� H(4� A)�

We have thus proved that H(4� A) = Q� if (A� 2) = 1.

Assume now that A = 2	B with B odd and � 	 1. We already proved
that H(4� B) = Q�, that is that each rational number m�n has a representation

m

n
=

rY
j=1

(nj + B)
j �

where �j � f�1� 1g and nj � B(4), and so

m

n
= 2	(
1+���+
r )

rY
j=1

(2	nj + A)
j �

To complete the proof of Theorem 2, it is enough to show that 2 � H(4� A).
But this is true if

n1 + A = 2(n2 + A)� n1� n2 � B(4)

can be solved. By writing n1 = 2	m1, n2 = 2	m2, it follows that the existence
of m1� m2 � B(4), with m1 � 2m2 = B , would be enough.

Now if B � 1 (mod 4), then let m2 run over the set f2p : p � 1
(mod 4)g and consider the sumX

p�x
p�1 (mod 4)

w (4p + B)�
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which is surely positive if x is large enough.

On the other hand, if B � �1 (mod 4), then let m1 run over the set
f2p : p � 1 (mod 4)g and consider the slightly different sumX

p�x
p�1 (mod 4)

w (2p + B)�

which again is surely positive if x is large enough.

This completes the proof of Theorem 2.

�� Proof of Theorem �

Since the proof is very similar to that of Theorems 1 and 2, we shall only
give a sketch of it.

Observe that now D = 8 and

�(1) = �(3) = 1� �(5) = �(7) = �1�

Assume first that A is odd. Arguing as earlier, we can deduce that

Q�2A 
 H(8� A)�

Repeating the argument used before, one can also prove that 
 � H(8� A) if

 is a prime divisor of A. Consequently,

Q�2 
 H(8� A)�

Since A + 1� A + 3 � H(8� A) and since either 2kA + 1 or 2kA + 3, we obtain
that 2 � H(8� A), and so

Q�4 
 H(8� A)�

The theorem is thus proved for A odd. So let A = 2	B with B odd and � 	 1.
As earlier, we can deduce that each rational number m�n can be written as

m

n
= 2Γ(m�n)�(m� n)�

where Γ(m� n) is a positive integer depending on m and n , and �(m� n) �
� H(8� A).

Thus it remains to prove that 2 � H(8� A). For this we try to solve the
equation n1+A = 2(n2+A), that is n1�2n2 = A. So let n1 = 2	m1, n2 = 2	m2,
that is m1 � 2m2 = B . Let us now choose m1 as follows

m1 =

��

��

2p + B with p � 1 (mod 8) if B � 1 (mod 8),
2p + B with p � 3 (mod 8) if B � 5 (mod 8),
8p + B with p � 1 (mod 8) if B � 3 (mod 8),
2p + B with p � 1 (mod 8) if B � 7 (mod 8).
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Since each of the above choices has at least one solution m1 � B(8), this
completes the proof of Theorem 3.

References

[1] P� D� T� A� Elliott� Arithmetic Functions and Integer Products, Springer-
Verlag, 1985.

[2] P� D� T� A� Elliott� On representing integers as products of the p+1, Monatsh�

Math� ����� (1984), 85–97.
[3] P� Hoffmann� Note on a problem of Kátai, Acta Math� Hung� �� (1985),
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�� Introduction

According to a theorem of H. Maier and G. Tenenbaum [1] (see [2], also)
for all but o(x ) of integers n � x always there exist divisors d1 �d2 such
that d2 �2d1. See [2] as well.

Indlekofer and Timofeev [4] proved the same for the set of shifted primes.
Namely they proved something more:

The number of primes p � x , such that p � 1 does not have a couple of
divisors d1� d2 such that d1 �d2 �2d1, is less than

c�(x )
(log log log x )4�

(log log x )�
�

where � = 1�
1 + log log 3

log 3
.

Our purpose here is to give a simple proof of the analogon of the theorem
of Maier and Tenenbaum. In the proof we shall use only some simple sieve
results and the Siegel–Walfisz theorem.

Theorem �Indlekofer� Timofeev�� With the exception of at most

o(li x ) primes p � x there exist divisors d1 �d2(�2d1) of p � 1�

* The paper was written while the first named author visited Edmonton as a research
professor invited by M. V. Subbarao funded by his NSERC grant. Financially supported also
by the research group Applied Number Theory of the Hungarian Academy of Sciences.

y Supported by the NSERC grant of the author.
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�� Proof

Let p� q with suffixes and without suffixes denote prime numbers, let P
be the whole set of primes. Let P(n) be the largest prime divisor of n .

Assume that t = t(x ) �� very slowly, t = O(log log log x ), say.

Let Bt = fn� P(n) � tg.

For some integer n let

(2�1) M (n) :=
Y
p�kn
p�t

p� � E (n) =
Y
p�kn
p�t

p� �

We know that

(2�2) �(x � k � 1) � c(�)
li x
�(k )

for k � x1�� �

and

(2�3) �(x � k � 1) �
x

k
if x1�� � k � x �

According to Lemma 5.2 in K. Prachar [3],

(2�4)

# fn �x jP(n) 	yg�

�x exp

�
�

log3 y

log y
log x + log2 y + O

�
log2 y

log3 y

��
�

From (2.4) we can get easily that

(2�5) lim sup
x��

1
�(x )

#
�
p � x jM (p + 1) 	t�

�
�c(
)�

where c(
) � 0 if 
 ��.

Let 
 be fixed, m �t� � m � Bt .

Let

(2�6)
Y
m

(x ) := #fp � x j M (p + 1) = mg�

Let

Q =
Y
p�t

p�
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We haveY
m

(x ) = #

�
p � x � mjp � 1�

�
p � 1
m

�Q

�
= 1

�
�

and so Y
m

(x ) =
X
�jQ

�(�)�(x � �m; 1)

= f (m)li x + O

�
(li x )
�(m)

(log x )�A
�
�

where

(2�7) f (m) =
X
�jQ

�(�)
�(�m)

=
1
m

Y
��t
��m

�
1�

1
� � 1

�
�

where � runs over P.

Note that 2jm always holds. We can rewrite (2.7) as

f (m) = a(m)(1 + ox (1))
c�

log t
�

where

a(m) =
1
m

Y
�jm
��2

� � 1
� � 2

�

and c� is defined from
c�

(log t)
(1 + ox (1)) =

Y
2�p�t

� � 2
� � 1

�

Let E0 be the set of those integers n , for which no divisors d1� d2 exist
with d1 �d2 �2d1. According to the Meier–Tenenbaum theorem,

(2�8) #(E0 � [1� x ]) �
(x )x �

where 
(x ) � 0 as x ��.

Let

T (x ) := # fp � x j p + 1 � E0g �

Then

T (x ) �
X
m�E0

Y
m

(x ) =
X

1
+
X

2
�

where in
P

1� m � t� , and in
P

2 : m 	t� .



2005. április 23. –20:42
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As we noted,
P

2 � 2c(
)li x , if x is large.

We have

(2�9)
X

1
�

2C �

(log t)

X
m�t�

m�E0
P(m)�t

a(m)
m

�

Let H be a large constant and observe that

X
a(m)�H
P(m)�t

a(m)
m

�
1
H

X
P(m)�t

a2(m)
m

�
1
H

Y
p�t

�
1 +

a2(p)
p

	
�
c1
H

log t �

Thus X
1
�

2c�c1
H

+
X

3
�

where X
3
�

2Hc�

(log t)

X
m�t�

m�E0
P(m)�t

1
m
�

From (2.8) we obtain that,

X
3
�

2Hc�

log t
(log log t + 
(log log t)(
 log t))

consequently
P

3 � 0 as x ��.

Hence we deduce that

(2�10) lim sup
x��

T (x )
li x

� 2c(
) +
2c�c1
H

�

Since H and 
 are arbitrary, c(
) � 0 (
 ��) we obtain that the left
hand side of (2.10) is zero.

The proof is completed.
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�� Further remarks

We would be able to prove the following statements.

1) There exists a sequence 
x � �, such that the number of those
primes p � x for which p + l has a couple of divisors d1� d2, such that

x �d1 �d2 �2d1, is (1 + o(1))�(x ).

2) The same assertion remains true for the unitary divisors instead of the
divisors.

3) The relative density of the primes p for which p + l has three divisors
d1 �d2 �d3 (�2d1) exists, and smaller than 1. The same assertion for the
whole set of the integers was proved by P. Erdős.
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Loránd Eötvös University,
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�� Introduction

In [1] we considered a predator–prey system of Cavani–Farkas type
(see [2]) living in a habitat of two identical patches in which the per capita
migration rate of each species is influenced only by its own density and we
have shown that at a critical value of the bifurcation parameter the system
undergoes a Turing bifurcation (see [7]), pattern emerge. In population dy-
namics there are a lot of problems which are described by a cross-diffusion
system (see [3], [4], [5], [6]). In this paper, we consider the case when the
per capita migration rate of each species is influenced not only by its own but
also by the other one’s density, i.e. there is cross diffusion present.

Let u1(t � j ) := density of prey in patch j at time t and u2(t � j ) := density
of predator in patch j at time t � j = 1� 2; t � R� The interaction between two
species is described as a system of differential equations as follows:

(1)

u̇1(t � 1) = �u1(t � 1)

�
1�

u1(t � 1)
K

�
�
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

+ d1(�1(u2(t � 2))u1(t � 2)� �1(u2(t � 1))u1(t � 1))�

u̇2(t � 1) = �
u2(t � 1)(� + �u2(t � 1))

1 + u2(t � 1)
+
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

+ d2(�2(u1(t � 2))u2(t � 2)� �2(u1(t � 1))u2(t � 1))�

u̇1(t � 2) = �u1(t � 2)

�
1�

u1(t � 2)
K

�
�
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

+ d1(�1(u2(t � 1))u1(t � 1)� �1(u2(t � 2))u1(t � 2))�
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(1)
u̇2(t � 2) = �

u2(t � 2)(� + �u2(t � 2))
1 + u2(t � 2)

+
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

+ d2(�2(u1(t � 1))u2(t � 1)� �2(u1(t � 2))u2(t � 2))�

where � 	0 is the specific growth rate of the prey in the absence of predation
and without environmental limitation, � 	0� K 	0 are the conversion
rate and carrying capacity with respect to the prey, respectively, � 	0 and
� 	0 are the minimal mortality and the limiting mortality of the predator,
respectively (the natural assumption is � 
�). The meaning of conversion
rate or the half saturation constant is that at u1 = � the specific growth rate
�u1
�+u1

(called also a Holling type functional response) of the predator is equal

to half its maximum �� The advantage of the present model over the more
often used models is that here the predator mortality is neither a constant nor
an unbounded function, still, it is increasing with quantity. di 	0, (i = 1� 2)

are the diffusion coefficients and �1 � C
1 is a positive increasing function of

u2, the density of the predator, ��1 	0 and �2 � C
1 is a positive decreasing

function of u1 the density of the prey, ��2 
0. The idea is that the dependence
of the diffusion coefficient on the density of the other species reflects the
inclination of a prey (or an activator) to leave a certain patch because of the
danger (or the inhibition) and the tendency of a predator (or the inhibition) to
stay at a certain patch because of the abundance of prey (or an activator). The
functions �i model the cross-diffusion effect. We say that the cross diffusion

is strong if
�����iuk

��� (i �k ) is large. If by varying a parameter
�����iuk

��� (i �k ) is

increasing then we say that the cross diffusion effect is increasing. If �i = 1,
i = 1� 2 then we have mere “self-diffusion”.

First we consider the kinetic system without migration, i.e. d1 = d2 = 0 :

(2)

u̇1(t � 1) = �u1(t � 1)

�
1�

u1(t � 1)
K

�
�
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

�

u̇2(t � 1) = �
u2(t � 1)(� + �u2(t � 1))

1 + u2(t � 1)
+
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

�

u̇1(t � 2) = �u1(t � 2)

�
1�

u1(t � 2)
K

�
�
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

�

u̇2(t � 2) = �
u2(t � 2)(� + �u2(t � 2))

1 + u2(t � 2)
+
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

�
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The following conditions are reasonable and natural:

� 
� � ��(3)

� 
K�(4)

� 

�K

� +K
�(5)

Condition (3) ensures that the predator mortality is increasing with density,
and that the predator null-cline has a reasonable concave down shape; (4)
ensures that for the prey an Allée-effect zone exists where the increase of
prey density is favourable to its growth rate; (5) is needed to have a positive
equilibrium point of system (2) (see [1]). System (2) is made up by two
identical uncoupled systems. Under these conditions each has (the same)
positive equilibrium which is the intersection of the null-clines:

u2 = H1(u1) :=
�

�K
(K � u1)(� + u1)�(6)

u2 = H2(u1) :=
(� � �)u1 � ��

(� � �)u1 + ��
�(7)

Thus, denoting the coordinates of a positive equilibrium by (u1� u2� u1� u2),
these coordinates satisfy u2 = H1(u1) = H2(u1).

Note that if K 	� , we have an interval u1 � (0� K��
2 ), where the

Allée-effect holds, i.e. the increase of the prey quantity is beneficial to its
growth rate.

The Jacobian matrix of the system (2) linearized at (u1� u2� u1� u2) is

(8) Jk =

�
�

Θ1 �Θ2 0 0
Θ3 �Θ4 0 0
0 0 Θ1 �Θ2
0 0 Θ3 �Θ4

�
A �

The characteristic polynomial is

(9) D4(�) = (D2(�))2� D2(�) = �2 + �(Θ4 �Θ1) + Θ2Θ3 �Θ1Θ4�

where

Θ1 =
�u1(K � � � 2u1)

K (� + u1)
� Θ2 =

�u1
� + u1

�(10)

Θ3 =
�2u2

(� + u1)2
� Θ4 =

(� � �)u2

(1 + u2)2
�
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The equilibrium point (u1� u2� u1� u2) lies in the Allée-effect zone if

(11) H1

�
k � �

2

�

H2

�
k � �

2

�
�

i.e.

(12)
�

4�K
(K + �)2 
�1 +

(� � �)K

�2 � �K + �K
�

Assume that

(13) Θ4 �Θ1 	0 and Θ2Θ3 �Θ1Θ4 	0�

then the coexistence equilibrium point (u1� u2� u1� u2) is linearly asymptoti-
cally stable.

�� The model with self�di�usion

Model (1) with self-diffusion (i.e., �i (u) � 1, i = 1� 2) can be written as
follows:
(14)

u̇1(t � 1) = �u1(t � 1)

�
1�

u1(t � 1)
K

�
�
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

+ d1(u1(t � 2)�u1(t � 1))�

u̇2(t � 1) = �
u2(t � 1)(� + �u2(t � 1))

1 + u2(t � 1)
+
�u1(t � 1)u2(t � 1)
� + u1(t � 1)

+ d2(u2(t � 2)�u2(t � 1))�

u̇1(t � 2) = �u1(t � 2)

�
1�

u1(t � 2)
K

�
�
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

+ d1(u1(t � 1)�u1(t � 2))�

u̇2(t � 2) = �
u2(t � 2)(� + �u2(t � 2))

1 + u2(t � 2)
+
�u1(t � 2)u2(t � 2)
� + u1(t � 2)

+ d2(u2(t � 1)�u2(t � 2))�

We see that (u1� u2� u1� u2) is also a spatially homogeneous equilibrium of the
system with self-diffusion. The Jacobian matrix of the system at (u1� u2� u1�
u2) can be written as:

JD =

�
�

Θ1 � d1 �Θ2 d1 0
Θ3 �Θ4 � d2 0 d2
d1 0 Θ1 � d1 �Θ2
0 d2 Θ3 �Θ4 � d2

�
A �(15)

det(JD � �I ) =

������
Θ1 � d1 � � �Θ2 d1 0

Θ3 �Θ4 � d2 � � 0 d2
d1 0 Θ1 � d1 � � �Θ2
0 d2 Θ3 �Θ4 � d2 � �

������ �
(16)
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Using the properties of determinant we get

������
Θ1 � � �Θ2 d1 0

Θ3 �Θ4 � � 0 d2
0 0 Θ1 � 2d1 � � �Θ2
0 0 Θ3 �Θ4 � 2d2 � �

������(17)

= D2(�)(�2 + �(Θ4 �Θ1 + 2(d1 + d2)) + (Θ2Θ3 �Θ1Θ4)+

+ 2d1Θ4 � 2d2(Θ1 � 2d1)�

We know that D2(�) has two roots with negative real parts. By (13), clearly,
Θ4 � Θ1 + 2(d1 + d2) 	0� The other polynomial will have a negative and a
positive root if the constant term is negative. By the properties of the model
and condition (12) the first two terms of the constant are positive. If (12)
holds and the parameters have been chosen so that

(18) Θ1 � 2d1 	0�

we may increase d2 and the constant term becomes negative, i.e. the equilib-
rium (u1� u2� u1� u2) becomes diffusively unstable. The calculations lead to
the following Theorem.

Theorem ���� Under conditions ����� ����� ���� if

(19) d2 	d2cr it =
(Θ2Θ3 �Θ1Θ4 + 2d1Θ4)

2(Θ1 � 2d1)
�

then Turing instability occurs	

Remark ���� If (12) and (13) hold and the parameters have been chosen
so that

(20) Θ1 � 2d1 
0�

then self-diffusion never destabilizes the equilibrium (u1� u2� u1� u2) which is
asymptotically stable for the kinetic system, i.e. the equilibrium (u1� u2� u1� u2)
is diffusively stable for all values of d2.
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�� The model with cross�di�usion

For model (1) with cross-diffusion response (i.e., ��i (u)
�uj

�0� i �j ) we

see that (u1� u2� u1� u2) is also a spatially homogeneous equilibrium of the
system with cross-diffusion.

The Jacobian matrix of the system with cross-diffusion at (u1� u2� u1� u2)
can be written as:
(21)

JD =

�
BB�

Θ1 � d1�1 �Θ2 � d1�
�

1u1 d1�1 d1�
�

1u1
Θ3 � d2�

�

2u2 �Θ4 � d2�2 d2�
�

2u2 d2�2
d1�1 d1�

�

1u1 Θ1 � d1�1 �Θ2 � d1�
�

1u1
d2�

�

2u2 d2�2 Θ3 � d2�
�

2u2 �Θ4 � d2�2

�
CCA �

where �1 and ��1 are to be taken at u2 and �2, ��2 at u1.

Theorem ���� Under conditions ����� ���� if

(22) Θ1 � 2d1�1 	0

and �2(u1) is su
ciently large then Turing instability occurs	

Proof� det(JD � �I ) =
(23)��������

Θ1 � d1�1 � � �Θ2 � d1�
�

1u1 d1�1 d1�
�

1u1
Θ3 � d2�

�

2u2 �Θ4 � d2�2 � � d2�
�

2u2 d2�2
d1�1 d1�

�

1u1 Θ1 � d1�1 � � �Θ2 � d1�
�

1u1
d2�

�

2u2 d2�2 Θ3 � d2�
�

2u2 �Θ4 � d2�2 � �

��������
�

Using the properties of determinant we get��������

Θ1 � � �Θ2 d1�1 d1�
�

1u1
Θ3 �Θ4 � � d2�

�

2u2 d2�2
0 0 Θ1 � 2d1�1 � � �Θ2 � 2d1�

�

1u1
0 0 Θ3 � 2d2�

�

2u2 �Θ4 � 2d2�2 � �

��������
(24)

= D2(�)f�2 + �[Θ4 �Θ1 + 2(d1�1 + d2�2)] + Θ2Θ3 �Θ1Θ4

+ 2d1Θ4�1 � 2d2�2(Θ1 � 2d1�1) + 2d1u1Θ3�
�

1

� 2d2�
�

2u2(Θ2 + 2d1�
�

1u1)g�(25)

We know that D2(�) has two roots with negative real parts. By (13), clearly,
Θ4�Θ1 + 2(d1�1 +d2�2) 	0. The other polynomial will have a negative and
a positive root if its constant term is negative. This can be achieved if �2(u1)
is increased.
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Remark ���� As we have mentioned, if (20) holds and there is no cross
diffusion then the equilibrium remains stable for any d2 	0. Still, (22)
may hold, i.e. in this case only the cross diffusion effect may destabilize the
equilibrium.

Remark ���� If the parameters have been chosen so that

(26) Θ1 � 2d1 	0 and Θ1 � 2d1�1 
0�

then the equilibrium (u1� u2� u1� u2) remains asymptotically stable for any
d2 	0 and �2 	0 in the cross diffusion case while, as we have seen, it
will undergo a Turing bifurcation in the absence of cross diffusion.

	� Numerical investigations

In this section we illustrate the results by the following example and we
are looking for conditions which imply Turing instability (diffusion driven
instability).

Example� We choose

(27) �1(u2) =
m1u2
1 + u2

� �2(u1) = m2 exp

�
�u1
m2

�
� m1� m2 	0�

If � = 0�1, � = 0�01, � = 0�1055, � = 1, K = 1. The unique positive
equilibrium is (u1� u2� u1� u2) = (0�4486, 3�0250, 0�4486, 3�0250). We see that
this point is in the Allée-effect zone (0�4486 
0�45) and it is asymptotically
stable with respect to the kinetic system (2).

For the self-diffusion system (14 ) we considered d2 as a bifurcation
parameter. In this case at d1 = 0�0001 we have d2cr it = 2�024478.

If d2 = 1 (resp. 2.5) then, (u1� u2� u1� u2) is asymptotically stable (resp.
unstable).

For the cross-diffusion system we consider m2 as a bifurcation parameter.
In this case at d1 = 1, d2 = 1, m1 = 0�001 and m2cr it

�= 350�7, we have four
eigenvalues �i (i = 1� 2� 3� 4) such that Re �i 
0, (i = 1� 2� 3) and �4 = 0.

If m2 
m2cr it � Re �i 
0, (i = 1� 2� 3� 4), (u1� u2� u1� u2) is asymptoti-
cally stable.

If m2 	m2cr it � Re �i 
0, (i = 1� 2� 3) and �4 	0, (u1� u2� u1� u2) is
unstable.
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If d1 = 0�0001, d2cr it = 2�5 and m1 = 100, then, (u1� u2� u1� u2) is
asymptotically stable for all m2.

In this example
�����2u1

(u1� u2)
��� = exp

�
�

u1
m2

�
. As we see if m2 is in-

creased for fixed u1 this derivative is increasing, i.e. the cross diffusion effect
is increasing and the spatially homogeneous equilibrium loses its stability.
Numerical calculations show that two new spatially non-constant equilibria
emerge (see the Table and the Figures), and these equilibria are asymptotically
stable.


� Conclusions

In the present article our interest is to study a prey–predator system of
Cavani–Farkas type in two patches in which the per capita migration rate of
each species is influenced not only by its own but also by the other one’s
density, i.e. there is cross diffusion present. Our main result is that a standard
(self-diffusion) system may be either stable or unstable, a cross-diffusion
response can stabilize an unstable standard system and destabilize a stable
standard system. We conclude that the cross migration response is an impor-
tant factor that should not be ignored when pattern emerges.
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Table� Equilibria of the Example before and after bifurcation.

m2 u1(t � 1) u2(t � 1) u1(t � 2) u2(t � 2)

350 �4486421535 3�024981563 �4486421535 3�024981563

�4378285520 3�023718369 �4594667816 3�023905740
355 �4486421535 3�024981563 �4486421535 3�024981563

�4594667816 3�023905740 �4378285520 3�023718369

�4293426859 3�021090741 �4679770577 3�021415850
365 �4486421535 3�024981563 �4486421535 3�024981563

�4679770577 3�021415850 �4293426859 3�021090741

�4239447856 3�018670501 �4733980189 3�019075240
375 �4486421535 3�024981563 �4486421535 3�024981563

�4733980189 3�019075240 �4239447856 3�018670501

�4198086580 3�016422000 �4775559683 3�016882011
385 �4486421535 3�024981563 �4486421535 3�024981563

�4775559683 3�016882011 �4198086580 3�016422000

�4149242890 3�013326528 �4824709584 3�013843903
400 �4486421535 3�024981563 �4486421535 3�024981563

�4824709584 3�013843903 �4149242890 3�013326528
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Figure �� Graphs of the coordinate u1(t � 1) of two solutions of the Exam-
ple corresponding to the respective initial conditions (0.33, 2.85, 0.5, 2.91),
(3.332, 2.88, 0.542, 2.85); (a) for self-diffusion at d1 = 0�0001, d2 = 2�5, (b)
for cross-diffusion at d1 = 0�0001, d2 = 2�5, m1 = 100 and m2 = 1, (Figure
produced by applying PHASER).
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Figure �� Graphs of the coordinate u1(t � 1) of two solutions of the Ex-
ample corresponding to the respective initial conditions (0.423, 3.018, 0.473,
3.02), (0.4733, 3.018, 0.423, 3.0186); (a) for self-diffusion at d1 = 1, d2 = 1,
(b) for cross-diffusion at d1 = 1, d2 = 1, m1 = 0�001 and m2 = 375, (Figure
produced by applying PHASER).
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�� Introduction

The study of multialgebras (hyperstructures) began more than 65 years
ago and they were used in different areas of mathematics and in some ap-
plied sciences (see [2]). Multialgebras are particular relational systems which
generalize the universal algebras. The starting point of this paper is in [6],
[7] and [15]. The papers [6] and [7] present the construction of the inverse
limit for particular inverse systems for some cases of (semi)hypergroups. The
construction is a generalization for the same construction made for corre-
sponding universal algebras as well as a particularization of the construction
mentioned in [4] for relational systems. In [15] is proved that the category of
multialgebras (with the homomorphisms obtained from the relational systems
homomorphisms) has finite products and equalizers, hence it is finitely com-
plete. With no major changes in the proof it can be shown that the category
studied in [15] is a category with products, hence this is a complete category.
But the notion of multioperation used in [15] does not exclude the empty
set from its range and the proof that these multistructures form a category
with equalizers uses this fact. Such a multistructure does not satisfy the
characterization theorem given by G. Grätzer in [3]. A natural question is if
the subcategory whose objects are the multialgebras characterized by Grätzer
is closed under the formation of limits in the category studied in [15]. We
will show that the answer is negative by proving that the subcategory of the
multialgebras of type (n� )��o(�) is not closed under the formation of (inverse)
limits of inverse systems in the category of the relational systems of type
(n� + 1)��o(�). We will also examine the conditions under which the inverse
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limit of an inverse system of multialgebras (considered in the category of
relational systems) is a multialgebra.

The main results of this paper are presented in Section 4 and Section 5.
The first important result in Section 4 is Proposition 4.2. This proposition
states that if we consider an inverse system of multialgebras for which the
carrier has a cofinal subset for which the resulting inverse system of multi-
algebras has an inverse limit which is a multialgebra, then the inverse limit
of the given inverse system of multialgebras is also a multialgebra and the
two inverse limit multialgebras are isomorphic. As we will see, some of
the results presented in [2], [6] and [7] can be easily obtained from this
proposition. In the same section we will prove that a class of multialgebras
closed under the formation of the isomorphic images and under the formation
of the inverse limits of inverse systems with well-ordered carriers is closed
under the formation of the inverse limits of arbitrary inverse systems.

As it is shown in [14], an important tool in the hyperstructure theory is
the fundamental relation of a multialgebra. The factorization of a multialgebra
with the fundamental relation gives a universal algebra. As we have seen in
[10], this way we obtain a functor from the category of the multialgebras of
a given type into the category of the universal algebras of this type. Another
purpose of this paper is to find some conditions for this functor to preserve
the inverse limits of inverse systems of multialgebras. Some results in this
direction will be presented in Section 5.

�� Preliminaries

Let � = (n� )��o(�) be a sequence over N = f0� 1� � � �g, where o(�) is an
ordinal and for any � �o(�), let f� be a symbol of an n� -ary (multi)operation

and let us consider the algebra of the n-ary terms (of type �) P(n)(�) =

=
�
P(n)(�)� (f�)��o(�)

�
.

Let A be a set and let P�(A) be the set of nonempty subsets of A.
Let A = (A� (f�)��o(�)) be a multialgebra, where, for any � �o(�), f� :

An� � P�(A) is the multioperation of arity n� that corresponds to the symbol
f� . An empty set A is admissible if there are no nullary multioperations
among the multioperations f� , � �o(�). Of course, any universal algebra
is a multialgebra (we can identify a one element set with its element).

We remind the reader that if A = (A� (f�)��o(�)) is a multialgebra and
B � A, we say that B = (B� (f�)��o(�)) is a submultialgebra of A if for any
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� �o(�) and b0� � � � � bn��1 � B , we have f� (b0� � � � � bn��1) � B . If n � N ,

p � P(n)(�) and b0� � � � � bn�1 � B then p(b0� � � � � bn�1) � B (see [1]).

As in [13], we can see the multialgebra A = (A� (f�)��o(�)) as a relational
system (A� (r� )��o(�)) if we consider that, for any � �o(�), r� is the n�+1-ary
relation defined by

(1) (a0� � � � � an��1� an� ) � r� � an� � f� (a0� � � � � an��1)�

Of course, if we keep unchanged some of the multioperations which are oper-
ations, we can see A as a first order structure. It is clear that a submultialgebra
of the multialgebra A is a substructure of the first order structure obtained this
way, but not any substructure of A is a submultialgebra. Such an example can
be found in Section 4 (but it is not difficult to find easier examples).

We mention that the objects of the categories studied in [15] are obtained
by seeing each relation r� of a relational system (A� (r�)��o(�)) of type (n� +

+ 1)��o(�) as a function An� � P(A) by using (1).

If we define for any � �o(�) and for any A0� � � � � An��1 � P�(A)

f� (A0� � � � � An��1) =
�
ff� (a0� � � � � an��1) j ai � Ai � i � f0� � � � � n� � 1gg�

we obtain a universal algebra on P�(A) (see [11]). We denote this algebra

by P�(A). As in [4], we can construct the algebra P(n)(P�(A)) of the n-ary
term functions on P�(A) for any n � N .

The fundamental relation of the multialgebra A is the transitive closure
�� of the relation � given on A as follows: for x � y � A, x � y if and only if

x � y � p(a0� � � � � an�1) for some n � N � p � P(n)(�) and a0� � � � � an�1 � A�

where p � P (n)(P�(A)) is the term function induced by p on P�(A). The
relation �� is the smallest equivalence relation on A with the property that
the factor multialgebra A��� is a universal algebra (see [9] and [10]). The
universal algebra A��� is called the fundamental algebra of the multialgebra

A. We denote by A the fundamental algebra of A. We also denote by 	A the
canonical projection of A onto A and by a the class ��hai = 	A(a) of the
element a � A.

We remind that for an equivalence relation 
 on A we obtain a multial-
gebra on A�
 by defining the multioperations in the factor multialgebra A�

as follows: for any � �o(�), f� (
ha0i� � � � � 
han��1i) is the set

f
hbi j b � f� (b0� � � � � bn��1)� ai
bi � i � f0� � � � � n� � 1gg
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(
hx i denotes the class of x modulo 
 (see [3])).

A map h : A� B between the multialgebras A and B of type � is called
homomorphism if for any � �o(�) and a0� � � � � an��1 � A we have

h(f� (a0� � � � � an��1)) � f� (h(a0)� � � � � h(an��1))�

It is easy to see that the multialgebra homomorphisms are obtained from
the homomorphisms of relational systems using (1). The definition of the
multioperations of A�
 allows us to see the canonical map from A to A�
 as
a homomorphism of multialgebras. The map h is called an ideal homomor-
phism if for any � �o(�) and for all a0� � � � � an��1 � A we have

h(f�(a0� � � � � an��1)) = f� (h(a0)� � � � � h(an��1))�

A bijective map h is a multialgebra isomorphism if both h and h�1 are multi-
algebra homomorphisms. As it shown in [11], the multialgebra isomorphisms
can be characterized as being those bijective homomorphisms which are ideal.

Remark �� From the steps of construction of a term (function) it fol-

lows that for a homomorphism h : A � B , if n � N, p � P(n)(�) and
a0� � � � � an�1 � A then

h(p(a0� � � � � an�1)) � p(h(a0)� � � � � h(an�1))�

If h is an ideal homomorphism then

h(p(a0� � � � � an�1)) = p(h(a0)� � � � � h(an�1))�

In [10] we proved the following:

Theorem ���� If A� B are multialgebras and A� B respectively are their

fundamental algebras and if f : A� B is an ideal homomorphism then there

exists only one homomorphism of universal algebras f : A� B such that the

following diagram is commutative�

A B

�(2)

A B

f

f

�A �B

The proof uses only the fact that f is a homomorphism, so the statement
holds if we drop the property of f being ideal.
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Corollary ���� a� If A is a multialgebra then 1A = 1A�

b� If A� B� C are multialgebras of the same type � and if f : A� B� g :
B � C are homomorphisms� then g � f = g � f �

We can easily construct the category of multialgebras of the same type
� where the morphisms are considered to be the homomorphisms and the
composition of two morphisms is the usual map composition. It is known that
the universal algebras of the same type � together with the homomorphisms
between them form a category which is, obviously, a full subcategory in the
category of the multialgebras introduced above. We will denote by Malg(�)
the category of the multialgebras of type � and by Alg(�) the category of the
universal algebras of type � .

Remark �� From Corollary 2.2 it results that we can define a functor
F from Malg(�) into Alg(�) as follows: F (A) = A, for any multialgebra
A of type � , and F (f ) = f which makes diagram (2) commutative for any
homomorphism f between the multialgebras A and B of type � .

�� Direct products of multialgebras

If we consider a family (Ai j i � I ) of multialgebras of type � using (1)
and the definition of the direct product of a family of relational systems pre-
sented in [4], we can organize the Cartesian product

Q
i�I Ai as a relational

system which is a multialgebra
Q
i�I Ai of type � with the multioperations

defined as follows:

f�
��
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I

�
=
Y
i�I

f�
�
a0
i � � � � � a

n��1
i

�
�

for any � �o(�). This multialgebra is called the direct product of the
multialgebras (Ai j i � I ). We observe that the projections of the product,

eIi , i � I , are multialgebra (ideal) homomorphisms. So, we have:

Proposition ���� The multialgebra
Q
i�I Ai � with the projections eIi � is

the product of the multialgebras (Ai j i � I ) in the category Malg(�)�
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�� Inverse limits of inverse systems of multialgebras

Let (I ��) be a preordered directed set and let us consider an inverse sys-
tem (Ai j i � I ) of multialgebras of type � together with the homomorphisms

(	 jk : Aj � Ak j j � k � I � j 	 k ). We remind the reader that for any i � I ,

	 ii = 1Ai
and if j 	 k 	 l , we have 	kl � 	

j
k = 	

j
l . We consider the inverse

limit of the inverse system of sets (Ai j i � I )

A� =
n

(ai )i�I �
Y
i�I

Ai j 
j � k � I � j � k � 	kj (ak ) = aj

o
�

In [4] it is mentioned that the inverse limits for first order structures are
defined the same way as for algebras, as suitable substructures of the direct
product. If we see each n� -ary multioperation in each Ai as an (n� + 1)-ary
relation r� as in (1), we obtain the definitions for the relations on A� : given

� �o(�) and
�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I � (ai )i�I � A� we have��

a0
i

�
i�I

� � � � �
�
a
n��1
i

�
i�I

� (ai )i�I
�
� r� � ai � f�

�
a0
i � � � � � a

n��1
i

�
� 
i � I �

Since we are dealing with multialgebras our question is whether the relational
system obtained in this way is a multialgebra. If the answer were affirmative
then, using again (1), it would follow that its multioperations would be defined
by:

(3) f�
��
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I

�
=
Y
i�I

f�
�
a0
i � � � � � a

n��1
i

�
�A��

for every � �o(�) and
�
a0
i

�
i�I

� � � � �
�
a
n��1
i

�
i�I

� A�.

Remark �� Let us remark that the inverse limit of an inverse system of
sets (Ai j i � I ), A� is not necessarily a submultialgebra of

Q
i�I Ai , so,

the intersection with A� cannot be omitted in (3).

Example �� Let us consider the finite set of positive integers I = f1� 2g
ordered with the usual relation �, induced from N , let us consider the hyper-
groupoids (H1� �)� (H2� �) defined on H1 = H2 = fx � yg by

x � x = x � y = y � x = y � y = fx � yg

and let us consider the (ideal) homomorphisms 	1
1 = 1H1

� 	2
2 = 1H2

and

	2
1 : H2 � H1� 	

2
1 (x ) = y� 	2

1 (y) = x �
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Then A� = f(x � y)� (y� x )g is not a subhypergroupoid in H1 �H2.

Remark �� The functions f� given by (3) are not always multiopera-
tions on A�. Even if A��
, the intersection in the second member of the
equality can be the empty set. As a matter of fact, since for any � �o(�),�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I � A� and for any j � k � I , j 	 k ,

	
j
k

�
f�
�
a0
j � � � � � a

n��1
j

��
� f�

�
a0
k � � � � � a

n��1
k

�
�

it follows that for a given � �o(�), and
�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I � A�, the

family �
f�
�
a0
i � � � � � a

n��1
i

�
j i � I

�
of sets together with the restrictions of the maps 	

j
k to these sets form an

inverse system of sets and the second member in (3) is the inverse limit of

this inverse system of sets. So f�
��
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I

�
can be empty

even if A� is not.

Example �� In [5], Higman and Stone present an example of an inverse
system of (countable) sets, with surjective maps and empty inverse limit: let
�1 be the first uncountable ordinal and for � ��1,

E� = f� j � � �g� F� = ff � RE� j f is strictly increasingg;

and for � �
 ��1, let

�
�
� : F� � F� � �

�
� (f ) = f jE� (the restriction of f to E� )�

The authors define by transfinite induction a family of subsets S� of F� for

which jS� j = �0 and �
�
� (S� ) = S� whenever � �
 , such that the inverse

system (S� j � ��1) (with the corresponding restrictions of the functions

�
�
� ) has the desired property.

Starting from this example, we will consider for each 1 � � ��1,

A� = S� � f0E� g� where 0E� : E� � R� 0E� (�) = 0�

We define a hyperproduct � on A� by taking

f � g =

�
S� � if f = 0E� = g or f�0E��g

0E� � otherwise.
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The maps

	
�
� : A� � A� � 	

�
� (f ) = f jE� (� �
)

are surjective (ideal) homomorphisms. Thus we obtain an inverse system of
hypergroupoids.

We observe that 	
�
� jS� = �

�
� jS� and that A� is not empty since

(0E� )1����1
� A�. In fact A� = f(0E� )1����1

g, for if A� had an
element different from this, it would follow that this element belongs to the
inverse limit of the inverse system of the sets (S� j 1 � � ��1), which is
impossible, since this inverse limit is empty.

Now it is easy to see that (3) is not always the definition of a hyperproduct
on A� since in our case (0E� )1����1

� (0E� )1����1
= 
.

Remark �� In order to obtain a multialgebra A� on A��
 as above it

would be required that for any � �o(�) and
�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I � A�,

f�
��
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I

�
= lim��i�I f�

�
a0
i � � � � � a

n��1
i

�
�


hold. As it is shown in [4, x21, Theorem 1], a case when this happens is

given by the condition that for every i � I , � �o(�) and a0
i � � � � � a

n��1
i � Ai ,

f�
�
a0
i � � � � � a

n��1
i

�
is nonempty and finite.

Remark �� This is the case of universal algebras for which the sets

f�
�
a0
i � � � � � a

n��1
i

�
are one-element sets. It is also clear that if for some � �

�o(�), f� is an operation in all the multialgebras Ai , then f� is an operation
in A�. In this case, the definition of f� is the one in [4, x21].

Remark 	� If I is the category associated to the preordered set (I ��),
we can see (as in [12]) the inverse system of multialgebras (Ai j i � I ),

with the homomorphisms (	 jk j j � k � I � j 	 k ), as a contravariant functor
G : I�Malg(�).

Remark 
� If (A�� (f� )��o(�)) is a multialgebra then, for any j � I ,

	�j : A� � Aj � 	
�
j ((ai )i�I ) = aj

is a multialgebra homomorphism.
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Indeed, since the map 	�j is the restriction of eIj to A�, if we take

� �o(�), (a0
i )i�I � � � � � (a

n��1
i )i�I � A� we have

	�j
�
f�
��
a0
i

�
i�I

� � � � �
�
a
n��1
i

�
i�I

��
= 	�j

�Y
i�I

f�
�
a0
i � � � � � a

n��1
i

�
�A�

�

� eIj

�Y
i�I

f�
�
a0
i � � � � � a

n��1
i

��

= f�
�
a0
j � � � � � a

n��1
j

�
= f�
�
	�j
��
a0
i

�
i�I

�
� � � � � 	�j

��
a
n��1
i

�
i�I

��
�

Remark �� As it can be easily seen from the previous examples, the
problems which appear when asking for the inverse limit of an inverse system
of multialgebras to be a multialgebra are not solved if we are dealing with
ideal homomorphisms. Moreover, in this situation new problems arise since
the maps 	�j (j � I ) are not always ideal homomorphisms.

To illustrate this, we built up an example starting once again from the
example of Higman and Stone, as in Example 2.

Example �� Take the sets (A� j � ��1), the maps 	�� as in Example 2
and define on each A� , the hyperproduct � by

f � g = A� �

Then, using (3), we obtain a hypergroup(oid) on A� = f(0E� )���1g with
the hyperproduct

(0E� )���1 � (0E� )���1 = (0E� )���1�

The maps 	�� are ideal homomorphisms of hypergroupoids and for any 1 �
� 
 ��1 the map

	�� : A� � A� � 	
�
� ((0E� )���1) = 0E�

is not an ideal homomorphism because

	�� ((0E� )���1 � (0E� )���1) = 	�� ((0E� )���1) = 0E��A� = 0E� � 0E�

= 	�� ((0E� )���1) � 	�� ((0E� )���1)�
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Note that in Remark 5 we presented a necessary and sufficient condition
for a category of multialgebras (of type �) to be a subcategory of the category
of the relational systems (of type (n�+1)��o(�)) closed under the inverse limits
of inverse systems. Thus we have:

Theorem ���� If A� = (A�� (f� )��o(�)) is a multialgebra then� together

with the homomorphisms (	�j j j � I )� it is the inverse limit of the functor G �

The first of the following diagrams:

Ak Aj

A�

Ak Aj

A�

Aj

A� A�

�k
j

��k

��j

�k
j

�k �j

�j

�

��i

is commutative and whenever a multialgebra A� = (A�� (f� )��o(�)), together

with a family (�j : A� � Aj j j � I ) of homomorphisms make the second

diagram commutative, there exists a unique homomorphism � : A� � A�,
given by the equality �(x ) = (�i (x ))i�I , such that the third diagram is
commutative.

The last three results of this section are generalizations for some results
presented for universal algebras in [4, x21].

From now on we will consider that (I ��) is a directed partially ordered
set (unless we will specify something else). Let A = (Ai j i � I ) be an inverse
system of multialgebras and let us consider J � I such that (J��) is also a
directed partially ordered set. We will denote by AJ the inverse system of
multialgebras (Ai j i � J ) whose carrier is (J��) and whose homomorphisms

are 	 ij , with i � j � J , i � j . If J is cofinal with (I ��), from the proof of

[4, x21, Lemma 7] it results that if we consider the inverse systems of sets
(Ai j i � I ) and (Ai j i � J ), the canonical projection (ai )i�I �� (ai )i�J
furnishes a bijection � between lim��i�IAi and lim��i�JAi .

Proposition ���� Let A be an inverse system of multialgebras with the

carrier (I ��) and let us consider J � I such that (J��) is a directed partially

ordered set co�nal with (I ��)� The inverse limit lim��A is a multialgebra if

and only if lim��AJ is a multialgebra� If this happens� the two multialgebras

are isomorphic�
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Proof� Of course, if the relational systems lim��A and lim��AJ are mul-
tialgebras, then the isomorphism between them follows from the dual [8,
Proposition 2.11, Chapter II]. However, while proving that lim��A is in Malg(�)

if and only if lim��AJ is in Malg(�) we will find the form of this isomorphism,
so, we will also present a proof based on [4, x21, Lemma 7].

Clearly, lim��i�IAi = 
 if and only if lim��i�JAi = 
. So, lim��A and lim��AJ
are multialgebras if and only if for any � �o(�), n��0. If this is the case,
they are, trivially, isomorphic.

Let us consider that lim��i�IAi�
�lim��i�JAi . The limit lim��A is a multial-

gebra whenever for each ��o(�) and for all
�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I �A

�,
the right member of (3) is not the empty set. According to Remark 4, this
happens exactly when the inverse system of the nonempty sets

(f� (a0
i � � � � � a

n��1
i ) j i � I ), together with the restrictions of the maps 	 jk ,

j 	 k , to these sets, is not empty. It is easy to see from the definition of
� that its restrictions

lim��i�I f�
�
a0
i � � � � � a

n��1
i

�
� lim��i�J f�

�
a0
i � � � � � a

n��1
i

�
are also bijective.

As for the multialgebra isomorphism between A� and A�� = lim��AJ , let
us verify that � is an ideal homomorphism of multialgebras.

Given � �o(�) and
�
a0
i

�
i�I � � � � �

�
a
n��1
i

�
i�I � A� we have

� (f�
��
a0
i )i�I � � � � �

�
a
n��1
i

�
i�I

��
= �
�
lim��i�I f�

�
a0
i � � � � � a

n��1
i

��
= lim��i�J f�

�
a0
i � � � � � a

n��1
i

�
= f�
��
a0
i

�
i�J � � � � �

�
a
n��1
i

�
i�J

�
= f�
�
�
��
a0
i

�
i�I

�
� � � � � �

��
a
n��1
i

�
i�I

��
�

and the proof is finished.

Remark ��� Using this proposition, the constructions of inverse limits
from [2], [6] and [7], which are made for inverse systems of (particular)
multialgebras with (I ��) directed ordered set which has a maximum, are
isomorphic to the member of the system having this maximum as an index.
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It is clear that such an inverse limit exists and it has all the properties of this
member.

Let us consider that the support set I of the carrier (I ��) of the inverse
system A = (Ai j i � I ) of multialgebras can be written as I =

S
p�P Ip,

where (Ip��) is a directed partially ordered subset of (I ��) for each p � P
and (P��) is also a directed partially ordered set such that Ip � Iq , whenever
p� q � P , p � q . We will denote

lim��A = A� = (A�� (f�)��o(�))� lim��AIp = A�p = (A�p � (f�)��o(�)) (p � P)�

For any p� q � P� p � q we can define the map

�
q
p : A�q � A�p � �

q
p ((ai )i�Iq ) = (ai )i�Ip �

In this way we obtain an inverse system of sets consisting of (P��), the sets
A�p , and the maps �q

p . We will denote it by A�P .

Theorem ���� Let us consider that all A�p � p � P � are multialgebras�

Then A�P is an inverse system of multialgebras and lim��A is a multialgebra

if and only if lim��A�P is a multialgebra� In this case these multialgebras are

isomorphic�

Proof� First we will show that for any p� q � P , p � q , the map

�
q
p is a multialgebra homomorphism. If we take � �o(�),

�
a0
i

�
i�Iq

, � � � ,�
a
n��1
i

�
i�Iq

� A�q then we have

�q
p (f�

��
a0
i

�
i�Iq

� � � � �
�
a
n��1
i

�
i�Iq

��
= �q

p

�
�Y
i�Iq

f�
�
a0
i � � � � � a

n��1
i

�
�A�q

	
A

�
Y
i�Ip

f�
�
a0
i � � � � � a

n��1
i

�
�A�p

= f�
��
a0
i

�
i�Ip

� � � � �
�
a
n��1
i

�
i�Ip

�
= f�
�
�
q
p

��
a0
i

�
i�Iq

)� � � � � �q
p

��
a
n��1
i

�
i�Iq

���
�

We denote by A�
� the inverse limit of the inverse system of sets A�P

and we consider the map

� : A� � A�
�
� � (g) = hg �
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where hg �
Q
p�P A

�
p is defined by

hg (p) = g jIp � A�p �

By [4, x21, Theorem 3] � is a bijective map.

Note that A�� = 
 if and only if A� = 
. Thus, if A�p = 
 for some p

then A�
� = A� = 
. However, if A�� = A� = 
 then lim��A and lim��A�P are

multialgebras if and only if n��0 for any � �o(�), and the two multialgebras
are trivially isomorphic in this case. So, we can assume that the sets A�p ,

A�
�, A� are not empty.

The inverse limit lim��A = A� is a multialgebra if and only if for any

� �o(�) and for all g0� � � � � gn��1 � A� the inverse limit of the inverse

system of sets (f� (g0(i)� � � � � gn��1(i)) j i � I ) is nonempty. But the restriction

of � to this inverse limit of sets is a bijection between

f�
�
g0� � � � � gn��1

�
= lim��i�I f� (g0(i)� � � � � gn��1(i))

and the inverse limit

lim��p�P (lim��i�Ip f� (g0(i)� � � � � gn��1(i))) = lim��p�P f� (g0jIp � � � � � gn��1jIp )

= lim��p�P f� (hg0(p)� � � � � hgn��1(p))

= f� (hg0 � � � � � hgn��1)�

Since

f� (g0jIp � � � � � gn��1jIp ) = lim��i�Ip f� (g0jIp (i)� � � � � gn��1jIp (i))

= lim��i�Ip f� (g0(i)� � � � � gn��1(i))�


it follows that f� is a multioperation on A� if and only if f� is a multiopera-

tion on A�
�. Moreover, it follows that

� (f� (g0� � � � � gn��1)) = f� (hg0 � � � � � hgn��1) = f� (� (g0)� � � � � � (gn��1)))�

Thus � is a multialgebra isomorphism.

As in [4], we will use the term of algebraic class for those classes of
multialgebras which are closed under the formation of isomorphic images.
We will say that a class of multialgebras is closed under the formation of
inverse limits of inverse systems if for any inverse system of multialgebras
from this class the inverse limit is a multialgebra from this class. Now we
can prove the following theorem:
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Theorem ���� If K is an algebraic class of multialgebras then K is

closed under the formation of inverse limits of arbitrary inverse systems if

and only if K is closed under the formation of inverse limits of well�ordered

inverse systems�

Proof� The proof goes as in [4, x21, Theorem 4]. Assume that K is
closed under the formation of inverse limits of well-ordered inverse systems.
We take an inverse system A of multialgebras with carrier (I ��). If the
theorem were not true, then we could choose A such that jI j = m is the
smallest possible with the property that either the inverse limit of A is not
a multialgebra or lim��A �� K . From Proposition 4.2 we have m 	 �0 and

using [4, Exercise 44, pp. 73] it follows that we can write I =
S
	�� I	 ,

where � is an ordinal, (I	 ��) is directed, I	1
� I	2

if �1 � �2 �� , and

jI	 j �jI j = m. From the minimality of m it follows that lim��AI� , � �� , are

multialgebras from K , according to our assumption it follows that lim��A�P is

also a multialgebra from K and by Theorem 4.3 lim��A is a multialgebra from
K , a contradiction.

�� On the fundamental algebra of an inverse limit of multialgebras

In general, the fundamental algebra of a product of multialgebras is not
the product of their fundamental algebras, as it is shown by the following:

Example �� Let us consider the hypergroupoid (Z� �), where Z is the set
of the integers and the multioperation � is defined by

x � y = fx + y� x + y + 1g

for any x � y � Z. It is not difficult to prove that for any n � N
� , (Zn� �) is a

hypergroup with the fundamental relation 
 = Zn�Zn. It means that for any
n � N

� the fundamental group of (Zn� �) is a one-element group. Now let

us consider the product (ZN� �). The fundamental group of this hypergroup
has more than one element. Indeed, f � g : N � Z, f (n) = 0, g(n) = n + 1
(n � N) are not in the same equivalence class of the fundamental relation of

the hypergroup (ZN� �).

Example �� An useful example of inverse limit of multialgebras can be
given in a similar way as Grätzer did in [4] for universal algebras. So, let us
consider a set I and a family (Ai j i � I ) of multialgebras of type � . We
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can get an inverse system of multialgebras taking (J��) to be the set of all
the finite nonempty subsets of the set I , ordered with the set inclusion, Bj =

=
Q
i�j Ai , for any j � J , and the canonical projections 	

j0
j1

from
Q
i�j0

Ai

onto
Q
i�j1

Ai , for any j0 � j1 from J . The inverse limit of this inverse

system of multialgebras exists and it is isomorphic to
Q
i�I Ai .

Remark ��� Using the previous examples we can obtain an example to
show that the functor F from Remark 2 does not preserve the arbitrary inverse
limits of inverse systems of multialgebras (hypergroupoids, in this case) even
if they exist.

Now we will find a condition for this functor F to preserve the inverse
limits of inverse systems of multialgebras from an algebraic class K closed
under the formation of the inverse limits of inverse systems.

Let A = (Ai j i � I ) be an inverse system of multialgebras with the

homomorphisms (	 ij j i � j � I � i 	 j ). We will denote by A the inverse

system of the fundamental algebras (Ai j i � I ) of the multialgebras from A,

with the homomorphisms (	 ij j i � j � I � i 	 j ). So, if we see the inverse

system A as the functor G from Remark 7 then A is the functor FG .

In this section, we will refer to the inverse limit lim��A of the inverse

system A as the inverse limit (A�� (	�i j i � I )) of G . Clearly, lim��A =

= lim��(FG). If we denote (A�� (	�i j i � I )) by lim��A we can state the
following:

Lemma ���� Let A be an inverse system of multialgebras with the carrier

(I ��) and let us consider J � I with (J��) a directed partially ordered set

co�nal with (I ��)� Assume that lim��AJ is a multialgebra� Under these con�

ditions� lim��A is the inverse limit of the inverse system of universal algebras

A if and only if lim��AJ is the inverse limit of the inverse system of universal

algebras AJ �

Proof� From the fact that lim��AJ is a multialgebra it follows that lim��A is
a multialgebra, and, since they are isomorphic (Proposition 4.2), the functor

F induces an isomorphism from lim��A onto lim��AJ . Of course, the inverse
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system AJ of multialgebras determines an inverse system of universal alge-

bras AJ = AJ and the inverse limit algebras lim��A and lim��AJ are isomorphic.
From the universal property that characterizes the inverse limit we obtain the
homomorphisms:

lim��A� lim��A� (ai )i�I �� (ai )i�I ;

lim��AJ � lim��AJ � (ai )i�J �� (ai )i�J �

which, together with the above mentioned isomorphisms, make the following
diagram commutative:

lim��A lim��AJ

�

lim��A lim��AJ

Since each one of the conditions for which we want to prove the equivalence
makes one of the vertical morphisms an isomorphism, the conclusion of the
lemma is immediate.

Lemma ���� Using the notations from the previous section� let us con�

sider that A�p � p � P � and A� are multialgebras� Let us also assume that for

each p � P � lim��AIp is the inverse limit of the inverse system AIp of universal

algebras�

The universal algebra lim��A is the inverse limit of A if and only if

lim��A�P is the inverse limit of A�P �

Proof� Using the fact that for any p � P , lim��AIp = lim��AIp it follows

that A�P = A�P . From [4, x21, Theorem 3] it results an isomorphism from

lim��A onto

lim��A�P = lim��A�P�

Using Theorem 4.3 and the universal property of the inverse limit, we obtain
the following commutative diagram:
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lim��A lim��A�P

�

lim��A lim��A�P

The conclusion follows as in the previous lemma.

If K is a class of multialgebras of type � then we can obtain a subcategory
K of Malg(�) if we consider morphisms only those homomorphisms which
are defined between two multialgebras from K . Consider the composition FU
of the functor F with the inclusion functor U : K ��Malg(�). Knowing the
definition of U , in the next theorem we may use F instead of FU .

Theorem ���� Let K be an algebraic class of multialgebras closed under

the formation of inverse limits of well�ordered inverse systems� Then F pre�

serves the inverse limits of arbitrary inverse systems of multialgebras from K

if and only if F preserves the inverse limits of well�ordered inverse systems

of multialgebras from K �

Proof� Clearly, K is a subcategory of the category of relational systems
of type (n�+1)��o(�) closed under the inverse limits of inverse systems. Let us
assume that F preserves the inverse limits of well-ordered inverse systems of
multialgebras from K . If F would not preserve the inverse limits of arbitrary
inverse systems of multialgebras from K then we could choose an inverse

system A of multialgebras from K with the carrier (I ��) such that lim��A is

not lim��A and jI j = m is the smallest possible with this property. We will
continue as in the proof of Theorem 4.4, so we will use the same notations
as there. First we obtain (using Lemma 5.1) that m 	 �0 and then, using the
minimality of m, our assumption and Lemma 5.2 it will result that

lim��AI� = lim��AI� �

for any � �� , and

lim��A = lim��A�P = lim��A�P = lim��A�P = lim��A�

contradiction.
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�� Introduction

Semi-open sets, preopen sets, �-sets and �-open sets in topological
spaces play an important role in the researches on generalizations of conti-
nuity. By using these classes of sets, several authors introduced and studied
various modifications of continuity, in the setting of topological spaces.

V. Popa and T. Noiri observed that the analogy among the results con-
cerning these modifications of continuity suggests the need for a unified
theory. They introduced and studied the fundamental notion of M -continuity
[22], [23] and other related generalized forms of continuity: contra m-con-
tinuity [18], slightly m-continuity [24], weakly (�� m)-continuity [25], weak
M -continuity [26], faintly m-continuity [20]. The key concept of this ap-
proach is that of minimal structure, which led V. Popa and T. Noiri not only
to a unified theory of the modifications of continuity, but also to new concepts
and results. Another unified theory of several types of generalized continuity
has been obtained by Császár [9], by using generalized topology.

In this paper, we investigate several types of minimal structures, espe-
cially minimal structures on a cartesian product of sets endowed with min-
imal structures. We obtain characterizations and properties of some types
of M -continuous functions, unifying many known results concerning several
classes of functions: D-continuous, D-supercontinuous, �-precontinuous, �-
irresolute, semi-�-irresolute, �-preirresolute, �-preirresolute.

���� Mathematics Subject Classi�cation� 54C08
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�� Preliminaries

In what follows, X and Y are always nonempty sets and P(X ) (resp.
P(Y )) is the power set of X (resp. Y ). If C � P(X ), D � P(Y ) and
f :X � Y , we will use the following notations: f (C) := ff (A) : A � Cg

and f �1(D) := ff �1(B) : B � Dg. We will denote by U(C) (resp. by UF (C),
I(C), IF (C)) the family of all unions (resp. finite unions, intersections, finite
intersections) of all sets that belong to C.

Let (X� �) be a topological space and let A be a subset of X . The
interior and the closure of A are denoted by Int(A) and Cl(A), respectively.
The subset A is said to be semi-open [13] (resp. preopen [15], �-open [16],
�-open [2]) if A � Cl(Int(A)) (resp. A � Int(Cl(A)), A � Int(Cl(Int(A))),
A � Cl(Int(Cl(A)))). The family of all semi-open (resp. preopen, �-open,
�-open) sets in X is denoted by SO(X ) (resp. PO(X ), �(X ), �(X )).

Definition ���� (Popa and Noiri [23]) A subfamily mX of P(X ) is called
a minimal structure (briefly m-structure) on X if � � mX and X � mX . Each
member of mX is said to be mX -open and the complement of an mX -open
set is said to be mX -closed.

By (X�mX ) we denote a nonempty set X with a minimal structure mX
on X and we call (X�mX ) a space with minimal structure.

Let A be a subset of X . The mX -interior of A, denoted by mX � Int(A),
is the union of all mX -open subsets of A, and the mX -closure of A, denoted
by mX � Cl(A), is the intersection of all mX -closed supersets of A. The
properties of operators of mX � Int and mX � Cl are stated in (Popa and
Noiri [23], Lemma 3.1) and parallel the properties of operators Int and Cl of
a topological space.

Lemma ���� �Popa and Noiri ����� Lemma ���	 Let (X�mX ) be a space

with minimal structure� let A be a subset of X and x � X � Then x � mX �
� Cl(A) if and only if U �A�� for every U � mX containing the point x �

Remark ���� Let mX be a minimal structure on X . Then each of
the families U(mX ), I(mX ), UF (mX ), IF (mX ), U(I(mX )), I(U(mX )),
UF (I(mX )), IF (U(mX )), UF (IF (mX )) and IF (UF (mX )) is larger than
mX , in particular is a minimal structure on X . Denote by cX the family
of all mX -closed sets. Then cX is a minimal structure on X .

Definition ���� (Popa and Noiri [23]) A minimal structure mX on X is
said to have property (B) if every union of mX -open sets is an mX -open set.
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We notice that mX has property (B) if and only if U(mX ) � mX .

Lemma ���� For every minimal structure mX on X � we have U(mX ) =
= fA : A � X� A � mX � Int(A)g and I(cX ) = fB : B � X� mX �Cl(B) �
� Bg�

Proof� Denote F := fA : A � X� A � mX � Int(A)g. Then F =
= fA : A � X� A = mX � Int(A)g � U(mX ), since mX � Int(A) � A and
mX�Int(A) =

S
fU : U � A� U � mX g � U(mX ), for every A � X . If B �

� U(mX ), then there exist a subfamily fBi : i � I g of mX whose union is B .
Then fBi : i � I g � fU : U � B� U � mX g, therefore applying the union
it follows that B � mX � Int(B). Since X nmX � Int(A) = mX �Cl(X nA)
for every A � X , we have I(cX ) = fX n A : A � U(mX )g = fX n A : A �
� X� A � mX � Int(A)g = fB : B � X� mX � Cl(B) � Bg.

Corollary ���� �Popa and Noiri ����� Lemma ���	 For a minimal struc


ture mX on X the following are equivalent�

��	 mX has property (B)


��	 If mX � Int(V ) = V � then V � mX 


��	 If mX � Cl(F ) = F � then X n F � mX �

Proof� By Lemma 2.2, (2) � U(mX ) � mX � (1). The equivalence
(2) � (3) follows using the identities mX � Cl(X n A) = X n mX � Int(A)
and mX � Int(X n A) = X n mX � Cl(A) for A � X (Popa and Noiri [23],
Lemma 3.1).

The generalization of continuity in the setting of spaces with minimal
structures is the fundamental notion of M -continuity, introduced by Popa and
Noiri in [22], [23].

Definition ���� A function f : (X�mX ) � (Y�mY ) is said to be M -
continuous at x � X if for each V � mY containing f (x ), there exists U �
� mX containing x such that f (U ) � V . A function f : (X�mX ) � (Y�mY )
is said to be M -continuous if it is M -continuous at each point x � X .

Lemma ���� �Popa and Noiri ����� Theorem ���	 For a function

f : (X�mX ) � (Y�mY ) the following properties are equivalent�

(1) f is M 
continuous


(2) f �1(V ) = mX � Int(f �1(V )) for every V � mY 


(3) f (mX � Cl(A)) � mY � Cl(f (A)) for every subset A of X 
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(4) mX � Cl(f �1(B)) � f �1(mY � Cl(B)) for every subset B of Y 


(5) f �1(mY � Int(B)) � mX � Int(f �1(B)) for every subset B of Y 


(6) mX � Cl(f �1(K )) = f �1(K ) for every mY 
closed set K of Y �

Lemma ���� A function f : (X�mX ) � (Y�mY ) is M 
continuous if and

only if f �1(mY ) � U(mX )�

Proof� We use the equivalence (1) � (2) from Lemma 2.3 and the fact

that, according to Lemma 2.2, (2) means that f �1(V ) � U(mX ) for every
V � mY .

Corollary ���� A composition of M 
continuous functions is M 
con


tinuous� if well
de�ned�

Proof� Let f : (X�mX ) � (Y�mY ) and g : (Y�mY ) � (Z�mZ ) be two
M -continuous functions. Then the composition g � f : (X�mX ) � (Z�mZ ) is

well-defined. Using Lemma 2.3 we obtain (g � f )�1(mZ ) = f �1(g�1(mZ )) �

� f �1(U(mY )) = U(f �1(mY )) � U(U(mX )) = U(mX ). This shows that
g � f : (X�mX ) � (Z�mZ ) is M -continuous, according to Lemma 2.4.

Proposition ���� Let X and Y be nonempty sets with minimal struc


tures mX and mY � respectively� and let f :X � Y be a function� The

following properties are equivalent�

��	 f : (X�mX ) � (Y�mY ) is M 
continuous


��	 f : (X�mX ) � (Y�U(mY )) is M 
continuous


��	 f : (X�U(mX )) � (Y�U(mY )) is M 
continuous�

Proof� We use Lemma 2.4. The implications (2) 	 (1) and (3) 	 (2)
are obvious, since mY � U(mY ) and U(U(mX )) = U(mX ), respectively.

Assume that (1) is true. Then f �1(U(mY )) = U(f �1(mY )) � U(U(mX )),
i.e. (3) is true. It follows that (1) 	 (3).

Example ���� Let (X� �) and (Y� �) be topological spaces. Denote by
F (X ), (resp. F� (X ), G� (X )) the family of all closed (resp. F� , G� ) subsets
of X . Let f :X � Y be a function. If f : (X� �) � (Y� �) is continuous,

then it is easy to see that f �1(F (Y )) � F (X ), f �1(� � G� (Y )) � � �

� G� (X ) and f �1(F (Y ) � F� (Y )) � F (X ) � F� (X ), and so all the map-
pings f : (X� F (X )) � (Y� F (Y )), f : (X� � � G� (X )) � (Y�e� � G� (Y )) and
f : (X� F (X ) � F� (X )) � (Y� F (Y ) � F� (Y )) are M -continuous.
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Remark ���� V. Popa and T. Noiri have shown in [23] that semi-con-
tinuous, precontinuous, �-continuous, �-continuous, s � � -continuous, 	-
almost continuous, 	-semi-continuous functions between topological spaces
are examples of M -continuous functions.

Let (X� �) and (Y� �) be topological spaces. A function f : (X� �) �
� (Y� �) is said to be D-continuous if for each x � X and each open
F� -set V of Y containing f (x ), there exists U � mX containing x such
that f (U ) � V (Kohli [11]).

Using Definition 2.3 we see that f : (X� �) � (Y� �) is D-continuous if
and only if f : (X� �) � (Y� � � F� (Y )) is M -continuous. It follows that
Lemma 3.1 from (Kohli and Singh, [12]) is a consequence of Lemma 2.3.

f : (X� �) � (Y� �) is H -almost continuous if and only if the inverse im-
age of every open subset of Y is preopen in X [20]. We see that f : (X� �) �
� (Y� �) is H -almost continuous if and only if f : (X� PO(X )) � (Y� �) is
M -continuous, by Lemma 2.4 and the fact that PO(X ) has property (B).

Remark ���� A function f : (X�mX ) � (Y� �) is said to be contra m-

continuous if f �1(V ) = mX � Cl(f �1(V )) for every open set V of Y , and
f : (X�mX ) � (Y� �) is said to be contra m-continuous at x � X if for each
closed set F containing f (x ), there exists U � mX containing x such that
f (U ) � V (Noiri and Popa, [18]). We notice that f : (X�mX ) � (Y� �) is

contra m-continuous if and only if f �1(�) � I(cX ), according to Lemma 2.2.
If f : (X�mX ) � (Y� �) is contra m-continuous, then f : (X�I(cX )) � (Y� �)
is M -continuous, by Lemma 2.4. The converse is not true, even if mX = �
is a topology, since I(cX ) = I(F (X )) = F (X ) is different of U(F (X )) in
general.

It follows, by Definition 2.3 and Lemma 2.3, that f is contra m-con-
tinuous at every point x � X if and only if f : (X�mX ) � (Y� F (Y )) is

M -continuous, i.e. f �1(F (Y )) � U(mX ), which is equivalent, by taking

complementaries, to f �1(�) � I(cX ). Then f is contra m-continuous at every
point x � X if and only if f : (X�mX ) � (Y� �) is contra m-continuous (this
is the equivalence (1) � (3) in Theorem 3.2 from (Noiri and Popa, [18]).

Recall that for A � Y the kernel of A is defined by Ker(A) = �fU �
� � : A � U g. We notice that Ker(A) = mY � Cl(A), where mY = F (Y ).
Taking into account that f : (X�mX ) � (Y� �) is contra m-continuous if and
only if f : (X�mX ) � (Y� F (Y )) is M -continuous, we see that Theorem 3.2
from (Noiri and Popa, [18]) follows from Lemma 2.3.
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A function f : (X�mX ) � (Y� �) is said to be faintly m-continuous [26]
if for each x � X and each � -open set V of Y containing f (x ), there is an
open set U containing x such that f (U ) � V (Noiri and Popa [20]). The
collection of � -open sets in the topological space (Y� �) forms a topology ��
on Y [27]. We notice that f : (X�mX ) � (Y� �) is faintly m-continuous if
and only if f : (X�mX ) � (Y� �� ) is M -continuous.

Definition ���� A function f : (X�mX ) � (Y�mY ) is said to be M -open
if f (U ) � mY for every U � mX , respectively is said to be almost M -open
if f (mX � Int(A)) � mY � Int(f (A)) for every subset A of X .

Remark ���� Let (X� �X ) and (Y� �Y ) be topological spaces. If mY = �Y
(resp. mY = SO(X ), mY = �(Y ), mY = �(Y )), then an M -open function
f : (X� �X ) � (Y�mY ) is called open (resp. semi-open [17], �-open [15],
�-open [2]).

Lemma ���� A function f : (X�mX ) � (Y�mY ) is M 
open �resp� almost

M 
open if and only if f (mX ) � mY �resp� f (mX ) � U(mY )�

Proof� The characterization of M -open functions is clear from Defini-
tion 2.4. Let f : (X�mX ) � (Y�mY ) be almost M -open and let U � mX .
Then U = mX � Int(U ), hence f (U ) = f (mX � Int(U )) � mY � Int(f (U )).
It follows by Lemma 2.2 that f (U ) � U(mY ), hence f (mX ) � U(mY ). For
the converse, assume that f (mX ) � U(mY ). Let A be an arbitrary subset
of X . Denote B = f (mX � Int(A)). Then B = f (

S
fU : U � mX � U �

� Ag) =
S
ff (U ) : U � mX � U � Ag. By our assumption, f (U ) � U(mY )

for each U � mX . This yields B � U(U(mY )) = U(mY ). By Lemma 2.2,
B � mY � Int(B).

Corollary ���� Every M 
open function f : (X�mX ) � (Y�mY ) is al


most M 
open�

Corollary ���� Let f : (X�mX ) � (Y�mY ) be a bijective function�

Then f is almost M 
open if and only if f �1 is M 
continuous�

Proof� By Lemma 2.4, f �1 : (Y�mY ) � (X�mX ) is M -continuous

if and only if (f �1)�1(mX ) � U(mY ), i.e. f (mX ) � U(mY ), which is
equivalent to the property of f : (X�mX ) � (Y�mY ) to be almost M -open,
according to Lemma 2.5.
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�� Some types of minimal structures

In this section we study some useful examples of minimal structures.

Given a topological space (X� �), let T be any finite composition of
operators Int and Cl. Denote GOT (X ) = fS � X : S � T (S )g.

Lemma ���� If (X� �) is a topological space and T is a �nite composition

of operators Int and Cl� then GOT (X ) is a minimal structure which has

property (B) and � � GOT (X )�

Proof� Let T = T1�T2�
 
 
�Tn , where Tk � fInt�Clg, k � f1� 2� 
 
 
 � ng.

Since for every A � X we have Int(A) � Tk (A) for k � f1� 2� 
 
 


 
 
 � ng, and S � Int(S ) for every S � � , it follows that � � GOT (X ),
hence GOT (X ) is a minimal structure. Let fAi : i � I g � P(X ). Obvi-
ously,

S
fInt(Ai ) : i � I g � Int

�S
fAi : i � I g

�
and

S
fCl(Ai ) : i � I g �

� Cl
�S
fAi : i � I g

�
, whence it follows by induction on n that

S
fT (Ai ) :

i � I g � T
�S
fAi : i � I g

�
. Then, for every family fSi : i � I g � GOT (X )

we have
S
fSi : i � I g �

S
fT (Si ) : i � I g � T

�S
fSi : i � I g

�
, henceS

fSi : i � I g � GOT (X ). This shows that GOT (X ) has property (B).

Remark ���� If for each A � X we denote T (A) = Int(A) (resp. T (A) =
= Cl(A), T (A) = Cl(Int(A)), T (A) = Int(Cl(A)), T (A) = Int(Cl(Int(A))),
T (A) = Cl(Int(Cl(A)))), then GOT (X ) = � (resp. GOT (X ) = P(X ),
GOT (X ) = SO(X ), GOT (X ) = PO(X ), GOT (X ) = �(X ), GOT (X ) =
= �(X )). By Lemma 3.1, the families SO(X ), PO(X ), �(X ), �(X ), are all
minimal structures with property (B).

Theorem ���� Let (X� �X ) and (Y� �Y ) be topological spaces and let

f :X � Y � Let T be any �nite composition of operators Int and Cl� If

f : (X� �X ) � (Y� �Y ) is continuous and open� then f : (X�GOT (X )) �
� (Y�GOT (Y )) is M 
continuous and M 
open�

Proof� Let A � X . The continuity of f : (X� �X ) � (Y� �Y ) im-
plies f (Cl(A)) � Cl(f (A)). Since f : (X� �X ) � (Y� �Y ) is open, we have
f (Int(A)) � Int(f (A)). Then f (T (A)) � T (f (A)). If A � GOT (X ), then
f (A) � f (T (A)) � T (f (A)), that is, f (A) � GOT (Y ). This proves that
f : (X�GOT (X )) � (Y�GOT (Y )) is M -open.

Let B � Y . The continuity of f : (X� �X ) � (Y� �Y ) implies f �1(Int(B)) �

� Int(f �1(B)) and Cl(f �1(B)) � f �1(Cl(B)). Since f : (X� �X ) � (Y� �Y ) is
open, it follows that:
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i) f (Int(f �1(B))) � Int(f (f �1(B))) � Int(B) and consequently f �1(Int(B))

� Int(f �1(B));

ii) X n f �1(Cl(B)) = f �1(Y n Cl(B)) = f �1(Int(B)) � Int(f �1(B)), hence

f �1(Cl(B)) � X n Int(f �1(B)) = Cl(f �1(B)).

We conclude that the operator f �1 commutes with the operators Int and

Cl: f �1(Int(B)) = Int(f �1(B)) and f �1(Cl(B)) = Cl(f �1(B)) for every

B � Y . It follows that f �1(T (B)) = T (f �1(B)) for every B � Y . If

B � GOT (Y ) then f �1(B) � f �1(T (B)) = T (f �1(B)), hence f �1(B) �
� GOT (X ). This proves that f : (X�GOT (X )) � (Y�GOT (Y )) is M -
continuous, according to Lemma 2.4.

Let X be a nonempty set with a minimal structure mX . Since the union of
all members of mX is X , we notice that mX is a subbase for a topology on X .
There exists a unique smallest topology including mX , called the topology
generated by mX , which we denote by �(mX ). Namely, �(mX ) = U(IF (mX ))
and mX is a subbase for the topology �(mX ). In many important cases, a
minimal structure is not closed to intersection.

Example ���� Recall that in every topological space (X� �) we have
SO(X ) � PO(X ) � �(X ).

Let X = fa� b� c� dg and � = f�� fag� fbg� fa� bg� fa� cg� fa� b� cg� X g.
Then � is a topology on X . Let S1 = fa� c� dg and S2 = fb� dg. Then S1
and S2 are semi-open sets with respect to � , since Cl(Int(Sk )) = Sk , k = 1� 2,
while S1 � S2 = fdg is not �-open, because Cl(Int(Cl(S1 � S2))) = �. This
example shows that SO(X ) and �(X ) are not closed to intersection.

Now we study minimal structures having a weaker property than that to
be closed to finite intersections.

Definition ���� A minimal structure mX on X is said to have property
(I1) if for every U�V � mX such that U � V�� and for each x � U � V ,
there exists W � mX such that x �W � U �V .

Remark ���� If mX has property (I1), n 
 1 and Uk � k � f1� 2� 
 
 


 
 
 � ng, are mX -open sets having nonempty intersection, then for each x �
� �fUk : k � f1� 2� 
 
 
 � ngg there exists W � mX such that x � W �

� �fUk : k = 1� ng.

Lemma ���� For a minimal structure mX on X the following properties

are equivalent�
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��	 mX has property (I1)


��	 IF (mX ) � U(mX )


��	 IF (U(mX )) � U(mX )


��	 U(mX ) is a topology on X �the smallest topology on X including

mX 	


��	 mX is a base for a topology�

Proof� (1) 	 (2): Let U�V � mX . Assume that U � V�� (otherwise,
U � V = � � mX � U(mX )). By (1), for each x � U � V there exists
Wx � mX such that x � Wx � U � V . Then U � V =

S
fWx : x � U �

�V g � U(mX ). If mX has property (I1), we proved that U�V � mX implies
U �V � U(mX ). Now (2) follows by induction.

(2) 	 (3): We have IF (U(C)) � U(IF (C)) for every C � P(X ). Then
(2) implies IF (U(mX )) � U(IF (mX )) � U(U(mX )) = U(mX ).

(3) 	 (4): f�� X g � mX � U(mX ). Obviously, U(mX ) is closed
to arbitrary unions (has property (B)). By (3), U(mX ) is closed to finite
intersections.

(4) 	 (5): By the definition of a base of a given topology, mX is a base
for the topology U(mX ).

(5) 	 (1): Let � be a topology on X having mX as a base, i.e. mX �
� � � U(mX ). Suppose that U�V � mX and x � U �V . Then U �V � � ,
therefore U � V is a union of mX -open sets and at least one of these sets
contains the point x 


Lemma ���� Let X be a nonempty set with a minimal structure mX � Then

the following statements are equivalent�

��	 mX is a base for a topology on X 


��	 If A � X and U�V � mX satisfy the condition (U � V ) � mX �
� Cl(A)��� then U �V �A���

Proof� (1) 	 (2): Let A � X and U�V � mX satisfying the condition
(U �V ) �mX � Cl(A)��. Pick x � (U �V ) � mX � Cl(A)��. According
to Lemma 3.2, mX has property (I1), hence there is W � mX such that
x �W � U �V . Since x � mX �Cl(A), we have W �A��, by Lemma 2.1,
hence U �V �A��.

(2) 	 (1): We assume that (1) is false and we prove that (2) is false. For
each x � X , denote V(x ) = fV : V � mX � x � V g. We notice that V(x ) is
nonempty, since X � V(x ).
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By our assumption, there exist two mX -open sets U0, V0 and x0 �
� U0 � V0 such that no member of V(x0) is included in U0 � V0. For each
W � V(x0) we find a point xW �W n(U0�V0). Put A = fxW : W � V(x0)g.
Then A � X n(U0�V0). For every W � V(x0) we have xW �W �A, hence
x0 � mX �Cl(A). We have x0 � (U0�V0)�mX�Cl(A), but U0�V0�A = �.
This shows that (2) is false.

Example ���� Let X = fa� b� cg and mX = f�� X� fa� bg� fb� cgg� Then
IF (mX ) = mX � ffbgg and U(mX ) = mX � It follows by Lemma ��� that

mX does not have property (I1)� Let A = fa� cg� Then b � mX � Cl(A)� Let
U = fa� bg� V = fb� cg� Then b � (U �V )�mX �Cl(A)� but U �V �A = ��

Next we attach to any given minimal structure mX on a nonempty
set X another minimal structure Inc(mX ), defined as follows: we say that
A � Inc(mX ) if for every x � A there exists B � mX such that x � B � A.

Proposition ���� Inc(mX ) = U(mX )�

Proof� Inc(mX ) � U(mX ): Let A � Inc(mX ). For every x � A there
exists Bx � mX such that x � Bx � A. Then A =

S
ffxg : x � Ag �

�
S
fBx : x � Ag � A, hence A =

S
fBx : x � Ag � U(mX ).

U(mX ) � Inc(mX ): If A � U(mX ), then A =
S
fAi : i � I g for some

family fAi : i � I g of mX -open sets. For every x � A there is i(x ) � I such
that x � Ai(x ). This shows that A � Inc(mX ).

Corollary ���� For every minimal structure mX on X � the minimal

structure Inc(mX ) has property (B)�

Remark ���� Let (Y� �) be a topological space. Denote by mY = CO(Y )
the family of all clopen subsets of Y (sets which are simultaneously open and
closed in Y ). A subset G of Y is said to be 	�-open if for each y � G there
exists a clopen set V such that y � V � G . According to Proposition 3.1,
the family of all 	�-open subsets of Y is Inc(CO(Y )) = U(CO(Y )). Since
IF (CO(Y )) = CO(Y ), the set of all 	�-open subsets of Y is a topology,
called the ultra-regularization of � , and denoted by �u [24]. A function
f : (X�mX ) � (Y� �) is said to be slightly m-continuous if f : (X�mX ) �
� (Y�CO(Y )) is M -continuous (Popa and Noiri [24]). By Applying Propo-
sition 2.1, Lemma 2.3 and Lemma 2.4 it follows that f : (X�mX ) � (Y� �)

is slightly m-continuous if and only if f �1(G) = mX � Int(f �1(G)) for
every 	�-open set G � Y (which is obviously equivalent to the fact that



2005. április 28. –21:08

ON M -CONTINUOUS FUNCTIONS AND PRODUCT SPACES 75

f �1(K ) = mX � Cl(f �1(K )) for every 	�-closed set K � Y ). This result is
Theorem 3.1 from (Popa and Noiri [24]).

Remark ���� A set G in a topological space (X� �) is said to be d-open if
for each x � G , there exists an open F� -set H such that x � H � G (Kohli
and Singh [12]). It follows, by Proposition 3.1, that the family of d-open
sets is Inc(� � F� (X )) = U(� � F� (X )) � � . A function f :X � Y from a
topological space (X� �) into a topological space (Y�e�) is D-supercontinuous
if and only if inverse image of every open subset of Y is d-open in X (Kohli
and Singh, Theorem 3.1). Obviously, every D-supercontinuous function is
continuous. Lemma 2.4 shows that f : (X� �) � (Y�e�) is D-supercontinuous
if and only if f : (X� � � F� (X )) � (Y�e�) is M -continuous. We notice that
Theorems 3.1, 3.2 and 3.3 from (Kohli and Singh [12]) are consequences of
Lemma 2.3, and Theorems 3.6 and 3.10 from (Kohli and Singh [12]) follow
from Corollary 2.2.

We can introduce the notion of quotient minimal structure, a generaliza-
tion of the quotient topology.

Let f :X � Y be a function from a topological space (X� �X ) onto
a set Y . The family �Y � P(Y ), defined by V � �Y if and only if

f �1(V ) � �X , is a topology on Y , called the quotient topology (induced
by f ). It turns out that the quotient topology above is the finest topology �Y
for which f : (X� �X ) � (Y� �Y ) is continuous.

In the case where f :X � Y is a function from a space with minimal
structure (X�mX ) onto a set Y , we look for the largest minimal structure mY
on Y for which f : (X�mX ) � (Y�mY ) is M -continuous.

Definition ���� Let f :X � Y be a function from a space with minimal

structure (X�mX ) onto a set Y . The minimal structure mQ
Y � P(Y ), defined

by V � m
Q
Y if and only if f �1(V ) � U(mX ) is called the quotient minimal

structure (induced by f ) on Y .

Remark ���� Obviously, the family mQ
Y defined as above is indeed a

minimal structure, which has property (B). Furthermore, mQ
Y = f (f �1(mQ

Y )) �

� f (U(mX )) = U(f (mX )). If mX is a topology, then mQ
Y is a topology.

Theorem ���� The quotient minimal structure induced by a surjective

function f : (X�mX ) � Y is the largest minimal structure mY on Y for which

f : (X�mX ) � (Y�mY ) is M 
continuous�
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Proof� The M -continuity of f : (X�mX ) � (Y�mQ
Y ) follows by Defini-

tion 3.2 and Lemma 2.4. Let mY be a minimal structure on Y , such that
f : (X�mX ) � (Y�mY ) is M -continuous. For every V � mY , we have

f �1(V ) � U(mX ), hence V � mQ
Y , by Definition 3.2.

Theorem ���� Let f :X � Y be a function from a space with minimal

structure (X�mX ) onto a set Y and let mQ
Y be the quotient minimal structure

induced by f � Then g : (Y�mQ
Y ) � (Z�mZ ) is M 
continuous if and only if

g � f : (X�mX ) � (Z�mZ ) is M 
continuous�

Proof� By Theorem 3.2, f : (X�mX ) � (Y�mQ
Y ) is M -continuous. The

necessity follows by Corollary 2.2. Assuming that g � f : (X�mX ) � (Z�mZ )

is M -continuous, for each W � mZ we have (g�f )�1(W ) = f �1(g�1(W )) �

� U(mX ), hence g�1(W ) � m
Q
Y .

Remark ���� Let (X� �) be a topological space, mX = � � F� (X ) and
let f :X � Y . The quotient minimal structure induced by f on Y is the
D-quotient topology introduced by Kohli and Singh [12]. In this setting, The-
orem 3.2 and Theorem 3.3 give, respectively, Theorem 4.1 and Theorem 4.2
from [12].

�� Minimal structures on a cartesian product

Let f(X� � m� ) : � � Δg be a family of spaces with minimal structure.
Let X :=

Q
fX� : � � Δg be the cartesian product of the sets X� , � � Δ. For

each � � Δ denote by �� : X � X� the canonical projection of X onto X� .

We consider the families of subsets of X defined by S� := f��1
� (U� ) :

U� � m�g, � � Δ, and S =
S
fS� : � � Δg. Notice that S is always a

subbase for a topology, since the union of all members of S is X .

If m� = �� is a topology on X� for each � � Δ, then the product
topology on X is the smallest topology � on X for which all projections
�� : (X� �) � (X� � ��), � � Δ, are continuous. It turns out that the product
topology � on X is the topology generated by S, i.e. � = U(IF (S)).

In the general case, it would be interesting to find the smallest minimal
structure mX on X for which all projections �� : (X�mX ) � (X� � m� ),
��Δ, are M -continuous; this condition is satisfied if and only if S � U(mX ).
Denote by M the collection of all minimal structures mX on X satisfying the
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condition S � U(mX ). Unfortunately, a smallest element of (M��) need not
exist in general, as the following example shows.

Example ���� Let A = fa� bg. Let us take Xk = A with the minimal
structure mk = P(A), for k = 1� 2. Then

S = f�� A�A� fag �A� fbg �A�A� fag� A� fbgg


We consider the following minimal structures on X = X1 � X2: m1
X = S

and m2
X = f�� A�A� f(a� a)g� f(a� b)g� f(b� a)g� f(b� b)gg. Then S � U(mk

X ),

hence mk
X � M, for k = 1� 2. If (M��) would have a smallest element mX ,

then mX � m1
X �m2

X = f�� A�Ag, hence U(mX ) � f�� A�Ag. We notice
that S �� U(mX ), a contradiction with the assumption mX �M.

In what follows, we will endow X with the topology generated by the
subbase S, which is the smallest (coarsest) topology on X for which all
projections are M -continuous.

Definition ���� The topology determined by a family f(X� � m� ) : � �
� Δg of spaces with minimal structure, on the cartesian product X :=

Q
fX� :

� � Δg, is the smallest topology �X for which all projections �� : (X� �X ) �
� (X� � m� ), � � Δ, are M -continuous.

Remark ���� a) The topology �X in the definition above is given by
�X = U(IF (S)).

b) We also can say that the projections �� : (X� �X ) � (X� � m� ), � � Δ,
are (�� m)-continuous. (Popa and Noiri [25]).

Definition ���� (Noiri and Popa [19]) A nonempty set X with a minimal
structure mX , (X�mX ), is said to be m-Hausdorff if for each distinct points
x � y � X , there exist U�V � mX containining x and y , respectively, such
that U �V = �.

The following two properties are natural generalizations of well-know
results on product topological spaces.

Theorem ���� If F = f(X� � m� ) : � � Δg is a family of m
Hausdor�

spaces and �X is the topology determined by F on X :=
Q
fX� : � � Δg�

then the topological space (X� �X ) is Hausdor��

Proof� Let x and y be distinct points in X . There exists � � Δ such that
�� (x )���(y). Since (X� � m� ) is m-Hausdorff, there exist two disjoint m� -

open sets U� , V� , containing �� (x ) and �� (y), respectively. Then ��1
� (U�)
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and ��1
� (V�) are disjoint sets in the family S� � S � �X , containing x

and y respectively.

Theorem ���� Let F = f(X� � m� ) : � � Δg be a family of spaces

with minimal structure and let �X be the topology determined by F on

X :=
Q
fX� : � � Δg� Then� for every family of sets fA� : � � Δ� A� �

� X�g we have

�X 
Cl

� Y
��Δ

A�

�
�
Y
��Δ

m� 
Cl(A�)


Proof� Let x � �X � Cl
� Q
��Δ

A�

�
. Pick an arbitrary � � Δ. Let us

take U� � m� containing x� = �� (x ). Since ��1
�

(U� ) is in �X and contains

the point x , it follows by Lemma 2.1 that ��1
�

(U�) �
Q
��Δ

A���, which is

equivalent to U��A���. We proved that each set of m� containing x� meets

A� , hence x� � m� � Cl(A�), by Lemma 2.1.

If m� = �� is a topology on X� for each � � Δ, it is known that

the inclusion �X � Cl
� Q
��Δ

A�

�
�

Q
��Δ

m� � Cl(A�) also holds, for every

family of sets fA� : � � Δ� A� � X�g. We will establish a necessary
and sufficient condition for the inclusion above, in the general case where
f(X� � m� ) : � � Δg is a family of spaces with minimal structure.

Theorem ���� Let F = f(X� � m� ) : � � Δg be a family of spaces with

m
structure and let �X be the topology determined by F on X :=
Q
fX� : � �

� Δg� The following properties are equivalent�

��	 �X � Cl
� Q
��Δ

A�

�
�

Q
��Δ

m� � Cl(A� ) for every family of sets

fA� : � � Δ� A� � X�g


��	 For each � � Δ the minimal structure m� is a base for a topology

on X� �

Proof� (1) 	 (2): Fix � � Δ and let A� be an arbitrary subset of X� .

Take U� , V� be m� -open sets such that (U��V� )�m��Cl(A� )��. We shall

prove that U��V��A���, which shows, by Lemma 3.3, that m� is a base for
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a topology on X� . Put A� = X� for every � � Δnf�g. Pick a� � (U� �V� )�

� m� � Cl(A� ) and a� � X� for each � � Δ n f�g. Let a = (a�)��Δ. Then

a �
Q
��Δ

m� � Cl(A�), hence by (1) we have a � �X � Cl
� Q
��Δ

A�

�
. Let

W := (U� �V� )�
Q
���

X� . Then W = ��1
�

(U� ) � ��1
�

(V� ) � IF (S) � �X

and W contains a . By Lemma 2.1, we have W �
Q
��Δ

A���, which is

equivalent to U� �V� �A���.

(2) 	 (1): Let fA� : � � Δ� A� � X�g be a family of sets such that A�
is nonempty for each � � Δ (if A� is empty for some � � Δ, then the claim
is obvious). Take x �

Q
��Δ

m� �Cl(A�), i.e. x� := �� (x ) � m� �Cl(A�) for

each � � Δ. Let V � �X containing x . Since �X = U(IF (S)), there exists
U � IF (S) such that x � U � V . We can write U under the form U =

=
nQ
k=1

U�k �
Q
��Φ

X� , where n 
 1, f�1� �2� 
 
 
 � �ng � Δ, Φ = Δnf�1� �2� 
 
 



 
 
 � �ng and U�k � IF (m�k ), k = 1� n . We apply the fact that (2) implies,
by Lemma 3.2, that m� has property (I1), for every � � Δ. Then for each
k � f1� 2� 
 
 
 � ng there exists W�k � m�k such that x�k � W�k � U�k .
Since x�k � m�k � Cl(A�k ), by Lemma 2.1 we have W�k � A�k��, for

each k � f1� 2� 
 
 
 � ng. Define the set P =
nQ
k=1

(W�k � A�k )�
Q
��Φ

X� . Then

��P =
� nQ
k=1

W�k �
Q
��Φ

X�

�
�
Q
��Δ

A� � U �
Q
��Δ

A� � V �
Q
��Δ

A� .

It follows that every �X -open set containing x meets A =
Q
��Δ

A� , hence

x � �X � Cl(A).

In the following, we are concerned with necessary conditions and suffi-
cient conditions for the M -continuity of a function on a space with a minimal
structure into a product space of a family of spaces with minimal structure.

We consider a family of spaces with minimal structure eF = f(Y� � em� ) :
� � Δg and the cartesian product Y :=

Q
fY� : � � Δg. For each � � Δ we

denote by Pa : Y � Y� the canonical projection.

Theorem ���� Let (X�mX ) be a space with minimal structure and let

f :X � Y be de�ned by f (x ) = ff� (x )g��Δ� x � X � If mY is a mini
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mal structure on Y such that f : (X�mX ) � (Y�mY ) is M 
continuous and

if P� : (Y�mY ) � (Y� � em� ) is M 
continuous for some � � Δ� then

f� : (X�mX ) � (Y� � em� ) is M 
continuous�

Proof� We notice that f� = P� � f and apply Corollary 2.2.

Corollary ���� Let (X�mX )� (Y�mY ) and (X � Y�mX�Y ) be spaces

with minimal structure and let F :X � Y be a function� If the graph function

g : (X�mX ) � (X �Y� mX�Y )� de�ned by g(x ) = (x � F (x ))� x � X � and the

canonical projection P2 : (X � Y� mX�Y ) � (Y�mY ) are M 
continuous�

then F : (X�mX ) � (Y�mY ) is M 
continuous�

Proof� We apply Theorem 4.4 in the following context: Δ = f1� 2g,
Y1 := X , Y2 =: Y , Y := Y1 � Y2, em1 := mX , em2 := mY , mY := mX�Y ,
f1(x ) = x , f2(x ) = F (x ) for every x � X , f : = g and P� = P2.

Theorem ���� Let (X�mX ) be a space with minimal structure� Let eF =
= f(Y� � em� ) : � � Δg be a family of spaces with minimal structure and let

�Y be the topology determined by eF on Y � Let f :X � Y be de�ned by

f (x ) = ff� (x )ga��� x � X �

a	 If f : (X�mX ) � (Y� �Y ) is M 
continuous� then f� : (X�mX ) �
� (Y� � em� ) is M 
continuous for each � � Δ


b	 If f� is M 
continuous for each � � Δ and mX is a base for a topology

on X � then f is M 
continuous�

Proof� a) This follows by Theorem 4.4, since, by the definition of �Y ,
the projection P� : (Y� �Y ) � (Y� � em� ) is M -continuous for each � � Δ.

b) Assume that mX is a base for a topology on X . Let V � S. There

exists � � Δ and U� � em� such that V = P�1
� (U�). Then f �1(V ) =

= (P� � f )�1(U�) = f �1
� (U� ). Since f� : (Y�mY ) � (Y� � em� ) is M -

continuous, it follows that f �1(V ) � U(mX ). Then f �1(S) � U(mX ),

hence f �1(IF (S)) = IF (f �1(S)) � IF (U(mX )). By our assumption and

by Lemma 2.1, IF (U(mX )) � U(mX ). Then f �1(�X ) = f �1(U(IF (S))) =

= U(f �1(IF (S))) � U(U(mX )) = U(mX ). By Lemma 2.4, it follows that
f : (X�mx ) � (Y� �Y ) is M -continuous.

Theorem ���� Let (X�mX ) be a space with minimal structure�

Assume that for every family F of two spaces with minimal structure�

F = f(Y1� em1)� (Y2� em2)g which determines on Y = Y1 �Y2 a topology �Y �
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and for every function f : (X�mX ) � (Y� �Y )� f = (f1� f2)� the M 
continuity

of f1 and f2 implies the M 
continuity of f � Then mX is a base for a topology

on X �

Proof� Let us take Y1 = Y2 = X and em1 = em2 = mX . For k = 1� 2,
let fk be the identity mapping of X . Obviuously, fk : (X�mX ) � (Yk � emk )
is M -continuous. Then the function f : (X�mX ) � (Y� �Y ) defined by f (x ) =
= (f1(x )� f2(x )) = (x � x ), is M -continuous. Take U�V � mX such that U �V
is nonempty. We will prove that U � V � U(mX ). Then we obtain by
induction that IF (mX ) � U(mX ), hence mX is a base for a topology on X ,

by Lemma 3.2. We have (U �V )�X = P�1
1 (U )�P�1

2 (V ) � IF (S) � �Y .

Since f is M -continuous, this yields that U �V = f �1((U �V )�X ) belongs
to U(mX ).

In the following result, we consider two families of spaces with minimal

structure with the same set of indices F = f(X� � m� ) : � � Δg and eF =
= f(Y� � em� ) : � � Δg. Let X :=

Q
fX� : � � Δg (resp. Y :=

Q
fY� : � �

� Δg) be endowed with a minimal structure mX (resp. mY ). For each � � Δ,
denote by �� : X � X� , P� : Y � Y� the canonical projections.

Theorem ��	� Assume that� for some � � Δ� �� : (X�mX ) � (X� � m� )

is almost M 
open and P� : (Y�mY ) � (Y� � em� ) is M 
continuous� Let

f :X � Y be a product function� de�ned by f (fx�ga�Δ) = ff�(x� )g��Δ�

for each fx�g��Δ � X � If f : (X�mX ) � (Y�mY ) is M 
continuous� then

f� : (X� � m� ) � (Y� � em� ) is M 
continuous�

Proof� We notice that, for each � � Δ, we have f� � �� = P� � f and

�� (��1
� (A�)) = A� whenever A� � X� . Let V� � em� . In order to prove

that f� : (X� � m� ) � (Y� � em� ) is M -continuous, it is necessary and sufficient

to check that f �1
�

(V� ) � U(m� ), according to Lemma 2.4.

Since P� : (Y�mY ) � (Y� � em� ) is M -continuous, P�1
�

(V� ) � U(mY )

by Lemma 2.4. The M -continuity of f : (X�mX ) � (Y�mY ) implies, ac-

cording to Proposition 2.1, f �1(P�1
�

(V� )) � U(mX ). But f �1(P�1
�

(V�)) =

= ��1
�

(f �1
�

(V� )), hence f �1
�

(V� ) = �� (f �1(P�1
�

(V� ))) � �� (U(mX )) =

U(��(mX )).
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Since �� : (X�mX ) � (X� � m� ) is almost M -open, we have �� (mX ) �

� U(m� ), by Lemma 2.5. It follows that f �1
�

(V� ) � U(U(m�)) = U(m� ).

�� Some types of minimal structures on a cartesian product

Now we give some applications to the results from the preceding section.
We will pay attention to some minimal structures which can be defined on a
topological space (X� �), namely GOT (X ) and � � F� (X ).

Theorem ���� Let f(X� � ��) : � � Δg be a family of topological spaces

with the product space denoted by (X� �)� Let T be a �nite composition of

operators Int and Cl� Then each canonical projection �� : (X�GOT (X )) �
� (X� � GOT (X�)) is M 
continuous and M 
open�

Proof� It is well-known that each projection �� : (X� �) � (X� � ��) is
continuous and open. The claim follows by Theorem 3.1.

Corollary ���� Let A� � X� � � � Δ� Then ��1
� (A�) � GOT (X ) if

and only if A� � GOT (X�)�

Proof� The necessity follows by the M -openness of

�� : (X�GOT (X )) � (X� � GOT (X�))�

since A� = �� (��1
� (A� )). The sufficiency follows by the M -continuity of

�� : (X�GOT (X )) � (X� � GOT (X�)), using Lemma 2.4 and taking into
account that GOT (X ) has property (B), according to Lemma 3.1.

In the setting of Theorem 5.1, we give a generalization of Corollary 5.1
which unifies many known results.

Theorem ���� Let n 
 1� �1� �2� 
 
 
� �n � Δ and A�k � X�k �

k � f1� 2� 
 
 
 � ng�
nT
k=1

��1
�k

(A�k ) � GOT (X ) if and only if A�k � GOT (X�k )

for each k � f1� 2� 
 
 
 � ng�

Proof� Denote A =
nT
k=1

��1
�k

(A�k ) = A�1 �A�2 � 
 
 
 �A�n �
Q

���k

X� .

Necessity� For every � � f�1� �2� 
 
 
 � �ng we have ��(A) = A� , and
the necessity follows by M -openness of �� .
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Sufficiency� It is known that Cl
� nT
k=1

��1
�k

(M�k )
�

=
nT
k=1

��1
�k

(Cl(M�k ))

and Int
� nT
k=1

��1
�k

(M�k )
�

=
nT
k=1

��1
�k

(Int(M�k )) whenever. n 
 1, �1� �2� 
 
 



 
 
 � �n � Δ and M�k � X�k , k � f1� 2� 
 
 
 � ng. The first equality above

is a particular case of Cl
� Q
��Δ

M�

�
=
Q
��Δ

Cl(M�). The second equality

follows if we notice that
nT
k=1

��1
�k

(Int(M�k )) is an open set in X , contained

in
nT
k=1

��1
�k

(M�k ), that is
nT
k=1

��1
�k

(Int(M�k )) � Int
� nT
k=1

��1
�k

(M�k )
�

, and for

every j � f1� 2� 
 
 
 � ng we have

��j

�
Int
� n�
k=1

��1
�k

(M�k )
��

� Int
�
��j

� n�
k=1

��1
�k

(M�k )
��

= Int(M�j )�

whence

Int
� n�
k=1

��1
�k

(M�k )
�
�

n�
j=1

��1
�j

(Int(M�j ))


We conclude that T
� nT
k=1

��1
�k

(M�k )
�

=
nT
k=1

��1
�k

(T (M�k )) whenever. n 
 1,

�1� �2� 
 
 
 � �n � Δ and M�k � X�k , k � f1� 2� 
 
 
 � ng. If A�k � GOT (X�k )
for each k � f1� 2� 
 
 
 � ng, then

n�
k=1

��1
�k

(A�k ) �
n�
k=1

��1
�k

(T (A�k )) = T
� n�
k=1

��1
�k

(A�k )
�
�

whence
nT
k=1

��1
�k

(A�k ) � GOT (X ). This proves the sufficiency part.

Corollary ���� Let n 
 1� �1� �2� 
 
 
� �n � Δ and A�k � X�k �

k � f1� 2� 
 
 
 � ng� Then
nT
k=1

��1
�k

(A�k ) is semi
open �resp� preopen� �
open�

�
open	 if and only if the sets A�k � k � f1� 2� 
 
 
 � ng� are semi
open �resp�

preopen� �
open� �
open	�
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Remark ���� Corollary 5.2 shows that Theorem 5.2 generalizes Lemma
5.1 from (El-Deeb et al. [10]), Lemma 3.1 from (Chae et al. [8]) and a result
from (Noiri [17]).

Theorem ���� Let (X� �) be a topological space and let f(Y� �e��) : � �
� Δg be a family of topological spaces with its product space (Y�e�)� Let

T and eT be two �nite compositions of operators Int and Cl� Let f :X �
� Y be de�ned by f (x ) = ff� (x )ga��� x � X � If f : (X�GOT (X )) �
(Y�GO

eT
(Y )) is M 
continuous� then f� : (X�GOT (X )) � (Y� � GO

eT
(Y�))

is M 
continuous for each � � Δ�

Proof� Let � � Δ. By Theorem 5.1, the canonical projection P� :
(Y�GOT (Y )) � (Y� � GO

eT
(Y�)) is M -continuous. Then we can apply

Theorem 4.4 with mX = GO(T ), mY = GO
eT

(Y ) and em� = GO
eT

(Y� ).

Corollary ���� Let X and Y be two topological spaces and let F :X �
Y � If the graph function g : (X�GOT (X )) � (X �Y�GO

eT
(X �Y )) de�ned

by g(x ) = (x � F (x ))� x � X � is M 
continuous� then F : (X�GOT (X )) �
� (Y�GO

eT
(Y )) is M 
continuous�

Theorem ���� Let f(X� � �� ) : � � Δg and f(Y� �e�� ) : � � Δg be

two families of topological spaces with the same set of indices� Let (X� �)�

respectively (Y�e�)� be the corresponding product spaces� Let T and eT be

two �nite compositions of operators Int and Cl� Let f :X � Y be a product

function de�ned by f (fx�g��Δ) = ff� (x�)ga��� for each fx�g��Δ � X �

If f : (X�GOT (X )) � (Y�GO
eT

(Y )) is M 
continuous� then

f� :
�
X� � GOT (X�)

�
� (Y� � GO

eT
(Y�))

is M 
continuous for each � � Δ�

Proof� Let � � Δ. Denote by �� : X � X� and P� : Y � Y� ,
� � Δ, the canonical projections. By Theorem 5.1, �� : (X�GOT (X )) �
� (X� � GOT (X�)) is M -open and P� : (Y�GO

eT
(Y )) � (Y� � GO

eT
(Y� )) is

M -continuous. Then we can apply Theorem 4.7 with � = � , mX = GOT (X ),
mY = GO

eT
(Y ), m� = GOT (X�) and em� = GO

eT
(Y�).

Corollary ���� f : (X�GOT (X )) � (Y�e�) is M 
continuous if and only

if f� : (X� � GOT (X�)) � (Y� �e�� ) is M 
continuous for each � � Δ�
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Proof� Let us take in the statement of Theorem 5.4: eT = Int, i.e.

GO
eT

(Y ) = e� and GO
eT

(Y� ) = e�� 

Necessity� It follows from Theorem 5.4.

Sufficiency� Let V be a basic open set in Y , that is V =
nQ
j=1

V�j �

�
Q

���j

Y� , where n 
 1, f�j : j = 1� 
 
 
 � ng � Δ, and V�j is an open set in

X�j for each j � f1� 
 
 
 � ng. We have f �1(V ) =
nQ
j=1

f �1
�j

(V�j )�
Q

���j

X� . By

our assumption, f �1
�j

(V�j ) � GOT (X�j ) for each j � f1� 
 
 
 � ng. It follows

that f �1(V ) � GOT (X ), by Theorem 5.2. Let W be an arbitrary open set
in Y . Then there exist a family fVi : i � I g of basic open sets in Y such

that W =
S
i�I

Vi . Then f �1(W ) =
S
i�I

f �1(Vi ) � U(GOT (X ))(=GOT (X )).

It follows that f : (X�GOT (X )) � (Y�e�) is M -continuous.

Remark ���� Let X and Y be two topological spaces.

1) Let T and eT be two finite compositions of operators Int and Cl. An
M -continuous function f : (X�GOT (X )) � (Y�GO

eT
(Y )) is called:

i) strongly �-continuous if T = Int Cl Int and eT = Cl Int (Beceren, [3]);

ii) semi��-irresolute if T = Cl Int and eT = Int Cl Int (Beceren, [4]);

iii) almost �-irresolute if T = Cl IntCl and eT = Int Cl Int (Beceren, [5]);

iv) �-precontinuous if T = Int Cl and T = Int Cl Int (Beceren, [6]);

v) �-preirresolute (resp. �-preirresolute) if T = Int Cl Int (resp. T =

= Cl IntCl) and eT = Int Cl (Beceren and Noiri, [7]).

This observation shows that:

a) Proposition 4.3 generalizes Theorems 3.3 from [3], [4], [5], [6] and
Theorem 4.3 from [7].

b) Corollary 4.3 generalizes Theorems 3.2 from [3], [4], [5], [6] and
Theorem 4.2 from [7].

c) Proposition 4.4 generalizes Theorems 3.4 from[3], [4], [5], [6] and
Theorem 4.4 from [7].
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2) Let (X� �) and (Y�e�) be topological spaces. A function f :X � Y
is said to be H -almost continuous at x � X if for each open set V � Y

containing f (x ), the closure of f �1(V ) is a neighborhood of x . A function
f :X � Y is said to be H -almost continuous if it is H -almost continuous at
every point x � X . f :X � Y is H -almost continuous if and only if M -
continuous function f : (X� PO(X )) � (Y�e�) is M -continuous, by Theorem 1
from (Popa [20]).

Theorem 5.3 generalizes Theorem 6 from (Anderson and Jensen [1]).
Corollary 5.4 generalizes Theorem 5 from (Popa [20]).

Now we show that some results from the preceding section generalize
known results concerning D-continuous functions and D-supercontinuous
functions (see Remark 2.2 and Remark 3.4).

Corollary ���� (Kohli [11], Theorem 2.10]) Let f(Y� �e��) : � � Δg
be a family of topological spaces with the product space denoted by (Y�e�)�
and let (X� �) be a topological space� If a function f :X � Y � de�ned by

f (x ) = ff�(x )g��Δ� x � X � is D
continuous� then f� is D
continuous for

each � � Δ�

Proof� The function f : (X� �) � (Y�e� �F� (Y )) is M -continuous by our
assumption. Let � � Δ. The canonical projection P� : (Y�e�) � (Y� �e��) is
continuous, hence P� : (Y�e��F� (Y )) � (Y� �e���F� (Y�)) is M -continuous
(see Example 2.1). It follows by Theorem 4.4 that f� : (X� �) � (Y� �e�� �
� F� (Y�)) is M -continuous.

Corollary ���� (Kohli [11], Theorem 2.4) Let (X� �) and (Y�e�) be

topological spaces and let F :X � Y � If the graph function g :X � X � Y
is D
continuous� then F is D
continuous�

Corollary ��	� (Kohli [11], Theorem 2.9) Let f(X� � ��) : � � Δg and

f(Y� �e�� ) : � � Δg be two families of topological spaces with the same set of

indices� Let (X� �)� respectively (Y�e�)� be the corresponding product spaces�

Let f :X � Y be a product function de�ned by f (fx�g��Δ) = ff� (x�)ga���

for each fx�g��Δ � X � If f is D
continuous� then each f� is D
continuous�

Proof� The function f : (X� �) � (Y�e� � F� (Y )) is M -continuous by
our assumption. Let � � Δ. Denote by �� : X � X� and P� : Y � Y� ,
� � Δ, the canonical projections. Since �� is open and P� : (Y�e��F� (Y )) �
� (Y� �e���F� (Y�)) is M -continuous, we can apply Theorem 4.7. It follows
that f� : (X� � �� ) � (Y� �e�� � F� (Y�)) is M -continuous.
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Corollary ��
� (Kohli and Singh [12], Theorem 3.8) Let f(Y� �e�� ) :
� � Δg be a family of topological spaces with the product space denoted

by (Y�e�)� and let (X� �) be a topological space� If a function f :X � Y �

de�ned by f (x ) = ff� (x )g��Δ� x � X � is D
supercontinuous� then f� is

D
supercontinuous for each � � Δ�

Proof� Since f : (X� � � F� (X )) � (Y�e�) is M -continuous and P� :
(Y�e�) � (Y� �e��) is continuous, it follows that f� : (X� � � F� (X )) �
� (Y� �e�� ) is M -continuous.

A topological space (X� �) is said to be D-regular if it has a base con-
sisting of open F� -sets (Kohli [11], Kohli and Singh [12]); this means that
� � U(� � F� (X )). It is easy to see that every continuous function on a
D-regular space is D-supercontinuous.

Corollary ���� (Kohli and Singh [12], Theorem 3.9) Let (X� �) and

(Y�e�) be topological spaces and let F :X � Y � Then the graph function

g :X � X �Y is D
supercontinuous if and only if F is D
supercontinuous

and X is D
regular�

Proof� Necessity� Since g :X � X � Y is D-supercontinuous and
F = P2 � g , where P2 : X � X � Y is the canonical projection, F is
D-supercontinuous, by Corollary 5.8. Let U � � . Then U � Y is open in

X �Y , hence U = g�1(U �Y ) � U(� � F� (X )), by Lemma 2.4. We have
proven that � � U(� � F� (X )), hence X is D-regular.

Sufficiency� Since X is D-regular by our assumption, it suffices to

prove that g is continuous, i.e. g�1(W ) � � whenever W � X � Y is
an open set. There exist some families of open sets, fUi : i �g � � and
fVi : i � I g � e� , such that W =

S
fUi �Vi : i � I g. Since F is continuous,

F�1(Vi ) � � for every i � I . Then g�1(W ) =
S
fg�1(Ui � Vi ) : i � I g =

=
S
fUi � F

�1(Vi ) : i � I g � � .
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ÁKOS CSÁSZÁR*
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�� Introduction

According to [6], a generalized topology on a set X is a subset � of the
power set expX of X such that � � � and an arbitrary union of elements of �
belongs to � . For the sake of brevity, generalized topology will be abbreviated
by GT. The elements of the GT � will be called �-open, their complements
�-closed.

If X � � then the GT � will be called a strong GT. Of course, a topology
is a strong GT such that the intersection of two �-open sets is always �-open.

According to [9], if � is a GT on X and A � X , then

(1) i�A =
�
fM � � : M � Ag

is a mapping i� : expX � expX such that it is monotone, idempotent and
restricting, where �: expX � expX is said to be monotone iff A � B � X
implies �A � �B , idempotent iff ��A = �A for A � X , restricting iff
�A � A for A � X .

Similarly, if

(2) c�A =
�
fN : A � N�X �N � �g�

then c� is again monotone and idempotent, but enlarging, where �: expX �
� expX is said to be enlarging iff A � �A for A � X . Further each of i�
and c� determines the other one as A � X implies

(3) c�A = X � i�(X �A)�

* Research supported by Hungarian Foundation for Scientific Research, grant No. T 032042.
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92 ÁKOS CSÁSZÁR

If � is a topology then clearly i�A = int(A) and c�A = cl(A) for A � X .

Clearly each set i�A is �-open and c�A is �-closed.

It is well-known that, in the literature, a topological space or a topology
is called extremally disconnected (briefly EDC) iff the closure of an open set
is always open. Similarly, we shall say that a GT � is EDC iff c�A � �

whenever A � � .

In the following, we shall present some interesting examples of EDC
GT’s.

�� Extremal disconnectedness of �� �� �� 	

Let us denote by Γ the collection of all monotone mappings � : expX �
� expX . By [4], if � � Γ, the sets A satisfying A � �A constitute a GT,
denoted by 
� . The elements of 
� are said to be (
� -open or) �-open, their
complements (
� -closed or) �-closed.

By [4], 1.8, a set A is �-closed iff A � ��A, where

(4) ��A = X � �(X �A) (A � X )

is the conjugate of �; clearly � � Γ implies �� � Γ and (��)� = � .

If �� � � � Γ, we write for the sake of brevity �� � instead of � �� �. Clearly
(�� �)� = ��(� �)�.

We recall that, in [9], some operations were generalized for arbitrary
GT’s. More precisely, if � is a GT on X , we define GT’s �(�) = 
i�c� i� ,

�(�) = 
c� i� , �(�) = 
i�c� , 	(�) = 
c� i�c� .

In the literature, in the case when � is a topology, the elements of
�(�) are called �-open [12], those of �(�) semi�open [10], those of �(�)
preopen [11], those of 	(�) 	-open [1].

In the following, if � is a fixed GT, we shall simply write �� �� �� 	
instead of �(�)� �(�)� �(�)� 	(�). Moreover, we write � for i� and � for c� .

We recall the inclusions

(5) � � � � � � 	� � � � � 	�

(See [9], 2.1.)

Theorem ��� For an arbitrary GT � on X � if � � Γ is monotone and

enlarging then 
 = 
��� is EDC�
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Proof� For A � X , A � � implies �A = A � �A, hence �A � � and
�A � �A so that �A � ��A. Therefore, for A � � , we have A = �A � ��A �
� ���A. We obtain � � 
 = 
��� , consequently the �-closed set ���A is

-closed. If A is 
-open then A � ���A and the latter is 
-closed, hence
c�A � ���A and A � c�A � ���A � ���c�A so that c�A � 
 as stated.

Theorem ��� For an arbitrary GT � on X � the GT�s � and 	 are EDC�

Proof� We apply 2.1 for � = id and � = � , respectively.

It is interesting to observe that � and � need not be EDC even if � is a
topology. Consider X = R and let � be the usual (Euclidean) topology on R.
Then A = (0� 1) is open, hence �-open and �-open by (5). The set [0� 1] is
closed, hence �-closed and �-closed, and, more precisely, [0� 1] = c�A =
= c�A; in fact, the sets [0� 1) and (0� 1] are not �-closed as e.g. c� i�[0� 1) =
= [0� 1] is not contained in [0� 1). Consequently these sets are not �-closed
either. Now [0� 1] is not �-open (hence not �-open) since i�c�[0� 1] = (0� 1).

�� Unions and intersections of monotone mappings

In order to obtain a further interesting example of EDC GT’s, we need
some preparatory work.

Let again Γ be the collection of monotone mappings on expX and I a
non-empty index set. Suppose �i � Γ for i � I . Let us define � : expX �
� expX and � : expX � expX by

(3�1) �A =
�

i�I

�iA

and

(3�2) �A =
�

i�I

�iA

for A � X .

Proposition ��� Both � and � belong to Γ�

Proof� If A � B � X , clearly �iA � �iB for each i � I so that

�A =
�

�iA �
�

�iB = �B

and

�A =
�

�iA �
�

�iB = �B�
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We write simply

(3�3) � =
�

i�I

�i � � =
�

i�I

�i �

Theorem ��� With the notation ������

�� =
�

i�I

(�i )
�� �� =

�

i�I

(�i )
��

Proof� ��A = X��(X �A) = X�
S
�i (X�A) =

T
(X��i (X �A)) =

=
T

(�i )
�A� The second equality is proved similarly (we interchange the roles

of � and 	).

�� i�friendly mappings

Let us consider again a set X and the corresponding collection Γ of
monotone mappings. The paper [5] shows that many elements � � Γ have
the property

(4�1) i�A = A 	 �A (A � X� � = 
� )�

By [5] 1.1, (4.1) holds iff A	�A is �-open. Let us say that � � Γ is i-friendly
iff (4.1) is satisfied, i.e. iff A 	 �A is �-open for every A � X .

Observe that, if � is i-friendly, then by [5], 3.1, c�A = A � ��A for
A � X and � = 
� .

According to [5], if � is a topology, each of the mappings c� i� , i�c� ,
i�c� i� , c� i�c� is i-friendly. This is not always true if, more generally, � is
a GT. E.g. Example [9], 3.2 shows that there exists a GT � for which � = i�c�
does not fulfil (4.1). However, the following general statement is valid:

Theorem ��� For an arbitrary GT � � the mapping c� i� is i�friendly�

Proof� By using again the notation i� = � , c� = � , we have, for A � X ,
�(A 	 ��A) � �A � A 	 ��A so that �A � � implies �A � �(A 	 ��A) and
�(A 	 ��A) = �A. Hence ��(A 	 ��A) = ��A � A 	 ��A.

As (��)� = �� , in general, � can be i-friendly without �� being i-friendly
([9], 3.2).

The papers [5] and [8] contain some sufficient conditions for a � � Γ
being i-friendly. Let us consider a further such condition:
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Theorem ��� If �i is i�friendly for i � I then � =
S

i�I �i is i�friendly�

Proof� For A � X , we have A 	 �A = A 	
S
�iA =

S
(A 	 �iA) �

�
S
�i (A 	 �iA) �

S
�i (A 	 �A) = �(A 	 �A).

�� Another EDC GT

Now we can prove a statement furnishing further examples of EDC GT’s.

Theorem ��� Let � � Γ be such that both � and �� are i�friendly� Then
the GT 
� is EDC where � = � � ���

Proof� By 3.1 � � Γ. As by 3.2 �� = (� � ��)� = �� 	 ((�)�)� = �� 	 � ,
we have c�A = A � (�A 	 ��A) for A � X because � is i-friendly by 4.2.
Now if A � �A then clearly c�A � �A � ��A � �c�A� ��c�A = �c�A.

Corollary ��� If � is a topology and �A = c� i�A� i�c�A for A � X
then 
	 is EDC�

Proof� Let �A = c� i�A and apply 5.1.

The statement 5.2 is contained in [13], Theorem 3.1. The �-open sets are
called b-open in [3].

	� Connected EDC GT
s

Let us recall that, according to [7], a GT � (or the space (X� �)) is said
to be connected iff X = M � N , M 	 N = �, M�N � � imply M = � or
N = �.

If the GT � is EDC then the connectedness of � can be very easily
characterized:

Theorem ���� An EDC GT � is connected i	 M�N � � � M��� N��
implies M 	N���

Proof� The condition is clearly sufficient, even if the GT � is not EDC.
Conversely, if we assume the existence of M�N � � such that M���N and
M 	N = � then ��M � c�M � X �N�X and c�M � � since � is EDC,
so that X = c�M � (X � c�M ), the members are nonempty and disjoint and
both belong to �: � is not connected. Therefore the condition is sufficient.

A particular case of 6.1 is contained in [2].
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�� Introduction

Let Π be a projective plane of order q . A semioval in Π is a non-empty
pointset S with the property that for every point in S there exists a unique
line tP such that S � tP = fPg. This line is called the tangent to S at P .
The classical examples of semiovals arise from polarities (ovals and unitals),
and from the theory of blocking sets (the vertexless triangle). The study of
semiovals is motivated by their applications to cryptography [1].

It is known that q + 1 � jS j � q
p
q + 1 and both bounds are sharp

[14], [9]. A semioval is said to be regular with character a if all nontangent
lines intersect S in either 0 or a points. Regular semiovals were studied by
Blokhuis and Szőnyi [4], and Gács [7], who proved that in PG(2� q) each
regular semioval is either an oval or a unital.

Semiovals with large collinear subsets were investigated by Dover [6].
He proved the following properties of the semioval S :

� jS � � j � q � 1 for any line � of Π�

� If S has a (q � 1)-secant, then 2q � 2 � jS j � 3q � 3�

� If S has more than one (q � 1)-secant, then S can be obtained from a
vertexless triangle by removing some subset of points from one side.

* The research was supported by the Hungarian National Foundation for Scientific Re-
search, Grant Nos. T 043556 and T 043758, and by the Slovenian-Hungarian Intergovernmen-
tal Scientific and Technological Cooperation Project, Grant No. SLO-1/03.

y The research was supported by the Hungarian National Foundation for Scientific Re-
search, Grant No. T 043758, and by the Slovenian-Hungarian Intergovernmental Scientific and
Technological Cooperation Project, Grant No. SLO-1/03.
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There are several results about sets which are contained in the union of
three lines and have some other properties. For example Cameron [5] and
Szőnyi [13] gave complete description of minimal blocking sets of this type.

The aim of this paper is to characterize the semiovals which are contained
in the union of at most three lines. We will use the following notation
throughout this note: Π is a projective plane of order q� S is a semioval in Π�
if Q is a point of S then tQ is the unique tangent to S at Q� PQ is the pencil
of lines with carrier Q� �1� �2 and �3 are the three lines whose union contains
S� Li = S � �i for i = 1� 2� 3� and Pi = �k � �j where fi � j � kg = f1� 2� 3g�

�� Preliminaries

For q = 2 it is not hard to show that each semioval consists of three
non-collinear points. Hence from now on we may assume that q �2� It
follows from the definition that a semioval could not be contained in one
line. Suppose now that S is contained in the union of two lines, �1 and �2�
Among the elements of PP3

there exist (q + 1) � 2 = q � 1 lines which are

tangent to S at P3� so if q �2 then P3 �� S . Let us choose an arbitrary
point Q � L1� Then q � 1 out of the q lines of PQ n �1 must intersect �2

hence jL2j = q � 1� and because of the symmetry jL1j = q � 1. If Qi � �i
are arbitrary points (i = 1� 2)� then the pointset �1 � �2 n fP�Q1� Q2g is a
semioval, because for each Ri � S the unique tangent tRi

is the line RiQj

where fi � jg = f1� 2g� Hence we proved the following:

Proposition ���� Let S be a semioval in a projective plane of order

q �2� If S is contained in the union of two lines �1 and �2� then jS j = 2(q�1)
and S = �1 � �2 n f�1 � �2� Q1� Q2g where Qi � �i for i = 1� 2�

If S is contained in the union of three lines, then there are much better
bounds on the size of S than the general ones.

Proposition ���� Let S be a semioval in a projective plane Π of order

q � If S is contained in the union of three lines then

3(q � 1)
2

� jS j � 3(q � 1)�

Proof� We may assume that q �4 because if q � 4� then the bounds
of Hubaut are sharper than the bounds of our proposition. The upper bound
is a trivial consequence of a theorem of Dover [6]. He proved that if S is a
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semioval in a projective plane Π of order q �3 and � is any line of Π then
jS � � j � q � 1�

In the case of the lower bound we distinguish two possibilities. If �1� �2
and �3 are concurrent, then their point of intersection P1(= P2 = P3) does
not belong to S� because P1 � S would imply that there were (q + 1) �
� 3 �2 tangents to S at P1� Let now Q � Li be any point of S . Among
the q + 1 lines of PQ there are two exeptional ones, tQ and �i � each of the
remaining q � 1 lines meets either Lj or Lk where fi � j � kg = f1� 2� 3g� Thus
jLj j + jLk j � q � 1� This holds for all the three possible pairs (j � k )� hence

jL1j + jL2j + jL3j � 3(q � 1)�2�

If �1� �2 and �3 form a triangle, and Pi �� S then the same argument
shows that jLj j + jLk j � q � 1� If Pi � S then jLi j � q � 2� because among
the lines of PPi

there is only one, tPi
, which does not contain some other

points of S� Let Q � Li be an arbitrary point. Now we get jLj j+ jLk j � q�2�

Hence in both cases jLi j + jLj j + jLk j � 3(q � 1)�2�

In the rest of the paper semiovals in PG(2� q) which are contained in the
union of three lines are studied. We assume that S is not contained in the
union of two lines, thus Li n fPj � Pkg�	 for fi � j � kg = f1� 2� 3g� In Section 3
a complete classification is given when the lines form a triangle. We prove
that each semioval belongs to one of the following three classes.

1. S has a (q�2)-secant and two (t +1)-secants for a suitable t � A semioval
in this class exists if and only if q = 4 and t = 1� q = 8 and t = 4 or
q = 32 and t = 26�

2. S has two (q � 1)-secants and a k -secant. Semiovals in this class exist
for all 1 �k �q�

3. S has three (q � 1� d)-secants. Semiovals in this class exist if and only
if dj(q � 1)�

In Section 4 some results are given when the lines are concurrent.

�� Semiovals contained in the sides of a triangle

We show that if �1� �2 and �3 form a triangle, then S belongs to one of
classes 1–3 of semiovals on the list at the end of the previous section.

Proposition ���� S contains at most one point from the set fP1� P2� P3g�
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Proof� If Pi � S then jLi n fPj � Pkgj = q � 2� Thus fP1� P2� P3g 
 S

implies jLi j = q� contradicting to the previously cited theorem of Dover.
Suppose now that P1� P2 � S and P3 �� S� Then jL1j = jL2j = q � 1� Let
Ei (i = 1� 2) be the unique point of �i which is not in Li and different from
P3� For each A � L1 tA must be the line AE2� hence AE2 � �3 �� S� so L3
contains exactly three points: P1� P2 and E1E2 � �3 = E3� But at E3 there are
two distinct tangents to S� the lines E3P3 and E3E1� This contradiction proves
the statement.

Theorem ���� A semioval in PG(2� q) which is contained in the sides of

a triangle and which contains one vertex of this triangle has a (q � 2)�secant
and two (t + 1)�secants where t is a suitable integer� This type of semiovals

exists if and only if q = 4 and t = 1� q = 8 and t = 4 or q = 32 and t = 26�

Proof� If S contains P3 then Proposition 3.1 implies that neither P1
nor P2 are in S and jL3j = q � 2� Hence there exists a point Q such that
�3 n L3 = fP2� P3� Qg� Let us choose the system of reference such that

P1 = (1� 0� 0)� P2 = (0� 1� 0)� P3 = (0� 0� 1)� Q = (1� 1� 0)�

Let

A1 = fa � GF �(q) : (a� 0� 1) � Sg
and

A2 = fa � GF �(q) : (0��a� 1) � Sg�
First we show that A1 = A2� If R � Li is an arbitrary point (i = 1� 2) then tR
is the line RPi hence RQ contains at least two – and so exactly two – points
of S� But the points Q = (1� 1� 0)� (a� 0� 1) and (0��a� 1) are collinear. Thus
(a� 0� 1) � S if and only if (0��a� 1) � S� Let now t = jA1j = jA2j�

If 1�m � GF �(q) then M = (m� 1� 0) � L3 
 S� Consider the elements
of PM � The line �3 is a (q � 2)-secant of S , tM is a tangent, each of the
remaining q � 1 lines is either a 2-secant or a 3-secant of S� Each 2-secant
contains one point of L1 � L2 while each 3-secant contains one point of L1
and one point of L2� The cardinality of L1 � L2 is 2t + 1� so if the number
of 3-secants is 	� then 2	 + (q � 1 � 	) = 2t + 1� Hence there are exactly
	 = 2t + 2 � q 3-secants of S in PM �

A 3-secant contains the points (b� 0� 1)� (0��c� 1) and (m� 1� 0) if and only
if m = b�c� Hence S is a semioval if and only if for all 1�m � GF �(q)
there exist exactly 	 = 2t + 2 � q pairs of elements (b� c) of A1 � A1 for
which m = b�c hold. This means that A1 is a difference set in GF �(q) with
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parameters v = q�1� k = t � 	 = 2t +2�q� For the basic facts about difference
sets we refer to the survey of Baumert [2].

If a (v � k � 	)-difference set exists, then its parameters satisfy the equation
k (k � 1) = (v � 1)	� hence in our case

t(t � 1) = (q � 2)(2t + 2 � q)�

Solving this equation and using t �q we get the parameters of the difference
set:

v = q � 1� k = q � 3 +
p

4q � 7
2

� 	 = q � 1 �
p

4q � 7�

Thus if n = k � 	 then

n2 + n + 1 =
4q � 7 � 2

p
4q � 7 + 1

4
+

p
4q � 7 � 1

2
+ 1 = q � 1�

so the difference set is a planar one.

If q is odd then 4q � 7 � 5 (mod 8)� hence 4q � 7 is not a square. Thus
this type of difference set does not exist for q odd. So semiovals belonging to
this class could exist only for q even. If q is even then 4q�7 is a square if and

only if 4q = 2r and the diophantine equation 2r = x2 + 7 has a solution. This
equation was solved by Nagell [11]. He proved that there are five solutions,
namely the pairs (r� x ) = (3� 1)� (4� 3)� (5� 8)� (7� 11)� and (15� 181)�

If r = 3 then q = 2� contrary to our assumption q �2� If r = 4 then
q = 4 and 	 = 0� so there is no three-secant, the semioval contains five points,
it is an oval. If r = 5 then q = 8 and the difference set has parameters
v = 7� k = 4 and 	 = 2� A difference set with these parameters exists, this
is the complementary difference set of the well-known (7� 3� 1)-difference set
belonging to the Fano plane. The corresponding semioval in PG(2� 8) consists
of 15 points, it has two 5-secants and one 6-secant. If r = 7 then q = 32 and
the difference set has parameters v = 31� k = 25 and 	 = 20� Such difference
set exists, this is the complementary difference set of the (31� 6� 1)-difference
set which belongs to the projective plane of order q = 5. Hence the semioval
appears in PG(2� 32)� It has 81 points, two 26-secants and one 30-secant. If
r = 13 then q = 8192 and the parameters are v = 8191� k = 181� 	 = 91 and
n = 90� There is no planar difference set with these parameters, because it is
known (see [8]) that for n �2� 000� 000 the order of each cyclic projective
plane is a prime power.

Now consider the cases when S does not contain any point from the set
fP1� P2� P3g� The vertexless triangle T is a semioval belonging to this class.
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Let D be any set of points on one side of T� If 0 �jD j �q � 2� then it is
easy to show that the set T nD is a semioval. These semiovals form Class 2.
If we delete points from more than one side of T� then the semioval belongs
to Class 3.

Theorem ���� If a semioval S in PG(2� q) is contained in the sides of

a triangle T � does not contain any vertex of T and has at most one (q � 1)�
secant� then S has exactly three (q � 1 � d)�secants where d is a suitable

divisor of q � 1�

Proof� Let us choose the system of reference such that the lines �1 and
�2 are not (q � 1)-secants. Then we may assume that P1 = (1� 0� 0)� P2 =
= (0� 1� 0)� P3 = (0� 0� 1)� and the points (1� 0� 1) and (0� 1� 1) are not in S� Let

A = fa � GF �(q) : (a� 0� 1) �� Sg�
B = fb � GF �(q) : (0� b� 1) �� Sg

and

C = fc � GF �(q) : (�c� 1� 0) �� Sg�
We prove that A = B = C� If Qi � Li then tQi

is the line QiPi for i = 1� 2� 3�
Thus if two points, U and V from two distinct sides of T are not in S� W
denotes the point of intersection of the line UV and the third side of T�
then W could not be in S because the line UV would be another tangent
through W� The points (a� 0� 1)� (0� b� 1) and (�c� 1� 0) are collinear if and
only if a = bc� Hence a � A and b � B imply a�b � C� a � A and c � C

imply a�c � B� and c � C and b � B imply bc � A� So 1 � C� because
1 � A � B� But this means that A 
 B and B 
 A� hence A = B� In the
same way we get A = C� Hence a � A and b � A imply ab � A� and 1 � A
and a � A imply 1�a � A� This means that A is a subgroup of GF �(q)�

If G�GF �(q) is an arbitrary subgroup, then the pointset

f(h� 0� 1)� (0� h� 1)� (�h� 1� 0) : h � GF �(q) nGg
is a semioval with cardinality 3(q � 1� jGj)� because the lines with equation
X1 = hX3� X2 = hX3� X1 = �hX2 are the unique tangent lines at the points
(h� 0� 1)� (0� h� 1)� (�h� 1� 0)� respectively.
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�� Semiovals contained in three concurrent lines

If q is odd then the lower bound in Proposition 2.2 is sharp, there is
a semioval with cardinality 3(q � 1)�2 in Class 3. If �1� �2 and �3 have a
common point, P1� then we can prove a slightly better lower bound on jS j.

Theorem ���� If a semioval S in PG(2� q) is contained in the union of

three concurrent lines then jS j�3(q � 1)�2 for q �9�

Proof� If q is even then the statement follows from Proposition 2.2. Let
q be odd and suppose that jS j = 3(q � 1)�2� As we have already seen this
implies jL1j = jL2j = jL3j = (q � 1)�2� So if Qi � Li for i = 1� 2� 3 then
the points Q1� Q2 and Q3 could not be collinear. Let us choose the system of
reference such that the lines �1� �2 and �3 have equations X1 = �X3� X1 = 0
and X1 = X3� respectively. Then P1 = (0� 1� 0) �� S� Let

A = fa � GF (q) : (�1� a� 1) � L1g�
B = fb � GF (q) : (0� b� 2) � L2g

and

C = fc � GF (q) : (1� c� 1) � L3g�
Now we can consider the sets A�B and C as subsets of the additive group

of GF (q)� We have (A+C )�B = 	� otherwise a +c = b would imply that the
points (�1� a� 1)� (0� b� 2) and (1� c� 1) were collinear. Hence jA + C j � (q +
+ 1)�2� But the Theorem of Kneser (see [10], p. 6.) states that there exists a
subgroup H such that A+C = A+C +H and jA+C j � jA+H j+jC +H j�jH j�
So (q + 1)�2 � jH j � (q�3)�2� The order of a subgroup divides the order of
the group, so 1 �jH j divides q� But 2jH j�q and 3(q � 3)�2 �q if q �9�
so there is no such semioval for q �9�

It is easy to see that Theorem 4.1 is valid for q = 3� 7 and 9� too. For
q = 5 each oval contains q + 1 = 3(q � 1)�2 = 6 points. If P1 is an internal
point of an oval, then the oval is contained in the three secants passing on P1,
so this is the only case when Theorem 4.1 is not true.

We were able to construct only one infinite class of this type of semiovals.
This is the following.

Example ���� Let q = s2 and let �1� �2� �3 be three concurrent lines in

PG(2� q)� For i = 1� 2� 3 choose � i 
 �i Baer sublines such that each Baer
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subplane h�i � �j i meets the line �k only in P1 if fi � j � kg = f1� 2� 3g� Then

S = (�1 n�1)� (�2 n�2)� (�3 n�3) is a semioval which has 3(q�p
q) points.

The line �i is tangent to the Baer subplane Bj�k = h�j � �k i if fi � j � kg =
= f1� 2� 3g� Hence s + 1 lines of Bj �k pass on P1 and exactly one line of
Bj�k passes on each other point of �i � So for each point Q � Li there is a
unique line of Bj�k which passes on Q� This line is tQ � because any other
element of PQ does not belong to the set of lines of Bj�k � thus it meets

(�j n �j ) � (�k n �k ) = Lj � Lk in at least one point.

We can construct such a semioval for example in the following way. Let
i be a root of an irreducible quadratic polynomial of GF (s)[X ] and consider
GF (q) as the extension of GF (s) by i � The equations of the lines are as
follows: �1 : X2 = 0� �2 : X1 = 0 and �3 : X1 = iX2� and the Baer sublines
are:

�1 = f(a� 0� 1) : a � GF (s)g � f(1� 0� 0)g�
�2 = f(0� b� 1) : b � GF (s)g � f(0� 1� 0)g�
�3 = f(1� i � ci + 1) : c � GF (s)g � f(0� 0� 1)g�

If s = 2 then q = 4 and our example has 6 = q + 2 points. Semiovals with
cardinality q + 2 were studied by Blokhuis [3]. He proved that these objects
exist if and only if q = 4 or 7. If q = 7, then there is a projectively unique
semioval which contains nine points. This semioval is contained in the union
of three non-concurrent lines and belongs to Class 3 on the list at the end of
Section 2.
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H-1117 Budapest, Hungary
and
Bolyai Institute, University of Szeged
H–6720 Szeged, Aradi vértanúk tere 1,
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Introduction

In the definition of Morse functions the requirement that the critical
points are non-degenerate, can be replaced by the more general one that
the critical points form submanifolds which are non-degenerate in a sense
defined below [1]. Thus a concept of generalized Morse function is obtained.
The problem concerning to the existence of invariant Morse functions was
fully resolved by Wasserman [11], by means of abstract existence theorems
without constructing any example. Riemannian manifolds with isometric
actions which admit orthogonally transverse submanifolds are applied below
to construct examples of invariant generalized Morse functions.

�� Some basic facts

Definitions� A connected submanifold K �M is a critical submanifold

of the smooth function f : M �� R if every point z of K is a critical point
of f .

Let K � M be a critical submanifold then we have the following inclu-
sion:

(1) TzK � fv � TzM jHessf (v � TzM ) = f0gg for every z � K .

Furthermore if in (1) instead of inclusion equality holds for every z � K

then the considered submanifold is called non�degenerate critical submanifold

of f .
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Let G be a Lie group and � : G �M �� M be a smooth action of
G on a smooth manifold M . A smooth function f : M �� R is said to be
G�invariant smooth function if:

f (� (g� x )) = f (x )

for every x �M and g � G .

If x �M is a critical point of a G-invariant smooth function, where G is
a compact Lie group, the orbit of x is itself a critical submanifold of f , called
critical orbit.

Let K be a critical submanifold of M if the inclusion �(G�K ) � K
holds then K is called an invariant critical submanifold of M [1].

We apply the following well-known result [2]:

Proposition �� Let � be a smooth action of a compact Lie group G on

a smooth manifold M � then for every x � M we can construct a slice� i�e� a

submanifold Sx of M with the following properties�

��� The saturation of Sx i�e� the set f�(g� z ) j z � Sx � g � Gg is an open

tubular neighbourhood of G (x )� furthermore Sx �G (x ) = fxg is ful�lled	

�
� For every g � Gx we have �(g� Sx ) = Sx 	

��� If z � Sx then Gz � Gx 	

��� If �(g� Sx ) � Sx is non
empty then g belongs to Gx �

We also apply the construction of normal slices which can be done as
follows: Choose a G-invariant Riemannian metric h � i : TM�TM �� R on
M , such a metric exits as a consequence of the existence of an invariant Haar
measure on the group G . We can decompose the tangent space TzM at z �
G (x ) into two orthogonally complementary subspaces: TzG (x ), respectively

T�z G (x ), the last one will be denoted throughout this paper by �zG (x ).

Let �rzG (x ) be the subset of �zG (x ) whose elements satisfy the condition
kvkz �r where r is a positive number. Then by a suitable choice of r �0
we can produce the slice Sz as the image of �rzG (x ) under the exponential
map. For every slice Sz which has been constructed as above we have

TzS (z ) = �zG (x ) �

Since every vector v � �zG (x ) can be thought as a tangent vector to a
segment of geodesic lying in Sz , the inclusion follows: �zG (x ) � TzSz ;
moreover Sz has obviously the dimension dim M � dim G (x ), therefore we
have TzSz = �z (x ). Finally if the vector v � TzM belongs to TzSz and
� : [0� 1] �� M is a geodesic with �̇(0) = v then it has a piece �

�
[0� 	]

�
with 	 �0 included in Sz , thus the submanifold Sz is geodesic at the point x .
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Corollary �� Every normal slice of an orbit G(x ) is geodesic in x �

�� The main result

Proposition �� Let � be a smooth action of a compact Lie group G on

a smooth manifold M furthermore let f : M �� R be a G
invariant smooth

function� Consider now a critical orbit G (x ) with respect to f and let Sx be

the normal slice of the orbit G (x )� Then G (x ) is a non
degenerate critical

submanifold of f if and only if x is a non
degenerate critical point of the

restricted function f �Sx �

This propositon is a particular case of the following more general result
(theorem� 1).

Definition �� In case of an isometric action a submanifold L � M
is said to be an orthogonally transverse submanifold to the action � if the
following two conditions are satisfied:

(1) The submanifold L intersects every orbit G (z ) � z �M of the action;

(2) The subspaces TzL� TzG (z ) � TzM are orthogonal to each other at
every point z � L.

There are given fairly general conditions which assure the existence of
orthogonlly transverse submanifolds. For details see [8].

The statement of the first proposition can be extended in the case when
instead of normal slice we have orthogonally transverse submanifold.

Theorem �� Let � : G�M ��M be an isometric action which admits

an orthogonally transverse submanifold L and f : M �� M an invariant

smooth function� Then the critical orbits of � are non
degenerate submanifold

if and only if f � L is a Morse function�

The proof can be made step by step through the following lemmas:

Lemma �� Let L � M be an orthogonally transverse submanifold of the

action � and f : M �� R a smooth invariant function� Then the gradient

�eld of f is a smooth extention of the gradient of f �L�

Proof� Since f is invariant, grad f � �zG(z ). If z � L is such that
G(z ) is principal orbit, then �zG(z ) = TzL. But grad(f �L) is the orthogonal
projrection of grad f on TL, and taking into account the principal orbit type
theorem we have grad(f �L) = (grad f ) �L.
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Lemma �� By keeping the assumptions made above for the gradient of

the function f �L we have�

Tz�g (grad(f �L)) = grad(f �g(L) (�g (z )))

where g(L) = �(g� L)

Proof� Clearly for every g � G we have Tz�g (TzL) = T�g (z )(g(L)). So

we can write

Tz�g (v )(f ) = v (f � �g ) = hgrad f � �g � vi = hTz�g (v )� grad(f (�g (z )))i

for every tangent vector v � TzL.

On the other hand �g for g � G is an isometry of M therefore

hTz�g (v )� Tz�g (grad(f ))i = hv � grad(f )i

thus

hTz�g (v )� Tz�g (grad(f )) � grad(f (�g (z ))i = 0;

this last equation and the first lemma yield that

Tz�g (grad(f �L)) = grad(f �g(L) (�g (z )))�

Lemma �� The restricted function f �L: L �� R has only non
degenerate

critical points if and only if f �g(L): g(L) �� R also has only non
degenerate

critial points�

Proof� The tangend space TzL can be decomposed into directsum TzL =
=
L

� R� of the eigenspaces of the Hessian of f �L. Clearly the linear
operator which belongs to the bilinear form Hess f �L (z ) can be written
as 	(�) grad(f �L). By choosing an eigenvector v � R� we can write

	Tz�g (v ) grad(f �g(L)) = 	Tz�g (v )Tz�g (grad(f �L)

= Tz�g � (Tz�
�1
g � 	Tz�g (v )Tz�g )(grad(f �L))

= Tz�g � ((Tz�g )�	)v grad(f �L)

= Tz�g � 	v grad(f �L) = Tz�g (
v ) = 
Tz�g (v )�

therefore we have Tz�g (R�) � R
�

�
where R�

�
denotes the corresponding

eigensubspace of Hess f �g(L) (z ), which proves the assertion.

Proof of the theorem� For each u� v � TzM we have

Hess f (z )(u� v ) = h	u grad f ; vi = h�(u); vi�
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here � : TzM �� TzM and below � : TzL �� TzL denote linear operators
belonging to the Hessian of f resp. f �L.

Now we claim that � �TzL= � .

Indeed since L is totally geodesic with its induced covariant derivation
	̃ and second fundamental form 
 the following holds:

�(u) = 	̃u grad(f �L) = 	̄u grad(f �L) � 
 (u� grad(f �L))

= 	̄u grad(f �L)

where 	̄ is the restriction of 	 to L.

By taking into account the lemma 1 from above we can write:

�(u) = 	̄u grad(f �L) = 	u (grad f ) �L= �(u)�

On the other hand by a result of Conlon [3], for each v � �zG(z ) there is
g � Gz such that v � Tz�g (TzL) = Tzg(L) thus � is not singular on Tzg(L)
that is

Hess f (z ) ��zG(z )��zG(z )

is non-degenerate.

Conversely supposing that G(z ) is non-degenerate orbit and furthermore
z is a degenerate critical point of f �L the we have a nonzero vector u � TzL
such that �(u) = 0 that is �(u) = 0 however TzL � �zG(z ) in contradiction
with the assumption that G(z ) is non-degenerate.

�� Some examples

Let L be an orthogonally transverse submanifold of a smooth manifold
M then there exists a finite group W , called the generalized Weyl group of S
which acts on L so that there is a bijection L�W w M�G between the orbit
spaces realized by Ψ : W (x ) 
� G(x ) for each x � S . For details see [8], [6].

The problem to find G invariant smooth functions on M can be tranposed
to the simpler one to seek W invariant smooth functions on L. In order to
resolve this we need the following result due to Palais and Terng ([6]).

Theorem �� Let L be an orthogonally transverse submanifold for the

Riemannian G
manifold M and let W be its generalized Weyl group� Then

the restriction map f 
� f �L is an isomorphism between the Banach algebras

C�(M )G �� C�(S )W �
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i�e� between the Banach algebras of G resp� W invariants smooth functions

on M resp� L�

As a corollary of the above theorem every W invariant smooth function

f : L �� R has an unique smooth, G-invariant extention ef : M �� R.

Here the smoothness of such a extension requires some deeper consider-
ations see [6].

Now we are able to construct in some special cases non-degenerate in-
variant Morse functions.

Example� Consider now a compact, connected, semi-simple Lie group
G and its Lie algebra g. Then G acts on g by

�(g ;X ) = Tead(g)X� where g � G and X � g �

This is an orthogonal action with respect to the Cartan–Killing form fur-
thermore it has an orthogonally transverse submanifold l which actually is
a Cartan subalgebra of g (see e.g. [10]).

As l is an euclidean space the corresponding Weyl group W acts on l as
a Coxeter group generated by reflections. In the case when W is isomorphic
to An the symmetric group, it acts by permuting x1� x2� x3� � � � � xn+1 subject
to the relation xn+1 = �(x1 + � � � + xn ). We let

fi := x i+1
1 + � � � + x i+1

n+1 (1 � i � n)

these polinomials are invariant respect to W (see e.g. [5]). It is easy to see that
numbers � and � can be chosen so that �fj +�fk , l �= k has only nondegenerate
critical points.

Definition �� The invariant smooth function f : M �� R is called
Morse function for the Riemannian G-manifold if the critical locus of f is a
union of non-degenerate critical manifolds without interior.

Since the action considered above is not transitive, it has not orbits with
non-empty interior therefore we have an invariant Morse function in sense of
Wassermann [11].
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Loránd Eötvös University,
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�� Introduction

Several results have been proved about binomial coefficients. We mention
two of them, a diophantine problem and one about prime factors of binomial
coefficients.

It was an interesting question when a binomial coefficient
�n
k

�
is a perfect

power. Apart from the trivial cases k � f0� 1� n � 1� ng it was proved that for
k = 2 and k = n � 2 the binomial coefficient

�n
k

�
is a square-number for

infinitely many n . In the remaining cases the only solutions are
�50

3

�
=
�50

47

�
=

= 1402 (for a survey see e.g. [3]).

J. J. Sylvester [5] and I. Schur [4] independently showed that if n � 2k ,
then the greatest prime divisor of

�
n
k

�
is greater than k . As a generalization

E.F.Ecklund Jr., R.B.Eggleton, P.Erdős and J.L.Selfridge [1] proved that if
n � 2k , then the product of all prime factors �k of

�n
k

�
is less than the

product of all prime factors � k of
�n
k

�
except 12 binomial coefficients.

In this paper we investigate the divisibility problem

nk

����
�
n

k

�
(n� k � Z� 0 � n� 0 � k � n)(1)

of binomial coefficients. A more difficult problem is to solve the diophantine
equation �

n

k

�
= bnk (n� k � b � Z� 0 � n� 0 � k � n� 1 � b)�(2)

Mathematics Subject Classi�cation ������	 11B65
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In Section 2 we solve equation (2). First we give all solutions of our
diophantine equation and the related inequality in (n� k ) for b = 1. If b �= 1
then we give an upper bound for the solutions in (n� k ). Finally we completely
solve the equation in (n� b) for k � 3.

In Section 3 we prove that if k = p is a prime number then the solutions

of (1) in n belong to p � 1 residue classes modulo p2 and we show that a
similar assertion is true for k = 4.

�� Solving the diophantine equation
�
n
k

�
= bnk

���� Solutions in (n� k ) with �xed b� b = 1

Theorem �� For b = 1 the set of all solutions of ��� in (n� k ) is

f(n� 1) j 1 � ng � f(5� 2)g�

Proof� For k = 0� 1� 2 we can directly check that the solutions are (n� 1)
with arbitrary n � N and (5� 2).

Now it is enough to prove that there are no solutions with k � 3.
Equation (2) is equivalent to

(n � 1) � � � � � (n � k + 1) = k ! � k �

By k �1 we have

3 � � � � � (k + 1) =
(k + 1)!

2!
�k ! � k

and by k �2 we have

4 � � � � � (k + 2) =
(k + 2)!

3!
�k ! � k �

These inequalities imply that k ! � k cannot be the product of k � 1
consecutive integer, hence our equation has no solutions when k � 3.

To have a complete description of the relation between
�
n
k

�
and nk we

prove the following theorem.

Theorem �� The set of all solutions of�
n

k

�
�nk (n� k � Z� 0 � n� 0 � k � n)
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in (n� k ) is

f(n� 0) j 0 � ng � f(n� k ) j 6 � n and 2 � k � n � 3g�

Proof� For k = 0� 1� 2� n�2� n�1� n we can easily verify that all solutions
are (n� 0) with arbitrary n � N � f0g and (n� 2) with arbitrary n � 6.

Now suppose that 3 � k � n � 3 (for the existence of such k let n � 6).
Our inequality is equivalent to

(n � 1) � � � � � (n � k + 1) �k ! � k �

By the proof of Theorem 1, case k � 3 and using k � n � 3 we have

k ! � k �4 � � � � � (k + 2) � (n � k + 1) � � � � � (n � 1)

which means that our inequality holds for n � 6 and 3 � k � n � 3.

���� Solutions in (n� k ) with �xed b� b �= 1

Theorem �� If b �= 1 is �xed� then ��� has �nitely many solutions in

(n� k )�

Moreover (n� k ) = (4b + 1� 2) is a solution for arbitrary b and for all other

solutions (n� k ) we have 6 � n � 6b and 3 � k � n � 3�

Proof� When b �= 1 is fixed then we can easily check that there are no
solutions with k = 0� 1� n � 2� n � 1� n . For k = 2 the pair (n� 2) is a solution
if and only if n = 4b + 1.

Let 3 � k � n � 3 (and n � 6). Then
�
n

3

�
�

�
n

k

�
= bnk � bn(n � 3)

which is equivalent to n2 + (�3�6b)n+ (18b+ 2) � 0. This implies that there
are only finitely many suitable n and

n �
3 + 6b +

p
36b2 � 36b + 1

2
�

3 + 6b +
p

36b2 � 36b + 9
2

= 6b�
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���� Solutions in (n� b) with �xed k � k � 3

Theorem �� For k = 0 there are no solutions of ��� in (n� b)�

For k = 1 the set of all solutions of ��� in (n� b) is f(n� 1) j 1 � ng�

For k = 2 the set of all solutions of ��� in (n� b) is

f(n� b) j 1 � b� n = 4b + 1g�

For k = 3 the set of all solutions of ��� in (n� b) is

f(18t + 2� 18t2 + t) j 1 � tg � f(18t + 1� 18t2 � t) j 1 � tg �

f(18t + 10� 18t2 + 17t + 4) j 0 � tg � f(18t � 7� 18t2 � 17t + 4) j 1 � tg�

Proof� For k = 0 and k = 1 our statement is obvious. For k = 2 see the
proof of Theorem 3.

For k = 3 equation (2) is equivalent to n2 � 3n + (2 � 18b) = 0. It has
integer root in n if and only if its discriminant, 72b + 1 is a square-number,

say m2 (m � Z).

By the chinese remainder theorem the following congruences are equiva-

lent: m2 � 1 (mod 72) 	
 m2 � 1 (mod 8) and m2 � 1 (mod 9) 	

m � 1 (mod 2) and m � � 1 (mod 9) 	
 m � � 1 (mod 18).

This implies m = 36t � 1 or m = 36t � 17 (t � Z), from which we get

b = 18t2�t � 18t2�17t+4 and n = 18t+2� 18t+1� 18t+10� 18t�7 respectively.
We have to notice that t must be non-negative and t = 0 is suitable only in
the third case.

�� Solving the divisibility problem nk
�� �n

k

�

���� Solutions in n with �xed k � k = p is a prime

Theorem �� Let k = p be a prime number and denote by m the residue

class of m modulo p2� Then the solutions of ��� in n are exactly those

elements of 1 � � � � � p � 1 which are � p�

We need two lemmas. They can be found in [2] with proofs (p. 505
and 507).
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Lemma �� If n� k � Z� 0 � n � 0 � k � n and gcd(n� k ) = 1 then n j
�
n
k

�
�

Lemma �� If n� p � Z� 0 � n � 0 � p � n and p is a prime number then�
n
p

�
�

h
n
p

i
(mod p)�

Proof of Theorem �� Our purpose is to solve (1) in n . We distinguish
two cases.

Case �� gcd(n� p) = 1. By this assumption (1) is equivalent to n j
�n
p

�
and p j

�n
p

�
. The first divisibility holds by Lemma 1. The second divisibility

is equivalent to p j
h
n
p

i
by Lemma 2. This implies

n � 1 or � � � or p � 1 (mod p2)�

Case �� gcd(n� p) �= 1. We prove by induction that this implies p2m j n
for every m � N which is impossible.

By the assumption of this case p j n , hence n = px (x � Z). By (1)

p j p2x j
�px
p

�
so Lemma 2 implies p j

h
px
p

i
= x , hence p2 j n which is our

assertion for m = 1.

Suppose that p2m j n for m � N, that is n = p2my (y � Z). By (1) we
get

p2m+1 j p2m+1y j

�
p2my

p

�
=
p2m�1y � (p2my � 1) � � � � � (p2my � p + 1)

(p � 1)!
�

It is possible only if p2 j y , whence p2m+2 j n is proved.

���� Solutions in n with �xed k � arbitrary k

Theorem 5 suggests the following question. Is a similar assertion true for
composite k? More precisely:

Question� Do there exist s� l � N and m1� � � � � ms distinct residue classes
modulo l for all k � N such that the solutions of (1) in n are exactly those
elements of m1 � � � � � ms which are � k? (If possible, give s� l � m1� � � � � ms

explicitely.)

Remark� For k = p we proved in Theorem 5 that s = p � 1, l = p2 and
mi = i (i = 1� � � � � s).
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For prime-powers our conjecture is:

Conjecture� For k = p� �p is a prime� � � N�

s =
p2� � 1
p + 1

� l = p3��1�

Moreover let A = ft � Z j 1 � t � p� � 1g� A� = fa � A j p � ag and

A = fa j a � Ag � fa + j � p2� j a � A�; j = 1� 2� � � � � p��1 � 1g be a set of

residue classes modulo l = p3��1� If M = fm1� � � � � msg is the set of residue

classes modulo l containing the solutions of ��� in n for k = p� � then our

additional conjecture is A �M�

Remark� If the conjecture with its additional part is true, then we would

have A = M for � = 2 (since jAj = p2��1 � p2��2 + p��1 � 1 is equal to

s = p2�
�1

p+1 for � = 2).

This conjecture is based on computational results. These suggest that the
residue classes m1� � � � � ms for prime-powers k �10 are

k s l residue classes

4 5 32 1� 2� 3� 17� 19

8 21 256 1� 2� 3� 4� 5� 6� 7� 65� 67� 69� 71� 129� 130�

131� 133� 134� 135� 193� 195� 197� 199

9 20 243 1� 2� 3� 4� 5� 6� 7� 8� 82� 83� 85� 86� 88� 89�

163� 164� 166� 167� 169� 170

Finally we prove our conjecture in the very special case p = � = 2.

Theorem �� Let k = 4 and denote by m the residue class of m modulo

32� Then the solutions of ��� in n are exactly those elements of 1�2�3�17�19
which are � 4�

Proof� If we prove that 4n j
�
n
4

�
implies 4(n + 32) j

�
n+32

4

�
for n � Z,

n � 4, then obviously l = 32 is a good choice with the notation of our
question.

The assumption 4n j
�n

4

�
is equivalent to 96 j (n � 1)(n � 2)(n � 3). But

the product of three consecutive integer is always divisible by 3, whence we
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get 32 j (n � 1)(n � 2)(n � 3) which implies 32 j (n + 31)(n + 30)(n + 29). It
is equivalent to our assertion that can be verified by the same steps.

Now it only remains to check which elements of fn � Z j 4 � n � 35g
are solutions of (1) in n . It turns out that there are five solutions in this set,
namely 17, 19, 33, 34, 35.
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�� Introduction and preliminaries

One of the generalizations of topologies is the generalized topology

(briefly GT) in the sense of [3]. A GT on a set X is a subset � of the power
set expX of X such that � � � and every union of elements of � belongs
to � . If � is a GT on X in the above sense, the elements of � are said to
be ��open and their complements ��closed. If A � X , we denote by i�A
the union of all �-open sets contained in A and by c�A the intersection of
all �-closed sets contining A. They clearly determine the largest �-open set
contained in A and the smallest �-closed set containing A, respectively.

Let us call set function a map �: expX � expX . Then both i� and
c� are set functions, monotone (i.e. A � B � X implies i�A � i�B and
c�A � c�B) and idempotent (i.e. i� i�A = i�A and c�c�A = c�A for A � X )
(see [4]).

Let us denote by Γ the collection of all monotone set functions on X . If
� � Γ, we say that a set A � X is �-open iff A � �A. Then the collection
of all �-open sets is a GT � = �� , on X (see [2]). We often say the �� -closed
sets to be ��closed.

According to [2], if � � Γ, we define the conjugate �� of � by

(1) ��A = X � �(X �A)�

Obviously �� � Γ, in particular, i�� = c� for a GT � (see [4]). Clearly

(��)�A = �A. A set A � X is �-closed iff A � ��A (see [2]).

* Research supported by Hungarian Foundation for Scientific Research, grant No. T 032042.
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If � , � � � Γ, clearly � � � � � Γ; we write for the sake of simplicity �� �

instead of � � � �. Then (�� �)� = ��(� �)� (see [2]).

Let us fix a GT � on X . Then the collection of all i�c� i�-open sets is
denoted by � , that of all c� i�-open sets by � , that of all i�c�-open sets by � ,
that of all c� i�c�-open sets by 	 . In the literature, when � is a topology, the
elements of � are said to be ��open [7], those of � are called semi�open [5],
those of � preopen [6], those of 	 	�open [1].

The purpose of the present paper is to prove some theorems that assert
the existence of many pairs (�
 � �) of monotone set functions such that the
c�� -closure of a � �-open set can be easily determined.

�� Closures of ��open sets

The main theorem is easily obtained:

Theorem ���� If � � Γ satis�es

(2�1�1) ��A � A for A � X

�in particular� if � � Γ is idempotent�� then

(2�1�2) �A = c�
��
A for A � X�

Proof� (2.1.1) implies that �A is ��-closed since (��)� = � . It contains
A by hypothesis and is the smallest set with this property. In fact, if F � A
is ��-closed then F � �F � �A. Therefore �A = c�

��
A.

In order to obtain useful consequences of the above theorem, let us recall
that, according to [4], a set function �1 � � � �n such that each �i equals either
i� or c� where � is an arbitrary GT, is always idempotent. So we can state,
by fixing an arbitrary GT � on X :

Corollary ���� If A � X belongs to � then

i�c� i�A = c�A�

Proof� Apply 2.1 for � = i�c� i� that is idempotent. Observe that �� = �
and �� = c� i�c� so that ��� = 	 .

Corollary ���� If A � � then

c� i�A = c�A = c�A�
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Proof� We choose the idempotent set function � = c� i� . Then A � �
implies

A � c� i�A � c�A � c�c� i�A = c� i�A

while �� = i�c� so that ��� = � .

Corollary ���� If A � � then

i�c�A = c�A�

Proof� We choose � = i�c� so that �� = c� i� .

Corollary ���� If A � 	 then

c� i�c�A = c�A = c�A�

Proof� Let � = c� i�c� so that A � 	 means that A is �-open. Now

A � c� i�c�A � c�c�A = c�A � c�c� i�c�A = c� i�c�A

shows that �A = c�A whenever A � 	 . Further �� = i�c� i� so that ��� = � .

For the particular case when � is a topology, 2.3 and 2.5 can be found
in [8] and 2.4 in [9].
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�� Introduction and preliminaries

It is clear that various types of continuity play significant role in several
branches of mathematics. Continuity of functions is one of important and
basic topics in the topology. The purpose of this paper is to define contra-�-
continuous functions and to obtain several characterizations and properties of
contra-�-continuous functions. Moreover, the relationships between contra-�-
continuous functions and several concepts are also discussed.

In this paper, spaces X and Y always mean topological spaces on which
no separation axioms are assumed unless explicitly stated.

A subset A of a space X is said to be preopen [10] if A � int(cl(A)).
The complement of a preopen set is said to be preclosed [5]. For a subset A
of X , cl(A) and int(A) represent the closure of A with respect to � and the
interior of A with respect to � , respectively.

A subset A of a space X is said to be regular open (respectively regular
closed) if A = int(cl(A)) (respectively A = cl(int(A))) [14].

A subset A is said to be b-open [1] or �-open [6] or sp-open [2] (resp.
�-open [11], semi-open [9]), if A � cl(int(A)) � int(cl(A)) (resp. A �
� int(cl(int(A))), A � cl(int(A))). The complement of a semi-open set is
said to be semi-closed.

The complement of a �-open set is said to be �-closed [6]. The intersec-
tion of all �-closed sets of X containing A is called the �-closure [6] of A

Mathematics Subject Classifications: 54C08, 54C10, 54C05
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and is denoted by � � cl(A). The union of all �-open sets of X contained A
is called �-interior of A and is denoted by � � int(A).

The family of all �-open (resp. �-open, semi-open, �-closed, closed) sets
of X is denoted by �O(X ) (resp. �O(X ), SO(X ), �C (X ), C (X )).

The family of all �-open (resp. �-closed, closed) sets of X containing a
point x � X is denoted by �O(X� x ) (resp. �C (X� x ), C (X� x )).

�� Characterizations

In this section, several properties of contra-�-continuous functions are
studied.

Definition �� A function f : X � Y is called contra-�-continuous at
a point x � X if for each closed set V in Y with f (x ) � V , there exists
a �-open set U in X such that x � U and f (U ) � V and f is called
contra-�-continuous if it has this property at each point of X .

Theorem �� The following are equivalent for a function f : X � Y �

��� f is contra���continuous�

��� the inverse image of a closed set of Y is ��open�

�	� the inverse image of an open set of Y is ��closed


Proof� (1)�(2): Let V be a closed set in Y with x � f �(V ). Since
f (x ) � V and f is contra-�-continuous, there exists a �-open set U in X

containing x such that f (U ) � V . It follows that x � U � f �1(V ). Hence

f �1(V ) is �-open.

(2)�(3): Let U be any open set of Y . Since Y nU is closed, then by (2),

it follows that f �1(Y nU ) = X nf �1(U ) is �-open. This shows that f �1(U )
is �-closed in X .

(3)�(1): Let x � X and V be a closed set in Y with f (x ) � V . By (3),

it follows that f �1(Y nV ) = X nf �1(V ) is �-closed and so f �1(V ) is �-open.

Take U = f �1(V ). We obtain that x � U and f (U ) � V . This shows that f
is contra-�-continuous.

Definition �� A function f : X � Y is said to be

(1) contra-continuous [3] if f �1(V ) is closed in X for every open set V
of Y ,
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(2) RC -continuous [4] if f �1(V ) is regular closed in X for each open
set V of Y ,

(3) contra-precontinuous [7] if f �1(V ) is preclosed in X for each open
set V of Y ,

(4) contra-semicontinuous [4] if f �1(V ) is semi-closed in X for each
open set V of Y .

Remark �� The following diagram holds:

RC -continuous
�

contra-continuous � contra-semicontinuous
� �

contra-precontinuous � contra-�-continuous

None of these implications is reversible.

Example �� Consider the set R of real numbers with the usual topology
�u and let S = [0� 1] � ((1� 2) � Q) where Q stands for the set of rational
numbers. Then S is �-open but neither semi-open nor preopen.

Let f : (R� �u ) � (R� �D ) be a identity function where �D is discrete
topology on R.

S is closed in (R� �D ). f �1(S ) = S is �-open in (R� �u ) but not preopen
and not semi-open. Hence, it is obtained that f is contra-�-continuous but not
contra-precontinuous function and not contra-semicontinuous function.

The other implications are not reversible as shown in [4, 7].

Theorem �� Let f : X � Y be a function and let g : X � X 	 Y be

the graph function of f � de�ned by g(x ) = (x � f (x )) for every x � X 
 If g is

contra���continuous� then f is contra���continuous


Proof� Let U be an open set in Y , then X 	U is an open set in X 	Y .

It follows from Theorem 2 that f �1(U ) = g�1(X 	U ) � �C (X ). Thus, f is
contra-�-continuous.

Definition 	� A filter base � is said to be �-convergent (resp. c-conver-
gent) to a point x in X if for any U � �O(X ) containing x (resp. U � C (X )
containing x ), there exists a B � � such that B � U .
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Theorem 
� If a function f : X � Y is contra���continuous� then for

each point x � X and each �lter base � in X which is ��convergent to x � the
�lter base f (�) is c�convergent to f (x )


Proof� Let x � X and � be any filter base in X which is �-convergent
to x . Since f is contra-�-continuous, then for any V � C (Y ) containing
f (x ), there exists U � �O(X ) containing x such that f (U ) � V . Since � is
�-convergent to x , there exists a B � � such that B � U . This means that
f (B) � V and therefore the filter base f (�) is c-convergent to f (x ).

Lemma �� Let A and X0 be subsets of a space (X� �)
 If A � �O(X ) and
X0 � �O(X )� then A �X0 � �O(X0) 
�� ��


Lemma ��� Let A � X0 � X � A � �O(X0) and X0 � �O(X )� then
A � �O(X ) 
��


Lemma ��� The intersection of an open and a ��open set is a ��open
set 
��


Definition ��� A function f : X � Y is called weakly continuous if
for each x � X and each open set G containing f (x ), there exists an open set
U in X containing x such that f (U ) � cl(G) [8].

Theorem ��� If f : X � Y is weakly continuous� g : X � Y is

contra���continuous and Y is Urysohn� then E = fx � X : f (x ) = g(x )g is

��closed in X 


Proof� If x � X nE , then it follows that f (x )�g(x ). Since Y is Urysohn,
there exist open sets V and W such that f (x ) � V , g(x ) � W and cl(V ) �
� cl(W ) = 
. Since f is weakly continuous and g is contra-�-continuous,
there exist an open set U containing x and a �-open set G containing x such
that f (U ) � cl(V ) and g(G) � cl(W ). Set O = U � G . By the previous
lemma, O is �-open in X . Therefore f (O) � g(O) = 
 and it follows that
x �� � � cl(E ). This shows that E is �-closed in X .

Theorem ��� Let f : X � Y be a function and x � X 
 If there

exists U � �O(X ) such that x � U and the restriction of f to U is a

contra���continuous function at x � then f is contra���continuous at x 


Proof� Suppose that F � C (Y ) containing f (x ). Since f jU is contra-
�-continuous at x , there exists V � �O(U ) containing x such that f (V ) =
= (f jU )(V ) � F . Since U � �O(X ) containing x , it follows from Lemma
10 that V � �O(X ) containing x . This shows clearly that f is contra-�-
continuous at x .



2005. április 28. –21:05

ON CONTRA-CONTINUITY 131

Theorem ��� If f : X � Y is a contra���continuous function and A
is any ��open subset of X � then the restriction f jA: A � Y is contra���
continuous


Proof� Let F be a closed set in Y . Then, by Theorem 2, f �1(F ) �
� �O(X ). Since A is �-open in X , it follows from Lemma 9 that

(f jA)�1(F ) = A � f �1(F ) � �O(A). Therefore, f jA is a contra-�-continuous
function.

Theorem ��� Let f : X � Y be a function and fUi : i � I g be a

��open cover of X 
 If for each i � I � f jUi
is contra���continuous� then

f : X � Y is a contra���continuous function


Proof� Let F be a closed set in Y . Since f jUi
is contra-�-continuous for

each i � I , (f jUi
)�1(F ) � �O(Ui ). Since Ui � �O(X ), by the Lemma 10,

(f jUi
)�1(F ) � �O(X ) for each i � I . Then f �1(F ) =

�
i�I

[(f jUi
)�1(F )] �

� �O(X ). This gives f is a contra-�-continuous function.

Definition �	� A function f : X � Y is said to be �-irresolute if for
each x � X and each V � �O(Y� f (x )), there exists a �-open set U in X
containing x such that f (U ) � V .

Theorem �
� Let f : X � Y and g : Y � Z be functions
 Then� the

following properties hold�

��� If f is ��irresolute and g is contra���continuous� then g � f : X � Z
is contra���continuous


��� If f is contra���continuous and g is continuous� then g � f : X � Z
is contra���continuous


Proof� (1) Let x � X and W � C (Z� (g � f )(x )). Since g is contra-
�-continuous, there exists a �-open set V in Y containing f (x ) such that
g(V ) � W . Since f is �-irresolute, there exists a �-open set U in X
containing x such that f (U ) � V . This shows that (g � f )(U ) � W .
Therefore, g � f is contra-�-continuous.

(2) Let x � X and W � C (Z� (g � f )(x )). Since g is continuous,

V = g�1(W ) is closed. Since f is contra-�-continuous, there exists a �-open
set U in X containing x such that f (U ) � V . Hence (g � f )(U ) �W . This
shows that g � f is contra-�-continuous.
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Definition ��� A function f : X � Y is called �-open if image of each
�-open set is �-open.

Theorem ��� If f : X � Y is a surjective ��open function and g : Y �

Z is a function such that g � f : X � Z is contra���continuous� then g is

contra���continuous


Proof� Suppose that x and y are two points in X and Y , respectively,
such that f (x ) = y . Let V � C (Z� (g � f )(x )). Then there exists a �-open set
U in X containing x such that g(f (U )) � V . Since f is �-open, f (U ) is a
�-open set in Y containing y such that g(f (U )) � V . This implies that g is
contra-�-continuous.

Corollary ��� Let f : X � Y be a surjective ��irresolute and ��open

function and let g : Y � Z be a function
 Then� g � f : X � Z is

contra���continuous if and only if g is contra���continuous


Proof� It can be obtained from Theorem 18 and Theorem 20.

Definition ��� A function f : X � Y is called weakly contra-�-
continuous if for each x � X and each closed set F of Y containing f (x ),
there exists a �-open set U in X containing x such that int(f (U )) � V .

Definition ��� A function f : X � Y is called �-semi-open if image
of each �-open set is semi-open.

Theorem ��� If a function f : X � Y is weakly contra���continuous

and ��semi�open� then f is contra���continuous


Proof� Let x � X and F be a closed set containing f (x ). Since f is
weakly contra-�-continuous, there exists a �-open set U in X containing
x such that int(f (U )) � F . Since f is �-semi-open, f (U ) � SO(Y ) and
f (U ) � cl(int(f (U ))) � F . This shows that f is contra-�-continuous.
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�� Some properties

In this section, graphs and preservation theorems of contra-�-continuity
are investigated.

Definition ��� A space X is called �-connected provided that X is not
the union of two disjoint nonempty �-open sets [6].

Theorem ��� If f : X � Y is contra���continuous surjection and X is

��connected� then Y is connected


Proof� Suppose that Y is not connected space. There exist nonempty
disjoint open sets V1 and V2 such that Y = V1 � V2. Therefore, V1 and

V2 are clopen in Y . Since f is contra-�-continuous, f �1(V1) and f �1(V2)

are �-open in X . Moreover, f �1(V1) and f �1(V2) are nonempty disjoint

and X = f �1(V1) � f �1(V2). This shows that X is not �-connected. This
contradicts that Y is not connected assumed. Hence, Y is connected.

Definition �	� A topological space is called �-ultra-connected if every
two non-void �-closed subsets of X intersect and is called hyperconnected
[13] if every open set is dense.

Theorem �
� If X is ��ultra�connected and f : X � Y is contra���
continuous and surjective� then Y is hyperconnected


Proof� Assume that Y is not hyperconnected. Then there exists an open
set V such that V is not dense in Y . Then there exist disjoint non-empty
open subsets B1 and B2 in Y , namely int(cl(V )) and Y n cl(V ). Since f

is contra-�-continuous and onto, by Theorem 2, A1 = f �1(B1) and A2 =

= f �1(B2) are disjoint non-empty �-closed subsets of X . By assumption,
the �-ultra-connectedness of X implies that A1 and A2 must intersect. By
contradiction, Y is hyperconnected.

Definition ��� A space X is said to be

(1) weakly Hausdorff [12] if each element of X is an intersection of
regular closed sets,

(2) �-Hausdorff if for each pair of distinct points x and y in X , there
exist U � �O(X� x ) and V � �O(X� y) such that U �V = 
,
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(3) �-T1 if for each pair of distinct points in X , there exist �-open sets
U and V containing x and y , respectively, such that y �� U and x �� V .

Recall that for a function f : X � Y , the subset f(x � f (x )) : x � X g �
� X 	Y is called the graph of f and is denoted by G(f ).

Definition ��� A graph G(f ) of a function f : X � Y is said to be
contra-�-closed if for each (x � y) � (X 	 Y )nG(f ), there exist a �-open set
U in X containing x and V � C (Y� y) such that (U 	V ) �G(f ) = 
.

Lemma ��� The following properties are equivalent for a graph G(f ) of

a function f �

��� G(f ) is contra���closed�

��� for each (x � y) � (X 	 Y )nG(f )� there exist a ��open set U in X
containing x and V � C (Y� y) such that f (U ) �V = 



Proof� Obvious.

Theorem ��� If f : X � Y is contra���continuous and Y is Urysohn�

G(f ) is contra���closed graph in X 	Y 


Proof� Suppose that Y is Urysohn. Let (x � y) � (X 	 Y )nG(f ). It
follows that f (x )�y . Since Y is Urysohn, there exist open sets V and
W such that f (x ) � V , y � W and cl(V ) � cl(W ) = 
. Since f is
contra-�-continuous, there exists a �-open set U in X containing x such that
f (U ) � cl(V ). Therefore, f (U ) � cl(W ) = 
 and G(f ) is contra-�-closed in
X 	Y .

Theorem ��� Let f : X � Y have a contra���closed graph
 If f is

injective� then X is ��T1


Proof� Let x and y be any two distinct points of X . Then, we have
(x � f (y)) � (X 	 Y )nG(f ). By Lemma 31, there exist a �-open set U
in X containing x and F � C (Y� f (y)) such that f (U ) � F = 
; hence

U � f �1(F ) = 
. Therefore, we have y �� U . This implies that X is �-T1.

Definition ��� A space X said to be

(1) �-compact [6] (strongly S -closed [3]) if every �-open (respectively
closed) cover of X has a finite subcover.

(2) countably �-compact (strongly countably S -closed) if every countable
cover of X by �-open (respectively closed) sets has a finite subcover.
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(3) �-Lindelof (strongly S -Lindelof) if every �-open (respectively closed)
cover of X has a countable subcover.

Theorem ��� Contra���continuous images of ��compact ���Lindelof�
countably ��compact� spaces are strongly S �closed �respectively strongly S �
Lindelof� strongly countably S �closed�


Proof� Suppose that f : X � Y is a contra-�-continuous surjection. Let
fV� : � � I g be any closed cover of Y . Since f is contra-�-continuous, then

ff �1(V� ) : � � I g is a �-open cover of X and hence there exists a finite

subset I0 of I such that X =
�
ff �1(V� ) : � � I0g. Therefore, we have

Y =
�
fV� : � � I0g and Y is strongly S -closed.

The other proofs can be obtained similarly.

Definition ��� A space X said to be (1) �-closed-compact if every
�-closed cover of X has a finite subcover, (2) countably �-closed-compact
if every countable cover of X by �-closed sets has a finite subcover, (3)
�-closed-Lindelof if every cover of X by �-closed sets has a countable sub-
cover.

Theorem �	� contra� ��continuous images of ��closed�compact ���
closed�Lindelof� countably ��closed�compact� spaces are compact �respec�

tively Lindelof� countably compact�


Proof� Suppose that f : X � Y is a contra-�-continuous surjection. Let
fV� : � � I g be any open cover of Y . Since f is contra-�-continuous, then

ff �1(V� ) : � � I g is a �-closed cover of X . Since X is �-closed-compact,

there exists a finite subset I0 of I such that X =
�
ff �1(V� ) : � � I0g.

Thus, we have Y =
�
fV� : � � I0g and Y is compact.

The other proofs can be obtained similarly.

Theorem �
� If f is a contra���continuous injection and Y is Urysohn�

then X is ��Hausdor�


Proof� Suppose that Y is Urysohn. By the injectivity of f , it follows
that f (x )�f (y) for any distinct points x and y in X . Since Y is Urysohn,
there exist open sets V and W such that f (x ) � V , f (y) � W and cl(V ) �
� cl(W ) = 
. Since f is a contra-�-continuous, there exist �-open sets U
and G in X containing x and y , respectively, such that f (U ) � cl(V ) and
f (G) � cl(W ). Hence U �G = 
. This shows that X is �-Hausdorff.
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Theorem ��� If f is a contra���continuous injection and Y is weakly

Hausdor�� then X is ��T1


Proof� Suppose that Y is weakly Hausdorff. For any distinct points x
and y in X , there exist regular closed sets V , W in Y such that f (x ) � V ,
f (y) �� V , f (x ) �� W and f (y) � W . Since f is contra-�-continuous,

by Theorem 2, f �1(V ) and f �1(W ) are �-open subsets of X such that

x � f �1(V ), y �� f �1(V ), x �� f �1(W ) and y � f �1(W ). This shows
that X is �-T1.
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2005. április 23. –21:12

ANNALES UNIV. SCI. BUDAPEST., �� (2004), 139–156

ON SYSTEMS OF NONLINEAR PARABOLIC FUNCTIONAL

DIFFERENTIAL EQUATIONS

By
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�� Introduction

Second order quasilinear parabolic differential equations where also the
main part contains functional dependence on the unknown functions were
studied e.g. in [1] by L. Simon. There the following equation was considered:

Dtu(t � x )�
nX
i=1

Di [ai (t � x � u(t � x )� Du(t � x ); u)]+a0(t � x � u(t � x )� Du(t � x ); u) =

= f (t � x ) (t � x ) � QT = (0� T )�Ω� ai :QT � R
n+1 � Lp(0� T ;V ) � R�

where V denotes a closed linear subset of the Sobolev-space W 1�p(Ω) (2 �
� p��).

Let us now consider a system of this type of equations:
(1)

Dtu
(l )(t � x )�

nX
i=1

Di

h
a(l )
i

�
t � x � u(1)(t � x )� � � � � u(N )(t � x )�

Du(1)(t � x )� � � � � Du(N )(t � x ); u(1)� � � � � u(N )
�i

+

+ a(l )
0

�
t � x � u(1)(t � x )� � � � � u(N )(t � x )�

Du(1)(t � x )� � � � � Du(N )(t � x ); u(1)� � � � � u(N )
�

=

= F (l )(t � x )� (t � x ) � QT = (0� T )�Ω� Ω � R
n � l = 1� � � � � N�



2005. április 23. –21:12
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In the next section we define the weak form of the above system and formulate
conditions on the coefficients. With these we can prove existence of weak
solutions. The conditions are generalizations of the classical Léray–Lions
conditions for systems with some special conditions for these type of systems.
Finally we show some examples.

�� Existence of weak solutions

First we introduce some notations. Let Ω � R
n be a bounded domain

with the C 1 regularity property and 2 � p�� be a real number. Denote by

W 1�p(Ω) the usual Sobolev space of real valued functions with the norm

kuk =

�Z
Ω

(jDujp + jujp)

�1
p

�

Let Vl �W 1�p(Ω) (l = 1� � � � � N ) be a closed linear subspace (e.g. W 1�p
0 (Ω)

or W 1�p(Ω)) and let V = V1 � � � � �VN . Denote by Lp(0� T ;V ) the Banach
space of measurable functions u: (0� T ) � V such that kukp is integrable and
define the norm by

kukLp (0�T ;V ) =
Z T

0
ku(t)kpV dt �

The dual space of Lp(0� T ;V ) is Lq (0� T ;V �) where 1
p + 1

q = 1 and V � is the

dual space of V . Let X = Lp(0� T ;V ) and Y = Lp(0� T ; (Lp(Ω))N ). For u �

� X we shall write u = (u(1)� � � � � u(N )), where u(l ) � Lp(0� T ;Vl ). A vector

� � R
(n+1)N is written in the form � = (�0� �), where �0 = (�(1)

0 � � � � � �
(N )
0 ) �

� R
N and � = (�(1)� � � � � �(N )) � R

nN . Here �(l ) = (�(l )
1 � � � � � �(l )

n ) � R
n .

Now we formulate 5 essential assumptions on functions a(l )
i (i = 0� � � � � n;

l = 1� � � � � N ), which (as we will see) are sufficient for existence of weak
solutions.

F1. Suppose that a(l )
i :QT � R

(n+1)N � Lp(0� T ;V ) � R are Carathéodory
functions for each v � Lp(0� T ;V ). This means that they are measurable

in (t � x ) for every (�0� �) � R
(n+1)N , and continuous in (�0� �) for almost

every (t � x ) � QT (i = 0� � � � � n; l = 1� � � � � N ).
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F2. Suppose that there exist bounded operators g1:Lp(0� T ;V ) � R
+ and

k1:Lp(0� T ;V ) � Lq (QT ) such that

ja(l )
i (t � x � �0� �; v )j � g1(v )

�
j�0j

p�1 + j�jp�1
�

+
�
k1(v )

�
(t � x )

for a.e. (t � x ) � QT , each (�0� �) � R
(n+1)N and v � Lp(0� T ;V )

(i = 0� � � � � n; l = 1� � � � � N ).

F3. Suppose that for each � �� � R
nN � a.e. (t � x ) � QT , each �0 � R

N and
each v � Lp(0� T ;V )

NX
l=1

nX
i=1

�
a

(l )
i (t � x � �0� �; v )� a

(l )
i (t � x � �0� �; v )

�
(�(l )
i � �

(l )
i ) 	0�

F4. Suppose that there exist operators g2:Lp(0� T ;V ) � R
+ and k2:

Lp(0� T ;V ) � L1(QT ) such that

NX
l=1

nX
i=0

a(l )
i (t � x � �0� �; v )�(l )

i 	 g2(v )
�
j�0j

p + j�jp
	
� [k2(v )](t � x )

for a.e. (t � x ) � QT , each (�0� �) � R
(n+1)N and v � Lp(0� T ;V ) (i =

= 0� � � � � n; l = 1� � � � � N ). Further, operators g2� k2 has the following
property:

lim
kvkLp (0�T ;V )��



g2(v )kvkp�1

Lp(0�T ;V ) �
kk2(v )kL1(QT )

kvkLp (0�T ;V )

�
= +��

F5. Suppose that if uk � u weakly in Lp(0� T ;V ) and strongly in

Lp(0� T ; (Lp(Ω))N ), then

lim
k��

ka(l )
i (� � uk (�)� Duk (�); uk )� a

(l )
i (� � uk (�)� Duk (�); u)kLq (QT ) = 0�

(i = 0� � � � � n; l = 1� � � � � N )

We now define the weak form of system (1). Let us introduce first

the operator A:Lp(0� T ;V ) � Lq (0� T ;V �). For u = (u(1)� � � � � u(N )) �

� Lp(0� T ;V ) and v = (v (1)� � � � � v (N )) � Lp(0� T ;V ) define

[A(u)� v ] :=
NX
l=1

Z
QT

�
nX
i=1

a(l )
i

�
t � x � u(t � x )� Du(t � x ); u)Div

(l )(t � x ) +
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+ a(l )
0 (t � x � u(t � x )� Du(t � x ); u

�
v (l )(t � x )



dtdx �

where Di denotes the operator of (distributional) partial differentiating with re-
spect to xi and D = (D1� � � � � DN ). As usual let L:Lp(0� T ;V ) � Lq (0� T ;V �)
be the following operator:

D(L) = fu � X :Dtu � X
�� u(0) = 0g� Lu = Dtu�

With operator A we define the weak form of system (1) by

Dtu + A(u) = F�

In the next theorem we prove some important properties of A from which
existence of weak solution follows.

Theorem �� Assume that conditions F��F� are ful�lled� Then A:X �
X � is bounded� demicontinuous� coercive and pseudomonotone with respect

to D(L)�

Proof� The proof is based on elementary techincs and on Hölder’s
inequality.

Boundedness� From triangle inequality it is clear that it is sufficient to
deal with only one integral in [A(u)� v ]. This can be estimated by Hölder’s
inequality:�����

Z
QT

a(l )
i (t � x � u(t � x )� Du(t � x ); u)Div

(l )(t � x )dtdx

����� �(2)

�


Z
QT

ja(l )
i (t � x � u(t � x )� Du(t � x ); u)jqdtdx

� 1
q

Z

QT

jDiv
(l )(t � x )jpdtdx

�1
p

�

(In case i = 0 we replace Div
(l ) by v (l ).) On the right hand side of (2) the

second term is less or equal than kvkX and the first term can be estimated by

the inequality ja + bjr � 2r�1 � (jajr + jbjr ):
Z
QT

ja(l )
i (t � x � u(t � x )� Du(t � x ); u)jqdtdx

� 1
q

�(3)

� const �


Z
QT

h
g1(u)q

�
ju(t � x )j(p�1)q + jDu(t � x )j(p�1)q

�
+
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+ j[k1(u)](t � x )jq
i
dtdx

� 1
q

�

� const �

�
��g1(u)


Z
QT

jujp + jDujp
� 1

q

+


Z
QT

jk1(u)jq
� 1

q

�
�� =

= const �

�
g1(u)kuk

p
q
X + kk1(u)kLq (QT )

�
�

Summing the above estimations with respect to i and l we get:

j[A(u)� v ]j � const �

�
g1(u)kuk

p
q
X + kk1(u)kLq (QT )

�
kvkX �

This means that kA(u)kX � � const �

�
g1(u)kuk

p
q
X + kk1(u)kLq (QT )

�
� From

here by boundedness of operators g1 and k1 follows the boundedness of A.

Demicontinuity� Assume that uk � u strongly in X . Then there exists
a subsequence (ũk ) � (uk ), such that ũk � u and Dũk � Du for a.e.
(t � x ) � QT . We show that for each v � X we have [A(ũk ) � A(u)� v ] � 0,
then using the subsequence trick the proof of demicontinuity will be finished.
It is useful to introduce operator Ãu :X � X � (u is fixed) defined by

[Ãu(v )� w ] :=
NX
l=1

Z
QT

�
nX
i=1

a
(l )
i (t � x � v (t � x )� Dv (t � x ); u)Diw

(l )(t � x ) +

+ a(l )
0 (t � x � v (t � x )� Dv (t � x ); u)w (l )(t � x )



dtdx �

We prove that A(ũk ) � Ãu(ũk ) � 0 and Ãu(ũk )� A(u) � 0 weakly in X �.
It is easy to see (from triangle and Hölder’s inequality) that it is sufficient to
show

(4) ka(l )
i (� � ũk (�)� Dũk (�); ũk )� a(l )

i (� � ũk (�)� Dũk (�); u)kLq (QT ) � 0

and

(5) ka(l )
i (� � ũk (�)� Dũk (�); u)� a

(l )
i (� � u(�)� Du(�); u)kLq (QT ) � 0�

The strong convergence in X implies the weak convergence in X , and be-
cause of the continuous imbedding X � Y it implies the weak convergence
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144 ÁDÁM BESENYEI

in Y , too. So that from F5 it follows that (4) is true indeed. On the other

hand, from condition F1 we know that a(l )
i is continuous in (�0� �), hence

a(l )
i (t � x � ũk (t � x )� Dũk (t � x ); u) � a(l )

i (t � x � u(t � x )� Du(t � x ); u)

for a.e. (t � x ) � QT , by the almost everywhere convergence of ũk and Dũk in
QT . Further,

ja(l )
i (t � x � ũk (t � x )� Dũk (t � x ); u)jq �

� g1(u)q
�
jũk (t � x )jp + jDũk (t � x )jp

	
+ j[k1(u)](t � x )jq = fk (t � x )�

Since (ũk ) is convergent in X , (fk ) is convergent in L1(QT ), consequently

equiintegrable in L1(QT ), too. Hence functions
�
a

(l )
i (� � ũk (�)� Dũk (�); u)

�
(k � N) are equiintegrable in Lq (QT ). Then by Vitali’s theorem we have

lim
k��

ka(l )
i (� � ũk (�)� Dũk (�); u)� a(l )

i (� � u(�)� Du(�); u)kLq (QT ) = 0�

Remark� Observe that we have shown also the following facts:
A(ũk )� Ãu (ũk ) � 0 weakly in X � and [A(ũk ) � Ãu (ũk )� vk ] � 0, if (vk )
is a bounded sequence in X .

Coercitivity� From condition F4 we get

[A(u)� u] 	
Z
QT

�
g2(u)ju(t � x )jp + jDu(t � x )jp � [k2(u)](t � x )

�
dtdx =

= g2(u)kukpX � kk2(u)kL1(QT )�

thus using F4 again we obtain

lim
kukX��

[A(u)� u]
kukX

	 lim
k��

�
g2(u)kukp�1

X �
kk2(u)k

L1(QT )

kukX



= +��

Pseudomonotonicity� Let us suppose that

(6) uk � u weakly in X and Dtuk � Dtu weakly in X ��

further

(7) lim sup
k��

[A(uk )� uk � u] � 0�

By using the subsequence trick it is sufficient to show that for a subsequence
(ũk ) � (uk )

lim
k��

[A(ũk )� ũk � u] = 0 and A(ũk ) � A(u) weakly in X ��
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Since the imbedding W 1�p(Ω) � Lp(Ω) is compact and (uk ) is bounded in X
and (Duk ) is bounded in X � by its weak convergence, hence from the well
known imbedding theorem (see [4]) there exists a subsequence (ũk ) � (uk )
such that ũk � u in Y . Then by using the above remark we obtain

(8) lim
k��

[A(ũk )� Ãu(ũk )� ũk � u] = 0�

Comparing this with (7) it follows that

(9) lim sup
k��

[Ãu(ũk )� ũk � u] � 0�

We know that Ãu is pseudomonotone with respect to D(L) (see [2]), hence
from conditions (6) and (9) we get
(10)

lim
k��

[Ãu(ũk )� ũk � u] = 0 and Ãu (ũk ) � Ãu(u)(= A(u)) weakly in X ��

From this, by using (8) we have lim
k��

[A(ũk )� ũk � u] = 0. On the other hand,

we have shown in the proof of demicontinuity that Ãu(ũk ) � A(ũk ) � 0
weakly in X �, so that by using the second part of (10) we obtain A(ũk ) �
� A(u) weakly in X �. This completes the proof.

Corollary �� For every F � X � the equation

Dtu + A(u) = F� u(0) = 0

has got a solution u � D(L)�

Proof� Since operator Dt is closed, linear and maximal monotone (see
e.g. [5]), therefore the statement follows from the preceding theorem and
theorem 4 in [3].

�� Examples

In this section we deal with a general form of functions a(l )
i which fulfil

conditions F1–F5. In the end we show some concrete examples.
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���� General case

Suppose that function a(l )
i (t � x � �0� �; v ) has the form:

a
(l )
i (t � x � �0� �; v ) =

h
H (l )(v )

i
(t � x )b(l )

i (t � x � �0� �) +(11)

+
h
G(l )(v )

i
(t � x )d(l )

i (t � x � �0� �) if i �0� and

a
(l )
0 (t � x � �0� �; v ) =

h
H (l )(v )

i
(t � x )b(l )

0 (t � x � �0� �) +(12)

+
h
G

(l )
0 (v )

i
(t � x )d(l )

0 (t � x � �0� �)�

where b(l )
i � d(l )

i � H (l )� G(l )� G(l )
0 have the following properties.

K1. Functions b(l )
i :QT �R

(n+1)N � R and d(l )
i :QT �R

(n+1)N � R has the
Carathéodory property. This means that they are measurable in (t � x ) for

every (�0� �) � R
(n+1)N , and continuous in (�0� �) for a.e. (t � x ) � QT

(i = 1� � � � � n; l = 1� � � � � N ).

K2. There exist constants c1 	0, 0 � r �p� 1 and a function k1 � Lq (QT )
such that

a) jb(l )
i (t � x � �0� �)j � c1(j�0j

p�1 + j�jp�1) + k1(t � x ),

b) jd(l )
i (t � x � �0� �)j � c1(j�0j

r + j�jr )

for a.e. (t � x ) � QT and each (�0� �) � R
(n+1)N (i = 1� � � � � n; l = 1� � � �

� � � � N ).

K3. For each � �� � R
nN

a)
nX
i=1

[b(l )
i (t � x � �0� �)� b

(l )
i (t � x � �0� �)](�(l )

i � �
(l )
i ) 	0,

b)
nX
i=1

[d(l )
i (t � x � �0� �)� d

(l )
i (t � x � �0� �)](�(l )

i � �
(l )
i ) 	 0

for a.e. (t � x ) � QT and each �0 � R
N (l = 1� � � � � N ).

K4. There exist a constant c2 	0 and a function k2 � L1(QT ) such that

a)
nX
i=0

b
(l )
i (t � x � �0� �)�(l )

i 	 c2(j�(l )
0 jp + j�(l )jp)� k2(t � x ),
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b)
nX
i=1

d
(l )
i (t � x � �0� �)�(l )

i 	 0

for a.e. (t � x ) and each (�0� �) � R
(n+1)N (l = 1� � � � � N ).

K5.

a) The operator H (l ):Lp(0� T ; (Lp(Ω))N ) � L�(QT ) is bounded and

continuous such that for every v�Lp(0� T ; (Lp(Ω))N )

[H (l )(v )](t � x ) 	 c3 	0 holds for a.e. (t � x ) � QT .

b) The operators G(l )� G
(l )
0 :Lp(0� T ; (Lp(Ω))N ) � L

p
p�r�1 (QT ) are

bounded, continuous where r is given in K2/b. Further, for each

v � Lp(0� T ; (Lp(Ω))N ) we have [G(l )(v )](t � x ) 	 0 for a.e. (t � x ) �
� QT and

(13) lim
kvkLp (0�T ;V )��

R
QT

jG(l )
0 (v )(t � x )j

p
p�r�1dtdx

kvk
p
Lp(0�T ;V )

= 0� l = 1� � � � � N�

Claim �� Assume that conditions K��K� hold� Then functions de�ned

in (11)� (12) satisfy conditions F��F��

For the proof we need a technical lemma.

Lemma �� Let us introduce the following operators�

[H (v )](t � x ) =
NX
l=1

j[H (l )(v )](t � x )j

[G(v )](t � x ) =
NX
l=1

j[G(l )(v )](t � x )j

[G0(v )](t � x ) =
NX
l=1

j[G(l )
0 (v )](t � x )j�

Then operators H� G and G0 ful�l the conditions formulated in K� on H (l )�

G(l ) and G
(l )
0 � respectively�

Proof of lemma �� We have to prove only (13) which follows easily by

estimating the integrand by ja + bjs � 2s�1(jajs + jbjs ).
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Proof of claim ��

Condition F�� From K1 obviously follows F1.

Condition F�� Let i 	0 and r 	0. It is obvious that

j[H (l )(v )](t � x )b(l )
i (t � x � �0� �)j �

� kH (v )kL�(QT )

�
c1

�
j�0j

p�1 + j�jp�1
�

+ k1(t � x )
�
�

On the other hand by using Young’s inequality with conjugate exponents

1 �p1 = p�1
r �� and q1 = p�1

p�r�1 we get

j[G(l )(v )](t � x )d(l )
i (t � x � �0� �)j � j[G(v )](t � x )d(l )

i (t � x � �0� �)j(14)

�
jd(l )
i (t � x � �0� �)jp1

p1
+
j[G(v )](t � x )jq1

q1
�

Estimating by K2/b and ja + bjs � 2s�1(jajs + jbjs ) we obtain

j[G(l )(v )](t � x )d(l )
i (t � x � �0� �)j � const �

�
j�0j

rp1 + j�jrp1 + j[G(v )](t � x )jq1
	

= const �
�
j�0j

p�1 + j�jp�1 + j[G(v )](t � x )jq1
�
�(15)

Combining the above estimations we have

ja(l )
i (t � x � �0� �; v )j � const �

h�
kH (v )kL�(QT ) + 1

��
j�0j

p�1 + j�jp�1
�

+

+ kH (v )kL�(QT )k1(t � x ) + j[G(v )](t � x )jq1
i
�

By the boundedness of operator H and by the continuous imbedding X � Y
we have that kH (�)kL�(QT ) is a bounded X � R

+ functional. Further, from

k1 � Lq (QT ) it follows that kH (�)kL�(QT )k1 is a bounded X � Lq (QT )

operator. Observe that q1q = p
p�r�1 so thatZ

QT

�
j[G(v )](t � x )jq1

	q
dtdx =

Z
QT

j[G(v )](t � x )j
p

p�r�1dtdx(16)

=



kG(v )k

L

p
p�r�1 (QT )

� p
p�r�1

�

Due to boundedness of G this means that jG(�)jq1 is a bounded X � Lq (QT )
operator.
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Now let r = 0. Observe that q1 = 1, moreover from K2/b we have

jd(l )
i (t � x � �0� �)j � 2c1. So in this case we also have an inequality similar

to (15):

j[G(l )(v )](t � x )d(l )
i (t � x � �0� �)j � const � j[G(v )](t � x )jq1�

This means that this case can be treated in the same way. This completes the
proof in case i 	0. Case i = 0 is the same, we only have to replace G by G0.

Condition F�� Using condition K3 and K5/a we get for � ��

NX
l=1

nX
i=1

�
a

(l )
i (t � x � �0� �; v )� a

(l )
i (t � x � �0� �; v )

�
(�(l )
i � �

(l )
i ) =

=
NX
l=1

[H (l )(v )](t � x )
nX
i=1

�
b

(l )
i (t � x � �0� �)� b

(l )
i (t � x � �0� �)

�
(�(l )
i � �

(l )
i )+

+
NX
l=1

[G(l )(v )](t � x )
nX
i=1

�
d

(l )
i (t � x � �0� �)� d

(l )
i (t � x � �0� �)

�
(�(l )
i � �(l )

i ) 	0�

Condition F�� Taking into account conditions K4 and K5 we obtain

NX
l=1

nX
i=0

a(l )
i (t � x � �0� �; v )�(l )

i =
NX
l=1

h
H (l )(v )

i
(t � x )�(17)

�

nX
i=0

b
(l )
i (t � x � �0� �)�(l )

i +
NX
l=1

h
G(l )(v )

i
(t � x )

nX
i=1

d
(l )
i (t � x � �0� �)�(l )

i +

+
NX
l=1

h
G(l )

0 (v )
i

(t � x )d(l )
0 (t � x � �0� �)�(l )

0 	

	
NX
l=1

c3c2

�����(l )
0

���p +
����(l )

���p�� c3k2(t � x )+

+
NX
l=1

h
G

(l )
0 (v )

i
(t � x )d(l )

0 (t � x � �0� �)�(l )
0 	

	 c4c3c2
�
j�0j

p + j�jp
	
� c3Nk2(t � x )+
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+
NX
l=1

h
G

(l )
0 (v )

i
(t � x )d(l )

0 (t � x � �0� �)�(l )
0 �

In the last estimation we used inequality ja + bjs � 2s�1(jajs + jbjs ). Put
c� = c4c3c2 and investigate only the terms in the last sum. Let 
 	0 be fixed

a constant such that �p

p �c�

3N , and use the 
-inequality with exponents p� q .

Then we have

j[G(l )
0 (v )](t � x )d(l )

0 (t � x � �0� �)�(l )
0 j �(18)

� j[G0(v )](t � x )d(l )
0 (t � x � �0� �)�(l )

0 j �

�

p

p
j�(l )

0 jp +

�q

q
j[G0(v )](t � x )d(l )

0 (t � x � �0� �)jq �

The first term in the right hand side of (18) is less or equal than c�

3N

�
j�0j

p +

+ j�jp
	
. In the second term using the 
-inequality with � 	0 (defined later)

and exponents p1� q1 similarly to (14), (15), the following estimation holds:���hG(l )
0 (v )

i
(t � x )d(l )

0 (t � x � �0� �)
���q �(19)

� const �
�
�p1

�
j�0j

p�1 + j�jp�1
�

+ ��q1 j[G0(v )](t � x )jq1
�q

�

� c��p1q
�
j�0j

p + j�jp
	

+ c���q1q j[G0(v )](t � x )jq1q �

Let � be such that c��p1q ��q

q �c�

3N . Then substituting (18) and (19) into (17)

NX
l=1

nX
i=0

a
(l )
i (t � x � �0� �; v )�(l )

i 	

	
c�

3

�
j�0j

p + j�jp
	
� (c3Nk2(t � x ) + Nd�j[G0(v )](t � x )jq1q )� �z �

=:[h(v )](t �x )

where h(v ) � L1(QT ) following from (16) (and k2 � L1(QT )). Moreover

kh(v )k
L1(QT ) � c3N kk2kL1(QT ) + Nd�

Z
QT

j[G0(v )](t � x )j
p

p�r�1dtdx �

From the lemma we know that G0 fulfil (13), hence

lim
kvkX��

kvk
p�1
X



c�

3
�
kh(v )kL1(QT )

kvk
p
X

�
= lim
kvkX��

c�

3
kvk

p�1
X = +��
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Condition F�� Let r 	0. Suppose that uk � u weakly in X and
strongly in Y . Then (uk ) is bounded in X . Therefore from K2/a follows that�
b

(l )
i (� � uk (�)� Duk (�))

�
(k � N) is bounded in Lq (QT ), since it is easy to see

(similarly to (3)) thatZ
QT

jb(l )
i (t � x � uk (t � x )� Duk (t � x )jqdtdx �

� const �

Z
QT

h
juk (t � x )j(p�1)q + jDuk (t � x )j(p�1)q + jk1(t � x )jq

i
dtdx �

� const � (kukk
p
X + kk1k

q
Lq (QT )) � K�

Further observe that
�
d

(l )
i (� � uk (�)� Duk (�))

�
(k � N) is bounded in L

p
r (QT ),

since by K2/bZ
QT

jd(l )
i (t � x � uk (t � x )� Duk (t � x ))j

p
r dtdx �

�

Z
QT

h
juk (t � x )jr

p
r + jDuk (t � x )jr

p
r

i
dtdx = kukk

p
X � K�

HenceZ
QT

j([H (l )(uk )](t � x )�[H (l )(u)](t � x ))b(l )
i (t � x � uk (t � x )� Duk (t � x ))jqdtdx �

� kH (l )(uk )�H (l )(u)kqL�(QT )

Z
QT

jb(l )
i (t � x � uk (t � x )� Duk (t � x ))jqdtdx �

� KkH (l )(uk )�H (l )(u)kL�(QT ) � 0�

by using the continuity of H (l ). On the other hand, Hölder’s inequality with
exponents p1� q1 shows thatZ

QT

j([G(l )(uk )](t � x )� [G(l )(u)](t � x ))d(l )
i (t � x � uk (t � x )� Duk (t � x ))jqdtdx �

�


Z
QT

jd(l )
i (t � x � uk (t � x )� Duk (t � x )j

p
p�1

p�1
r dtdx

� 1
p1
�

�


Z
QT

j[G(l )(uk )](t � x )� [G(l )(u)](t � x )j
p

p�1
p�1

p�r�1 dtdx

� 1
q1
�
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� K
1
p1 kG(l )(uk )�G(l )(u)k

p�r�1
p

L

p
p�r�1 (QT )

� 0�

since G(l ) is continuous. This means that

ka(l )
i (� � uk (�)� Duk (�); uk )� a(l )

i (� � uk (�)� Duk (�); u)kLq (QT ) �(20)

� k(H (l )(uk )�H (l )(u))b(l )
i (� � uk (�)� Duk (�))kLq (QT ) +

+ k(G(l )(uk )�G(l )(u))d(l )
i (� � uk (�)� Duk (�))kLq (QT ) � 0�

If r = 0, then the first term on the right hand side of (20) tends to 0. Since
p

p�r�1 = q (hence G maps to Lq (QT ) continuously) and jb(l )
i (t � x � �0� �)j �

� 2c1, so that

k(G(l )(uk )�G(l )(u))d(l )
i (� � uk (�)� Duk (�))kLq (QT ) �

� 2c1k(G(l )(uk )�G(l )(u))kLq (QT ) � 0�

Hence the second term in the right hand side of (20) tends to 0, too. Case

i = 0 can be treated similarly, replacing G(l ) by G(l )
0 .

���� Concrete examples

������ Operator H (l )

Let �:R � R be a continuous function such that � 	 c 	0. Let us

introduce the following operators on Lp(0� T ; (Lp(Ω))N ):

[H̃1(v )](t � x ) := �

�
�Z

Qt

NX
j=1

bj v
(j )

�
A � where bj � Lq (QT ) (1 � j � N )�

[H̃2(v )](t � x ) := �

�
��Z

Qt

jv j�
� 1
�

�
A � where 1 � 
 � p�

Claim �� The above H̃1 and H̃2 ful�l condition K�	a�

Proof� We prove only the case of H̃1, the other can be made by similar

techincs. From Hölder’s inequality we know that bj v
(j ) � L1(QT ), so that
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H̃1 is well defined, and obviously H̃1(v ) 	 c 	0. On the other hand, if
kvkY � K then we have������

Z
Qt

NX
j=1

bj v
(j )

������ �
NX
j=1

Z
QT

jbj v
(j )j � K

NX
j=1

kbj kLq (QT )�

from where by continuity of � follows that H̃1 maps to L�(QT ) and it is

bounded indeed. Further, if (vk ) � v in Lp(0� T ; (Lp(Ω))N ) then we have������
Z
Qt

NX
j=1

bj v
(j )
k �

Z
Qt

NX
j=1

bj v
(j )

������ �

�
NX
j=1


Z
QT

jbj j
q

� 1
q

Z

QT

jv
(j )
k � v (j )jp

� 1
p

� 0�

therefore by continuity of � it follows that H̃1(vk ) � H̃1(v ) in L�(QT ).
This completes the proof of continuity.

������ Operators G(l )� G(l )
0

Let � :R � R be a continuous function such that j� (y)j � const �

� jy jp�r0�1 holds for some 0 � r0 �p � 1. Let us introduce the following

operators on Lp(0� T ; (Lp(Ω))N ):

[G̃1(v )](t � x ) := �

�
�Z t

0

NX
j=1

aj (�� x )v (j )(�� x )d�

�
A �

[G̃2(v )](t � x ) := �

�
�Z

Ω

NX
j=1

aj (t � �)v (j )(t � �)d�

�
A �

where aj � L�(QT ) (1 � j � N )�

[G̃3(v )](t � x ) := �

�
��Z t

0
jv (�� x )j�d�

� 1
�

�
A � where 1 � 
 � p�

Claim �� The above G̃i ful�l conditions made on G(l )
0 in K�	b with

0 � r �r0� 
If � 	 0� then obviously the nonnegativity condition is ful�lled�

too��
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Proof� We show only the case of operator G̃1. Let be 0 � r �r0 �p�1
then from properties of � it is obvious thatZ

QT

j[G̃1(v )](t � x )j
p

p�r�1dtdx �

� const �

Z
QT

�
� NX

j=1

Z T

0
kaj kL�(QT )jv

(j )(�� x )jd�

�
Ap�

dtdx �

� const �

Z
QT

�
�� NX

j=1

Z T

0
jv (�� x )jd�

�
Ap�

dtdx =

= const �

Z
QT


Z T

0
jv (�� x )jd�

�p�

dtdx �

where 0 �� = p�r0�1
p�r�1 �1. By using Hölder’s inequality with exponents

p1 = 1
�
(	1) and q1 = p1

p1�1 we obtain:

Z
QT


Z T

0
jv (�� x )jd�

�p�

dtdx �

� const �

�
B�Z

QT


Z T

0
jv (�� x )jd�

�p� 1
�

dtdx

�
CA

�

�


Z
QT

1q1

� 1
q1

=

= const �


Z
QT


Z T

0
jv (�� x )jd�

�p

dtdx

��

Now we may estimate again by Hölder’s inequality and after that we may use
Fubini’s theorem. We getZ

QT


Z T

0
jv (�� x )jd�

�p

dtdx �

�

Z
QT

�
��

Z T

0
jv (�� x )jpd�

� 1
p

Z T

0
1qd�

� 1
q

�
��
p

dtdx =
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= const �

Z
QT

TZ
0

jv (�� x )jpd�dxdt = const �

Z
QT

jv (t � x )jpdtdx � const � kvk
p
X �

Summarizing the above estimations one getsZ
QT

j[G̃1(v )](t � x )j
p

p�r�1dtdx � const � kvk
p�
X �

From this it is easy to see that G̃1 is a bounded operator which maps to

L
p

p�r�1 (QT ). Further

lim
kvkX��

R
QT

j[G̃1(v )](t � x )j
p

p�r�1dtdx

kvk
p
X

= lim
kvkX��

kvk
p(��1)
X = 0�

since � � 1 �0. Continuity of the operator can be proved similarly to the
previous theorem.

Remark� From lemma it is easy too see that linear combinations of the
above operators fulfil condtitions K5/a and K5/b, too.

������ Functions b
(l )
i � d

(l )
i

We show the well known examples. Let b(l )
i (t � x � �0� �) := b̃(l )

i (t � x � �0� �
(l )
i ),

where b̃(l )
i :QT �R

N+1 � R is a Carathéodory function such that the follow-

ing hold. Function �(l )
i 
� b̃

(l )
i (t � x � �0� �

(l )
i ) is strictly increasing,���b̃(l )

i

�
t � x � �0� �

(l )
i

���� � c1

�
j�0j

p�1 +
����(l )
i

���p�1
�

+ k1(t � x )�

and

b̃
(l )
i

�
t � x � �0� �

(l )
i

�
�

(l )
i 	 c2

����(l )
i

���p � k2(t � x )�

where c1 	0, k1 � Lq (Ω) and k2 � L1(QT ). Then b
(l )
i obviously fulfil

K1, K2/a. K4/a follows by inequality ja + bjs � 2s�1(jajs + jbjs ) and K3/a
follows from monotonicity.

Similarly, let d(l )
i (t � x � �0� �) := d̃(l )

i (t � x � �0� �
(l )
i ) (i � 0) where

d̃(l )
i :QT � R

N+1 � R is a Carathéodory function such that the follow-
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ing hold. Function �
(l )
i 
� d̃

(l )
i (t � x � �0� �

(l )
i ) is monotone nondecreasing,

d̃
(l )
i (t � x � �0� 0) = 0, and���d̃(l )

i

�
t � x � �0� �

(l )
i

���� � c1

�
j�0j

r +
����(l )
i

���r� + k1(t � x )�

where c1 	0, k1 � Lq (QT ) and 0 � r �p � 1. If i = 0, then let d(l )
0 be a

Carathéodory-function which satisfies���d(l )
0 (t � x � �0� �)

��� � c1
�
j�0j

r + j�jr
	

+ k1(t � x )�

Then conditions K1, K2/b, K3/b obviously hold. To prove K4/b we only have

to observe that (if i �0) d̃(l )
i (t � x � �0� �

(l )
i )�(l )

i 	 0.

Remark� The simplest examples for the above general conditions are

�
(l )
i 
� �

(l )
i j�(l )

i jp�2 and �
(l )
i 
� �

(l )
i j�(l )

i jr�1 if r 	0. If r = 0 let d(l )
i � 0

and d(l )
0 � 1.
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�� De�nitions� generalization of earlier statements and the concept of

multivisible points

After some preliminary statements, firstly we define the multivisible
points and examine the properties of these points, and then we give a descrip-
tion of the multivisible point structure of the warped product space-times. At
the end of the section we give some examples, which show that this structure
can be the same at each point of the universe, or it can vary there.

Definition� Let R1
1 be the 1-dimensional Lorentz manifold obtained by

multiplying with �1 the canonical metric of the real line, I = (�� �) � R
1
1 an

open interval, P a complete 3-dimensional Riemannian manifold and � : I �
� R+ a positive valued smooth function, then the warped product M = I��P
is a 4-dimensional Lorentz manifold having a canonical time-orientation by
the ordering of I and accordingly it is called a warped product space�time. If
in particular S is a simply connected 3-dimensional Riemannian manifold of

constant curvature, i.e. S is either the 3-dimensional euclidean space E
3 or

the 3-dimensional sphere S3 or the 3-dimensional hyperbolic space H 3 then
M = I � �S is called a Robertson�Walker space�time ([1] pp. 129–131; [7]

pp. 341–345). Furthermore, let S � be a 3-dimensional Riemannian manifold
of constant curvature such that there is a locally isometric covering map

� : S � S ��

then the warped product M � = I � �S
� is called a generalized Robertson�

Walker space�time� in this definition the case S � = S is also admitted.
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The following basic concepts of Lorentzian geometry will be applied
subsequently: If (M����) is a time oriented Lorentz manifold and p � M
then by the light cone at p in TpM the set

	p = fv � TpM � f0pg j hv � vi = 0g

is meant; moreover, by the light cone at p in M the image under the expo-
nential map:

Lp = expp(	p � EpM )


where EpM is the domain of the exponential map. If (M����) is also time
oriented then the corresponding future light cones 	+

p in TpM and L+
p in M

are obviously defined.

Definition� Let (M����) be a semi-Riemannian manifold, � : C �M
its geodesic where C � R is a closed interval and � : J � C a smooth
strictly monotone increasing funtion on an interval J � R. Then the smooth
curve


 = � � � : J �M

is called a pregeodesic of the semi-Riemannian manifold. Let r be the
Levi–Cività covariant derivation of the semi-Riemannian manifold then the
equation

r�̇ 
̇ =
d2�

d�2 
̇

is obviously satisfied by the pregeodesic 
 and conversely any smooth regular
curve 
 of the semi-Riemannian manifold such that r�̇ (�)
̇ is collinear with


̇ (�) throughout is a pregeodesic ([7], p. 69; pp. 95–96).

By application of O’Neill’s results on geodesics in warped products the
following lemmas are obtainable. With the help of this lemas we will examine
the lightlike geodesics in a warped product space-time. It turns out that these
geodesics correspond to the geodesics of the Riemannian spacelike factor in
the warped product.

Lemma ���� Let M = I � �P be a warped product space�time and

�(�) = (�(�)� �(�))� � � J

its geodesic� Then the following are valid�

�� J � � 	� �(�) � P is a pregeodesic in the Riemannian manifold P �
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�� If � : R � P is a geodesic parametrized by arclength� then there is a

unique inextendible future directed lightlike geodesic

�(�) = (�(�)� �(�))� � � J

of M such that �(�) = � � Θ(�)� � � J where Θ : J � R is a strictly

monotone increasing smooth function�

Proof� By an obvious modification of the proof given for Robertson–
Walker space-times (see e.g. [7], p. 353–354) where the assumption that P is
of constant curvature is not essential.

Next we give, in some sense, a uniform parametrization for the lightlike
geodesics.

Lemma ���� Let M = I � �P be a warped product space�time which

is lightlike complete� where P is a complete Riemannian manifold and p =
= (t � c) �M � Then there is a smooth function

�p : R+ � I

such that if � : R � ftg�P is a geodesic in the totally geodesic submanifold

ftg � P in arclength parametrization with �(0) = p� then

R
+ � � 	� (�p(�)� �(�)) �M

is a future directed lightlike pregeodesic�

Proof� Consider a geodesic � : R � ftg� P parametrized by arclength,
and assume that there is a smooth function � : R+ � I such that the curve

R
+ � � 	� (�(�)� �(�))

is lightlike. Then

0 = �h�̇(�)� �̇(�)i + �2(�(�))h�̇(�)� �̇(�)i�

(�̇(�))2 = �2((�(�))�

�̇(�) = �(�(�))

has to be valid. Then by integrationZ �(�)

0

d�

�(�)
=
Z �

0
d� = �

is obtained. But then a smooth function Ψ(�) = � , � � R+ is obtained and
�(�) = Ψ�1(�) is valid. Conversely, a smooth function of the above kind
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yields a lightlike curve with the given properties. The curve is a geodesic in
consequence of the preceding lemma.

Note that by “we can change the direction of the time”, we mean that we
can lift the above geodesic � to a past directed lightlike pregeodesic, if we
take

�̇(�) = ��(�(�))

instead of �̇(�) = �(�(�)) in the above lemma. So we can define �p on the
whole real line R in the above lemma. From now on all the lemmas will have
a dual in the above sense: “changing the direction of the time”.

Lemma ���� Let M = I � �P be a warped product space time were P
is a complete 3�dimensional Riemannian manifold� then a lightlike geodesic

intersects ftg � P for every t � I �

Proof� It is enough to see that a future directed lightlike geodesic from
p = (t � c) �M intersects all ft �g�P for every t � �t , t � � I . Let � : R+ � P
be a geodesic from p parametrized by arclength and � = (�� �) its unique
lift to lightlike pregeodesic. For an indirect argument assume that � is not
intersecting a ftg�� P� t� �t� t� � I . Let � = minf�(s) j t 
 s 
 t�g� then
for the lightlike pregeodesic � = (�� �) : R+ �M

0 = h�̇(s)� �̇(s)i = �2(�(s))h�̇(s)� �̇(s)i�h�̇(s)� �̇(s)i = �2(�(s))�h�̇(s)� �̇(s)i�

�(�(s)) = �̇(s)

is valid. Then from Im(�) � [t � t�]� �P and

t� � t �

Z �

0
�̇(s)ds �

Z �

0
�ds = �

a contradiction is obtained. So lemma ��� follows.

Definition� Let M = I ��P be a warped product space-time where P is
a complete 3-dimensional Riemannian manifold. Fix a point p = (t � c) � M ,
and consider a geodesic � : R � ftg � P with �(0) = p and parametrized
by arclength. Then in consequence of the preceding lemmas there is a unique
smooth function

�p : [Fp� Rp] � I

such that � 	� (�p(�)� �(�)) � M is the unique lightlike pregeodesic which
projects to � and this function �p is called the galactic time needed for a

photon to cover the spatial distance � along the spacelike geodesic � , and
Rp is called the spacelike distance we can cover during the existence of
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the universe, correspondingly Fp is the past spacelike distance we can cover
starting at the beginning of the universe.

If we see a star in the universe it means mathematically that there is
a lightlike geodesics joining us and a “previous” image of the star in the
space-time. Now we give the mathematical definition of the visibility in this
sense.

Definition� Let (L����) be a time oriented Lorentz manifold and x � y �
� L. If there is a future directed lightlike geodesic � : [0� �] � L with
�(0) = x and �(�) = y then x is said to be visible from y , moreover the
1-dimensional half-space

T��(R� ) = f� 
 �̇(�) j ��0� � � Rg � TyL

is called the corresponding direction of visibility of x from y ; let V (x ; y) be
the set of directions of visibility of x from y . If x is visible from y and there is
only a single direction of visibility of x from y , in other words if V (x ; y) has
a single element then x is said to be simply visible from y ; if there are more
than one such directions, in other words if V (x ; y) has more than 1 element
then x is said to be multivisible from y . The number

o(x � y)

of the elements of V (x � y) is called the order of visibility of x from y . If P
is a 3-dimensional Riemannian manifold such that to any two different points
of P there is a single geodesic joining them, then there are no multivisible
points in a warped product space-time M = I � �P .

We remark that if we see a star from two different directions it means that
there are two lightlike geodesics which have started from “previous” positions
of the star and are intersecting at us “here” and “now”, but the two fotons that
we see have not necessary the same “age” we mean that they could start at
different galactic time, more precisely at different space-time points. In the
next lemmas we will give a description for the multivisible points.

In the next lemmas we fix a point p and describe the points from which
it is multivisible. We use for this description the future light cone L+

p . But
correspondingly if we want to describe the points which are multivisible from
p then we should replace L+

p with the past light cone L�p . So in this sense the
following results have dual roles.
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Lemma ���� Let (L����)� (L������) be time�oriented Lorentz manifolds

satisfying the causality condition and such that there is an isometric covering

map � : L � L� which is also time orientation preserving� and p� q �
� L� p�� q � � L� such that p� = � (p)� q � = � (q)� Then p� is multivisible

from q � if and only if

q � L+
p � L

+
Θ(p)

holds for the future light cone L+
p with a suitable non�trivial time orientation

preserving deck transformation Θ : L � L associated with the covering map

� or p is already multivisible from q �

Note that in the time oriented Lorentz-manifold by the causality condition
we do not allow a lightlike geodesic loop.

Proof� The proof is a modification of the proof of lemma 3.1 in [8].

Let q � L+
p � L

+
Θ(p), then q̃ = Θ�1(q) � L+

p is valid, since Θ is isomet-

ric therefore Θ(L+
p) = L+

Θ(p). Moreover, there are future directed lightlike

geodesics

�(�) = (�(�)� �(�))� � � [0� �]� �̃(�) = (�̃(�)� �̃(�))� � � [0� �̃]�

such that �(0) = �̃(0) = p, �(�) = q , �̃(�̃) = q̃ . Put p� = � (p), q � = � (q), then
the curves

� � � : [0� �] � L� � � �̃ : [0� �̃] � L

are future directed lightlike geodesics from p� to q �. It will be shown that

T� (� � �)(R� ) �T
�̃

(� � �̃(R� )

is valid. For sake of an indirect argument assume that the above directions
are equal and consider the geodesics

��
� (�) = � � �(� � �)� � � [0� �]�
��
�̃ (�) = � � �̃(�̃ � �)� � � [0� �̃]


By the indirect assumption the above geodesics have the same initial point
and initial direction, therefore the image of one of them is included in that of
the other. But these images must be equal since otherwise there would be a
lightlike geodesic loop in L� at the end point q �.

Therefore the lifts of the geodesics
��
� ,

��
�̃ to L with the initial point q

coincide, and consequently p = Θ(p) is valid. But then Θ has to be trivial in
contradiction with its choice.
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Now assume that there is a point q � � L� which is multivisible from the
point p� � L�. Then there are future directed lightlike geodesics


 : [0� �] � L�� 
̃ : [0� �̃] � L�

such that 
 (0) = 
̃ (0) = p�, 
 (�) = 
̃ (�̃) = q � and their tangent vectors


̇ (�)� ˙̃
 (�̃) � Tq �L
�

are independent. Consider the lifts � , �̃ of the above geodesics in L with

the initial point p and put q = �(�), q̃ = �̃(�̃). Then q �q̃ is valid, since
otherwise p would be multivisible from q . But then there is a non-trivial
deck transformation Θ associated with � such that q = Θ(q̃) holds, since
� (q) = � (q̃) is valid. Now

q � L+
p � L

+
Θ(p)

holds by the construction above.

The next definition will be very helpful to give a formal description of
the multivisible points.

Definition� Let P be a Riemannian manifold, and a� b � P then the set
of geodesics � : [�� �] � P such that �(�) = a , �(�) = b is denoted by
G(a� b) and called the the system of geodesics joining a to b; furthermore by
L(a� b) is denoted the set of the lengths of these geodesics � � G(a� b) and it
is called the set of geodesic lengths between a and b.

In the special case when P = R3 or P = H 3 and d : P � P � R is the
corresponding distance function, then for c� c̃ � P

L(c� c̃) � L(Θ(c)� c̃) ��

is valid if and only if d(c� c̃) = d(Θ(c)� c̃) holds where Θ is an arbitrary
isometry.

Lemma ���� Let M = I � �P be a warped product space�time where

P is complete� � : P � P � an isometric covering map� M � = I � �P
� the

corresponding warped product space�time� Θ : P � P a non�trivial deck

transformation and Θ� : M � M the associated deck transformation� Fix

p = (t � c) � M and let C be the set of those c̃ � P for which L(c� c̃) �
� L(Θ(c)� c̃) ��� Then

L+
p�Θ�(L+

p) = f(t̃ � c̃)�M j c̃�C� t̃ = �p(�)� ��L(c� c̃)�L(Θ(c)� c̃)� ��Rqg
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is valid for the intersection of the above future light cones� where Rq is the

spacelike distance we can cover during the existence of the universe�

Proof� The proof is a modification of lemma 3.3 in [8].

If q � L+
p �Θ�(L+

p) then there are two different future directed lightlike
geodesics

� : [0� 1] �M� �̃ : [0� 1] �M

such that the following are valid �(0) = p, �̃(0) = Θ�(p), �(1) = �̃(1) = q .
Then their projections �, �̃ on P are pregeodesics of equal length by the
corollary of proposition ��� and this length is an element of the set

L(c� c̃) � L(Θ(c)� c̃)


Conversely, if � � L(c� c̃) � L(Θ(c)� c̃) then there are geodesics �� �̃ :
[0� 1] � S of length � with

�(0) = c� �̃(0) = Θ(c)� �(1) = �̃(1) = c̃


But then the lift of � with initial point p and of �̃ with initial point Θ�(p) as
lightlike geodesics, which end at the same point

(�p(�)� c̃) � L+
p �Θ�(L+

p)�

we need here that ��Rq . Thus the assertion of the lemma is established.

Let �(c�Θ(c)) denote the plane which bisects the line segment (c�Θ(c)).

Corollary ���� Let M = I � �S be a Robertson�Walker space�time

where S = R3 or H 3 and � : S � S � an isometric covering map� If

p = (t � c) �M � then

L+
p�Θ�(L+

p) = f(t̃ � c̃)�P j d(c� c̃)=d(Θ(c)� c̃)� t̃=�p(d(c� c̃))� d(c� c̃)�Rpg

= f(t̃ � c̃) � P j c̃ � �(c�Θ(c))� t̃ = �p(d(c� c̃))� d(c� c̃) �Rpg

Proof� It is a modification of corollary 1 of [8].

In fact, if S = E3 or S = H 3 then

f(t̃ � c̃) �M j t̃ = �p(�)� � � L(c� c̃) � L(Θ(c)� c̃)g =

= f(t̃ � c̃) �M j d(c� c̃) = d(Θ(c)� c̃)� t̃ = �p(d(c� c̃))g

is valid. But then by the preceding lemma the assertion follows.



2005. április 29. –13:05

ON GENERALIZED ROBERTSON–WALKER SPACE TIMES 165

Let M � = I � �P
� be a warped product space-time where P � has constant

curvature and the universal covering space P of P � is H 3 or R3 . Furthermore
let p� = (t �� c�) � M � be a point and � : P � P ��Γ�Θ�Θ� as above. Then
it is easy to see, that in this case in lemma ��	 there is no multivisible points
in M = I � �P . And we mentioned preceding lemma ��	 that lemma ��	


lemma ��� and corollary ��� have dual forms. So if p � M such that � (p) =
= p� then we must know only the set L�p � Θ�(L�p ) for every non-trivial

deck transformation Θ�. But from the dual of corollary ��� we know that
L�p � Θ�(L�p ) = f(t̃c̃ � c̃) j c̃ � �(c�Θ(c))� t̃c̃ = �p(�d(c� c̃))� d(c� c̃) �Fpg.

We can say that by the projection Π : I � �P
� � P � we lifted �(c�Θ(c)) with

suitable galactic time coordinates, see �gure �. Doing the above lifting for all
bisectors, for all �(c�Θ(c)), Θ � Γ � fI dg we get all the points which are
multivisible from p�.

Figure �� Getting the multivisible points, 2 dimensions of P and P � are
suppressed

Corollary ���� Let M = I � �S be a Robertson�Walker space�time

where S = S3 and � : S � S � an isometric covering map� If p = (t � c) � M
then the following holds�

L+
p �Θ�(L+

p) = f(t̃ � c̃) j d(c� c̃) = d(Θ(c)� c̃)� t̃ = �p(jd(c� c̃) + 2k� j)�

k � Z� jd(c� c̃) + 2k� j�Rpg =
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= f(t̃ � c̃) j c̃ � �(c�Θ(c))� t̃ = �p(jd(c� c̃)+2k� j)� k � Z� jd(c� c̃)+2k� j�Rpg

where Θ� is a deck transformation induced by a non�trivial deck transfor�

mation Θ associated with with the isometric covering map � : S � S ��

Moreover� the set of those points q = (t̃ � c̃) � M from which p = (t � c) is

multivisible is given by

f(�p(k�)� Ak (c)) j k � N � f0g� k� �Rpg

where A : S3 � S3 is the antipodal map�

Proof� It is a modification of corollary 2 of [8].

In fact

f(t̃ � c̃) �M j t̃ = �p(�)� � � L(c� c̃) � L(Θ(c)� c̃)g =

= f(t̃ � c̃) �M j d(c� c̃) = d(Θ(c)� c̃)� t̃ = �p(jd(c� c̃) + 2k� j)� k � Zg

is valid. The second assertion of the corollary is obviously valid, because the

geodesics from c � S3 can intersect only at A(c) or c.

Lemma ���� Let (L����) be a space�time satisfying the causality condi�

tion� M = I � �P a warped product space�time and � : M � L a locally

isometric time orientation preserving covering map� If p = (t � c) � M � then

p� = � (p) is multivisible from a q � = � (q)� q � M if and only if one of the

following two conditions is satis	ed�

�� p is already multivisible from q

�� Let p� = (t̃ � c̃) � ��1(p�) and fL(c̃� c�) + ��1
p (t̃)g = f d + ��1

p (t̃) j d �

� L(c̃� c�)g� where if t̃ �t � then ��1
p (t̃) means ���1

p� (t)� Then q �

� f(t �� c�) j� � � L(c� c�) � fL(c̃� c�) + ��1
p (t̃)g� t � = �p(�)� � �Rpg for

some p� = (t̃ � c̃) � ��1(p�)�
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Figure �� The multivisible points are of two kinds

Proof� From lemma ��	 follows that those points, from which p� is
multivisible, are of two kinds. A point of the first kind is the projection

to L of a point x � M for which there is a point in ��1(p�) which is
multivisible from x (the first case in the lemma). We can get a point of the

second kind if we fix a p = (t � c) � ��1(p�) and we project the intersection

L+
p � L+

p� to L for every p� = (t̃ � c̃) � ��1(p�), p� �p. It can be shown

as in lemma ��	 that for the description of L+
p � L+

p� condition � above is

valid, because let q = (t �� c�) � L+
p � L+

p� then there are lightlike geodesics

� : [0� �] � M� �̃ : [0� �̃] � M for which �(0) = p, �̃(0) = p�, �(�) = �̃(�̃) =

= q . Then let their projections on P be �� �̃ , for which �(0) = c, �̃(0) = c̃,

�(�) = �̃(�̃) = c� is true. The lenght of � is �p(t �) and of �̃ is �p�(t �). From

�p(t̃) + �p�(t �) = �p(t �) (because of p� = (t̃ � c̃)) follows that � is longer than �̃

by �p(t̃). So

L+
p�L

+
p� � f(t �� c�) j �� � L(c� c�)�fL(c̃� c�)+��1

p (t̃)g� t � = �p(�)� ��Rpg

is valid, and for the inverse including let � � L(c� c�) � fL(c̃� c�) + ��1
p (t̃)g

then there are geodesics � : [0� �] � P� �̃ : [0� �̃] � P for which �(0) = c,

�̃(0) = c̃, �(�) = �̃(�̃) = c� hold where � is longer than �̃ by ��1
p (t̃), so their

lifts to lightlike pregeodesics end in the same point (�p(�)� c�).

By the next theorem we will show that, if the spacelike factor in a warped
product space-time has some good properties, then there exist points in “good
position” in the universe; namely these are the points with the minimal galac-
tic time coordinate from which we see a point of the surface of last scatter
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in opposite directions. There are yet points in “bad position”; namely, these
are those which have the graetest galctic time coordinate for which we see a
point from the last scattering surface also from different but not necessary in
opposite directions; namely if (t � c) is a point in “bad position” then for no
t � �t galactic time value can we see from (t �� c) a point of the surface of last
scatter in different directions. We give some examples too where we examine
how the above points can occure.

Theorem ���� Let P be a simply connected complete Riemannian mani�

fold where to any two points there is only one geodesic line passing through

them� � : P � P � a locally isometric covering map such that P � is compact

and let M � = I � �P
� be a corresponding warped product space�time�

Fix a t � I and consider the set Ξ of those t̃ � I � t �̃t for which there

are pairs (c� c̃)� c� c̃ � P � such that

o(p�� q �) � 2

where p� = (t � c)� q � = (t̃ � c̃) � M �� Consider also the set Υ of those t̃ � I for

which there is a c � P � such that for any (t �� c�) with c� � P � and t 
 t � 
 t̃
the following holds�

o(p�� q �) 
 1

where p� = (t � c)� q � = (t �� c�) �M �� Put now

t� = infft̃ j t̃ � Ξg�

t� = supf t̃ j t̃ � Υ g


Then there is a closed geodesic �� in P � such that

1�� The length of �� is equal to 2��1
p�

(t�)�

2�� �� is not homotopic to 0�

3�� �� is the shortest one among those closed curves in P � which are not

homotopic to 0�

Moreover� there is a c � P � such that

1�� o((t � c)� (t �� c�)) 
 1 holds for any (t �� c�) � P � with t 
 t � �t��

2�� There is a geodesic loop in P �of length 2��1
p�

(t�)� with a possible corner

at c� and not homotopic to 0�

Proof� Note that Ξ or Υ may be empty and then the geodesics given in
the theorem do not exist.
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Fix an arbitrary point c � P � and a ĉ � P such that c = � (ĉ) holds. Put

�(c) =
1
2

minfd(ĉ�Θ(ĉ)) j Θ � Γ � fI gg

where Γ is the deck transformation group associated with � and I is its
identity element. In fact, �(c) does not depend on the choice of ĉ in P .

It will be shown now that the function c 	� �(c), c � P � is continuous.
It is enough to show that each c0 � P � has such a neighbourhood that � is
continuous on it. Since � is a covering map, there is a neighbourhood U of
c0 such that

��1(U ) = �fŨi j i � Ng

and �dŨi , i � N is a diffeomorphism onto U . Fix one Ũ = Ũ1 of these

neighbourhoods. Then � = ��1dU : U � Ũ is a diffeomorphism and the
choice ĉ = �(c), c � U can be made continuously. Therefore the function

U � c 	� d(ĉ�Θ(ĉ)) = d(�(c)�Θ(�(c)))� c � U

is continuous for each fixed Θ � Γ � fI g by the continuity of the distance
function d (see e.g. [5], pp. 156–159). Since the action of the group Γ on P is
properly discontinuous, there is a neighbourhood W � U of c0 such that the
sets Θ(W ), Θ � Γ are pairwise disjoint. Therefore there is a finite number
Θi , i = 1� 
 
 
 � k of deck transformations such that

�(c) = inffd(�(c)�Θ(�(c))) j Θ � Γ � fI gg

= inffd(�(c)�Θi (�(c))) j i = 1� 
 
 
 � kg� c �W

is valid. But the infimum of a finite number of continuous functions is
continuous.

Now let c� � P � be a point where � attains its minimum. Fix a ĉ� � P
with c� = � (ĉ�); then there is a geodesic �̂� of length 2�(c�) from ĉ� to Θ(ĉ�)
with some Θ � Γ. Therefore

�� = � � �̂�

is a geodesic loop at c� and �� has minimal length among all geodesic loops
in P �. In fact, if � : [0� �] � P � with �(0) = �(�) = x is a geodesic loop at x ,

then fix an x̂ � ��1(x ) and consider the lift �̂ : [0� �] � P of � with �̂(0) = x̂
and put x̂ � = �̂(�). Then there is a Ξ � Γ� fI g with x̂ � = Ξ(x̂ ). But then

L(�) = L(�̂) = d(x̂ � x̂ �) � 2�(x ) � 2�(c�) = L(��)
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is valid. In order to prove by contradiction that �� cannot have a corner at c�
consider the arclength parametrization �� : [0� ��] � P � and assume that ��
has a corner at c�, i.e.

�̇�(0) ��̇�(�)

holds. Then Θ( ˙̂��(0)) �˙̂�(�). Put now f = �̂�(�2 ), then

d(f �Θ(f )) �d(ĉ��Θ(ĉ�))

is valid and yields a contradiction. The assertion that �� is not homotopic to
0 is an obvious consequence of the construction.

Now let c� � P � be a point where � attains its maximum. Fix a point

ĉ� � ��1(c�), then there is a Θ � Γ � fI g with

�(c�) =
1
2
d(ĉ��Θ(ĉ�))

and if �̂� : [0� ��] � P is a geodesic from ĉ� to Θ(ĉ�) in arclength para-
metrization then � � �̂� is a geodesic loop at c� which is not homotopic to 0.

Let now � = (�� �), �̃ = (�̃� �̃) be the future directed lightlike geodesics in M �

starting from (t � c�) such that �� �̃ are those pregeodesics which in arclength

parametrization are equal respectively to ��d[0� 1
2�

�], ��� �d[��� 1
2�

�]. Then

�� �̃ have a common endpoint (te � ce ). In order to show by contradiction that
te � Υ is valid assume that there is a point (t �� c�) �M � such that t � �te and

#V ((t � c�)� (t �� c�)) �1

holds for the number of the elements of V ((t � c�)� (t �� c�)). Therefore there are
two different geodesics in P � from c� to c�. Therefore ��1(c�) cannot intersect
the interior of the fundamental domain F of c� which is the generalized
Dirichlet cell obtained by the 
m�ethode de rayonnement� of É. Cartan ([1],

pp. 183–186). But t � �te implies that d(c�� c�) �1
2d(c��Θ(c�)) is valid and

therefore ��1(c�) has to be in the fundamental domain F . In order to show
that te = t� holds observe that the existence of a t̃ � Υ with te �̃t 
 t�

contradicts the defintion of te .

In the proof of theorem ��� we fixed an arbitrary point c � P � and a
ĉ � P such that c = � (ĉ) holds and put

�(c) =
1
2

minfd(ĉ�Θ(ĉ)) j Θ � Γ� fI gg

where Γ is the deck transformation group associated with � and I its identity
element. In fact, we have shown in the proof that the �(c) does not depended
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on the choice of ĉ in P , and the minimum of this continuous function � : P � �
� R

+ was t� and its maximum was t�.

Now we show some properties of � and give some examples for 3-
dimensional P .

Lemma ��	� Let P a complete Riemannian manifold� � : P � P � a
locally isometric covering map� Γ the deck transformation group associated

with � and

�(c) =
1
2

inffd(ĉ�Θ(ĉ)) j Θ � Γ � fI gg�

where ĉ � P � � (ĉ) = c� If the function � : P � � R+ is constant with value

r in a neighbourhood of x � P �� then there is a Θj � Γ and a geodesic �
parametrized by arclength with Im(�) � P and its neighbourhood V � such

that Θj (�(t)) = �(t + 2r ) and if ŷ � V and � is the geodesic parametrized by

arclength joining ŷ and Θj (ŷ)� then Θj (�(t)) = �(t + 2r )� So we can say that

Θj is 
like a translation� along � �

Proof� The function � is continuous by the proof of the above theorem.
Moreover, W , in the proof of the above theorem can be taken as W =
= �(B(x � �)), where � is defined in the proof of the above theorem and
B(x � �) is the open ball. Furthermore we can assume that � is so small that the
function � has a constant value r on � (W ) = B(x � �). As in the proof of the
above theorem we can choose deck transformations Θ1� 
 
 
 �Θk � Γ � fI dg

such that �(c) = 1
2 minfd(ĉ�Θi (ĉ)) j i = 1� 
 
 
 � k � � (ĉ) = c� g if c � � (W ).

Put

Gi = fy � � (W ) j d(�(y)�Θi (�(y))) �2rg� Fi = W �Gi

where Gi are open sets. Then there is a j � f1� 
 
 
 � kg for which intFj ��.

To prove the last statement make the indirect assumption that intFi = �,
�i � f1� 
 
 
 � kg. The sets Gi are dense in � (W ), so G1 � 
 
 
 � Gk ��
but �y � � (W ), �j � f1� 
 
 
 � kg, d(�(y)�Θj (�(y))) = 2r yield y �� Gj , and
this contradicts the indirect assumption. So let y � intFj , � �0 for which
B(y� �) � Fj . Let � : R � P be the arclenght parametrized geodesic for
which �(0) = �(y), �(2r ) = Θj (�(y)). Then Θj (�(�)) = �(2r + �) is valid,
because

2r = d(�(�)�Θj (�(�))) 
 d(�(�)� �(2r )) + d(�(2r )�Θj (�(�))) = 2r � � + �

follows from the arclenght parametriztion of � and from d(�(2r )�Θj (�(�))) =
= d(Θj (�(0))�Θj (�(�))) = d(�(0)� �(�)) = � by the isometry of Θj . But in the
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above inequality equality sign holds if and only if there is no break at �(2r ),
i.e. Θj (�(�)) is on � . So from Θj (�(0)) = �(2r ), Θj (�(�)) = �(2r+�) the lemma

follows because we can repeat this construction for every z � B(y� �) and for
the geodesic between �(z )� Θj (�(z )) which will form the neighbourhood V
of Im(�).

Corollary ���� If the function � has a constant value r at x � P �� then
there exists a Θ � Γ and x̂ � where � (x̂ ) = x for which Θ is translating the

arclength parametrized geodesic between x̂ � Θ(x̂ ) with parameter value 2r �

Proof� Consider the preceding lemma in the case R+ � � � 0; then
there is a sequence ŷn � x̂ � Θjn for which the preceding lemma is true,
where jn � f1� 
 
 
 � kg. We can suppose that Θjn = Θj , �n � N but then the
geodesics between ŷn � Θj (ŷn) are converging in each compact interval in R

to the geodesic between x̂ � Θj (x̂ ). and because the converging sequence of
geodesics is invariant under Θ (modulo a translation with 2r parameter value)
so the corollary is proved.

Corollary ���� If P = H 3 then the function � can not be locally con�

stant�

Proof� By the preceding lemma there is a B(ŷ � �) and Θj with the

property given there, and let � : R � H
3 denote the arclenght parametrized

geodesic between ŷ � Θj (ŷ). Let H1 be the hyperplane orthogonal to � at ŷ , it
is mapped by Θj to H2, the hyperplane orthogonal to � at Θj (ŷ), so that the
points near to ŷ in H1 have distance 2r from their images in H2. But by such
a transformation d(H1� H2) can attain its minimum only between ŷ � Θj (ŷ).

Example ���� Let P = H 3 then in case of a locally isometric covering
� : P � P � the function � can not be locally constant. So if P � is compact,
t� �t� holds in theorem ���.

Example ���� Let P = R3 , and let Γ be the deck transformation group
generated by 3 independent translations, then the corresponding function � is
constant. So t� = t� in theorem ���.

Example ���� Let P = R3 and e1� e2� e3 an ortonormated basis. Let Γ
be generated by:

Θ1 : R3 � a � a + 100e2� Θ2 : R3 � a � a + 100e3



2005. április 29. –13:05

ON GENERALIZED ROBERTSON–WALKER SPACE TIMES 173

and by Θ3, which is the product of the translation with e1 alog the e1 axis
and of the rotation by � around this axis. Then it is easy to show that in the
point z = (0� 0� 25) the function � has locally the constant value 2, because
from the Dirichlet cell sructure

d(z �Θ(z )) � 50� Θ � Γ� Θ �Θ2k
3 � k � Z

Θ2k
3 (a) = a + 2ke1�

where we mean by generalized Dirichlet cell, the one obtained by the “mé-
thode de rayonnement” of É. Cartan ([1], pp. 183–186).

As we saw, if the universal covering space of the spacelike component is
hyperbolic, then there must be points from which the universe looks different,
the multivisible point srtucture varies, the models are not homogenous; in the
euclidian case there can be modells which are homogenous in this sense. For
a possible model in the spherical case see [6].

�� Reconstructing the topology

Next we will show, how can we reconstruct the topology of the universe
with the method given in [9], [3], assuming that in the warped product space-
time M � = I � �P

� the factor P � has constant curvature. For a pair p� � M �

and q � = (t �� c�) � M � = I � �P
� the directions of visibility V (p�� q �) are in

Tq �M , but in practice we measure their projections on Tq �P
�, the spacelike

factor of TqM ; so by considering these directions we will mean, that we

consider their projections. If � : P � P � is a locally isometric covering

where P = H 3 , E3 or S3 and Γ is the deck transformation group associated
with � , and if we know P and Γ or a Dirichlet cell given by Γ and its side
pairing, then we can get P � uniquely. Now we will show how to construct
a Dirichlet cell and Γ by means of the background radition. Mathematically
this means that we fix a ftg � P �, the surface of last scatter, and we examine
the multivisible points of this section from a q � � M � far enough from the
surface of last scatter.

Definition� Fix a ftg�P � � I�ΦP
� = M � and a point q � = (t �� c�) �M �

such that t �t �. Let G � ftg � P � denote the set of points which are
multivisible from q �. Then

�(t � q �) :=
�
fV (p�� q �) j p� � Gg
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Note that the set V (p�� q �) � Tc�P
� is the union of half-lines from the origin.

Proposition ���� LetM = I��P be a warped product space�time� where

P = R3 or H 3 � and � : P � P � an isometric covering map� such that P � is

compact� furthermore 	x a ftg � P � t � I � Then there exists a t� � I � t �t��

such that if the set �(t � q) is given for 	xed t � �t�� t � � I and q � ft �g� P ��

then the Dirichlet cell and the decktransformation group Γ corresponding to

� can be constructed� provided that we know the curvature of P and Rp is

great enough�

Proof� Fix a point x � P , and let Dx denote the Dirichlet cell of x
defined by the deck transformation group Γ associated with � . Our goal is
to show, how we can reconstruct Dx and its side pairing. By corollary ���

the projection of the set of those points on P � which are multivisible from
� ((t �� x )) is obtainable as follows: Put

� (�(x �Θ(x ))) = f� (y) j y � P� d(x � y) = d(Θ(x )� y)g�

where Θ � Γ � fI dg and then the above set of point is�
f� (�(x �Θ(x ))) j Θ � Γ� fI dgg


But from the already mentioned dual form of lemma ��� the equality

L�(t ��x ) � (ftg � P) = ftg � �B(x � ��1
t (t �))

follows. So those points in ftg�P � which are multivisible from an � ((t �� x ))
are points of the set �

Θ�Γ�fI dg

ftg � � (�B(x � ��1
t (t �)) �HΘ) =

=
�

Θ�Γ�fI dg

ftg � � (�B(x � ��1
t (t �)) � �B(Θ(x )� ��1

t (t �)))�

which follows from the dual of lemma ��	 and ���, (see also �gure �
 	), and

if ��1
t (t �) is great enough then �B(x � ��1

t (t �)) intersects all the planes defining
the sides of Dx .
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Figure 	� 2 dimensions of P are suppressed

Figure �� 1 dimension of P is suppressed

Figure 
� The multivisible points are drawing out the Dirichlet cell
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By the compactness of P � there is a radius � such that B(x � �) intersects
all the hyperplanes including the sides of the Dirichlet cell Dx for all x � P .
We will show that every t� � �t (�) is a good choice. Let t � �t� and �� :=

= ��1
t (t �) and S (x � ��) := �B(x � ��). Fix the point (t �� � (x )) � ft �g�P � and let

y � ftg� P � be multivisible from (t �� � (x )) and �1� �2 two different lightlike
goedesics joining them, in fact there is at least two such lightlike joining
geodesics. Let �̄1� �̄2 be their lifts ending at (t �� x ), where the beginning points

are z � z̃ � ftg � P , and Θ� the isometry for which Θ�(z̃ ) = z . Let ��1 � ��2
be their projections on P . These are half-lines from x . Let us repeat the
above construction for all possible y � ftg � P � which is multivisible from
(t �� � (x )) and for all possible lightlike joining geodesics. Then we get a set
of halflines from x in P , which set we can get the following way: consider
the set �(t � (t �� � (x ))). After the canonical identification of T(t ��	 (x ))P

� with

T(t ��x )P and of T(t ��x )P with P by the exponential map where the origin goes

to x , we obtain the above set of halflines from x . We mean that if we carry out
the method desrcibed in �gure � for all y � ftg�P which is multivisible from
(t �� � (x )) and for all �1� �2� 
 
 
 lightlike joining geodesics, then the halflines

��1 � ��2 � 
 
 
 from x are the halflines in �(t � (t �� � (x ))). The union of these

half-lines intersects the sphere S (x � ��) in some sets and these sets are equal
to the intersection of S (x � ��) with the planes �(x �Θ(x )) = fy j d(x � y) =
= d(Θ(x )� y)g, Θ � Γ � fI g; in fact, we have seen in �gure � that the end

points of ��1 � ��2 � 
 
 
, which are not equal to the point x , are the projections
of the multivisible points in ftg � P onto P , which is the union of the sets

�B(x � ��1
t (t �)) � �(x �Θ(x )) for Θ � Γ � fI dg as we saw at the begining of

the proof. The above sets can be decomposed in circle pairs, since from

Θ�1(�(x �Θ(x )) � S (x � ��)) = �(x �Θ�1(x )) � S (x � ��)

we get the pairing �(x �Θ(x ))�S (x � ��) � �(x �Θ�1(x ))�S (x � ��). This means

that we see an immersed circle S1 � P � from two different direction. This
pairing can be given by the halfline pairing. If we would know �� then the

circle pairs on S (x � ��) would give planes in pairs �(x �Θ(x )), �(x �Θ�1(x ))

by the following construction: the S1 pairs are defined as the intersections of
S (x � ��) with some planes; it is easy to see that the union of the halflines from
x through these points, is the set �(t � (t �� � (x ))), which is a union of some
rotationally symmetric cones. If we take a cone C which is rotation symmetric
around its axis E and a point v � S (x � ��) � C then there is an unique line F
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through v which intersects E orthogonally. Let us take the plane H defined
by the rotation of F around E , then H � S (x � ��) = S (x � ��) � C . So we can

get pairs of planes �(x �Θ(x )), �(x �Θ�1(x )), which will define the Dirichlet
cell Dx and the plane pairs which are defining Dx , there can be planes which
are not of this kind, will define the side pairing transformations,which are
isometries both in the euclidian case and in the hyperbolic one. Because if C ,
C � is the cone pair and E� E � are their axes and F� F � the corresponding
lines which are defining the planes H� H �, then put m = F �E , m � = F � � F �

v � w � S (x � ��)�C , furthermore let v �� w � � S (x � ��)�C � be the corresponding
multivisible points. Then there is an unique side pairing transformation which
takes Θ( ¯xm) � E �, Θ(m) = m �, Θ(x ) �x , Θ(v ) = v �, Θ(w ) = w �. By
gluing together the Dirichlet cells along an edge, as desribed in Poincer�e�s

polyhedron theorem the sum of the angles at the edge must be exactly 2� . In
the euclidian case the homothety has no effect on the angles, so if we take
�� = 1 we get Dx and Γ.

In the hyperbolic case if we take the sphere S (x � 1) and intersect it with

the directions of visibility we will get S1 circle pairs, because the visibility
directions form cones and each of them is rotation symmetric around its axis.

As we saw each S1 is an intersection of the S (x � 1) with a plane, but these
planes do not form a Dirichlet-cell but some of these form a cell around x .
And this holds if we take S (x � �) instead of S (x � 1), furthermore if we apply
a homothety of ratio � �1 the angles of the planes in the cell around x will
be less and this depends continuously and in a stricly monoton way on � ,
so there will be exactly one value � such that by glueing together the cells,
with the side pairing transformations, along an edge the sum of the angles at
the edge will be exactly 2� ; in fact, by the 3-dimensional Caley-Klein model

and by the construction of the hyperplanes from the S1 circles as described
above it is easy to show that for all value � the cells around x have always
corresponding sides which yield esentially the same structure, and that there
is a single good value of � which yields a Dirichlet cell and no other value of
� will be good. So in the hyperbolic case we will get the radius R� moreover
the Dirichlet cell and the side pairing transformations.

In the P = S3 case we need a particular observation.

Lemma ���� Let P = S3� and � : P � P � a locally isometric covering

map� and Γ the deck transformation group associated with � � such that Γ �

hAi i�e� Γ is not the group generated by the antipodal map A : S3 � S3�
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Then in the canonical construction of the Dirichlet cell Dx the antipodal map

A does not play role for x � S3�

Proof� Let Θ � Γ, Θ �Id and �(x �Θ(x )) = fy � R
4 j d(x � y) =

= d(Θ(x )� y)g. Then �(x �Θ(x )) cuts the S3 � R4 in two half balls. Let �
be a geodesic through x , it is a 2� long closed geodesic, and �(x �Θ(x )) cuts
this into two geodesic arcs of length � . Let Dx denote the Dirichlet cell of

x by Γ in S
3, and for an indirect argument assume that A yields a side pair

in Dx , let these be denoted by FA� FA�1 and let y � intFA and � a geodesic
through x and y . Then A(�) = � � A(y) � FA�1 is valid and � is a 2� long
closed geodesic which has got a piece of length � in Dx between y and A(y)
and none of the �(x �Θ(x )) planes intersects this piece. But we can take a
longer piece from this geodesic as � , which has no point of intersection with
�(x �Θ(x )), Θ � Γ � fA� I dg, because y and A(y) are interior points of their
sides. But Γ � fA� I dg ��, and by the first remark at the beginning at the
proof we saw such a geodesic arc through x can not exist.

Proposition ���� Let M = I � �P � P = S
3� and � : P � P � an

isometric covering map� Γ the deck transformation group associated with �
and M � = I � �P

� the corresponding warped product space�time� where

ftg � P � is the surface of last scatter� Assume that Γ �hAi i�e� Γ is not

the group generated by the antipodal map A : S3 � S3 and consider the

function

S
3 � x 	� Rx = max

�
1
2
d(x �Θ(x )) j Θ � Γ � fA� I dg

�
�
�

2
�

Fix an x � S3 then for t � �t � t � � I � such that

Rx ���1
t (t �)�

�
��1
t (t �)
�

�

 � �� � Rx 


If �(t � (t �� x )) is given� then we can reconstruct the Dirichlet cell of x �

Proof� Let x � S3 and B(x � R) � S3, where Rx �R �� � Rx , mod �
then

�(x �Θ(x )) � B(x � R) ��� Θ � Γ� fA� I dg�

�(x �Θ(x )) = fy � R
4 j d(x � y) = d(Θ(x )� y)g
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is valid, and the intersection is an S1 and we can apply the method used in

the previous proposition as in the case of H 3 , because by the previous lemma

�(x �A(x )) gives no side of the Dirichlet cell.

So if we have the matching circle pairs from which we can reconstruct
the topology of the universe, then we can tell, what curvature the universe
has in the sense, that if we carry out the construction of proposition ��� for
the euclidian case and the sum of the angles at the equivalent edges is less

than 2� then P = S
3, if the sum is equal to 2� then P = R

3 and if greater

than 2� then P = H 3 . This can be seen by the effect of the homothety on the
angles. More information about the research on the possible curvature of the
universe can be found in [4].

Now a simple generalization of proposition ��� is given.

Proposition ���� Let M = I � �P � M
� = I � �P

� be warped products�

such that in P there is no geodesic loop and for every two points there is

a single geodesic joining them� � : P � P � a locally isometric covering

map where P � is compact� Fix a ftg � P �� t � I and a c� � P �� then

there are values tc� � t
c� � I with t �tc� �tc

�

such that by system of

sets f�(t � (t �� c�)) � Tc�P
� j tc� �t � �tc

�

g the Dirichlet cells in P can be

reconstructed� provided that R(t �c�) is great enough�

Proof� Let c � P , � (c) = c� we will show (1) the map exp�1
c from

P to TcP is a homeomorphism, so if we take the Dirichlet cell (Dc) in P

we can take its image (D̂c) in TcP by exp�1
c . If we would know this image

and the side pairing, then the factorspace, factorizing by the side pairing,
would be homeomorphic to P �. In (2) we will show that we can construct a

homeomorphic image, to the side pairing, of D̂c .

(1) By the compactness of P � and the Hopf�Rinow theorem we get the
completness of P � and since � is locally isometric we get the geodesic com-

pletness of P . Moreover exp�1
c is a homeomorphism, because expc is smooth

and surjective; it is injective, because there is a unique geodesic parametrized
by arclength between two point in P .

(2) Let S (c� r ) be the sphere of radius r around c, there is a maximal rc
such that S (c� r ) � Dc = � for r �rc , and there is a minimal r c such that
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B(c� r ) contains the Dc Dirichlet cell if r �r c . By the property of expc the
following holds

exp�1
c (S (c� r )) = S (�0� r ) � TcP

and

exp�1
c (S (c� r ) �Dc) = exp�1

c (Dc) � S (�0� r )


But we can get exp�1
c (Dc) � S (�0� r ) as the intersection of S (�0� r ) with the

multivisible directions,

�(t � (�t(r )� c�)) :=

:=
�
fV (y� (�t(r )� c�)) j y � ft �g � P �� y is multivisible from (�t (r )� c�)g�

which is a set of halflines from �0 � TcP , as in proposition ��� (see �gure 	).

Figure �� Lifting the Dirichlet cell

If we would know the function ��1
t (t �) = r we could get the set D̂c �

� TcP from the sets �(t � (�t(r )� c�)) for every tc� = �t (rc) �t � �tc
�

= �t (r c).

We mean, we could get exp�1
c (Dc) � S (�0� ��1

t (t �)) for every tc� �t � �

�tc
�

and the union of these would “wipe out” D̂c on TcP , S (�0� ��1
t (t �)) �

� (
S

Θ�Γ�fI dg exp
�1
c (�(x �Θ(x )))) which is the intersection of S (�0� ��1

t (t �))

with the multivisible half-lines from �0, S (�0� ��1
t (t �)) � �(t � �t(r )� c�), (see

�gure �), and we would get the side pairing. The above method wipes out the

sets exp�1
c (�(x �Θ(x ))) and the cell which arose, with �0 in it, will be the D̂c

cell.

Note that r c must be in the domain of �t this is the condition that R(t �c�)
is great enough.
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Figure �� The circles wipe out the wall of the cell D̂c on TcP for tc 
t �1 
t �2 
t �3 
tc

But we don’t know the function ��1, we know only that ��1 is a stricly
monotone increasing function. Let � : TcP � TcP be the homeomorphism
which is fixing the origin and if �+ is a ray from the origin parametrized by

arclength then � : �+(��1
t (t �)) � �+(t �) for all t � �t , t � � I , where we note

that ��1
t : [t ��] � I � [0� R(t �c�)] is a stricly monotone increasnig bijective

function. Then

� � exp�1
c (S (c� ��1

t (t �)) �Dc) = �(exp�1
c (Dc) � S (�0� ��1

t (t �)))

= � � exp�1
c (Dc) � S (�0� t �)

is valid. And we can get the set � � exp�1
c (Dc) � S (�0� t �) as the intersection

of S (�0� t �) with the multivisible directions �(t � (t �� c�)) from �0 � TcP . So we

can get � � exp�1
c (Dc) with the “side pairing”, which after the factorization

is homeomorphic with P �.

Taking an other aspect we said in proposition ���
 ��� that if we know
expc , or selfintersections of its image e.g. the duble points, the circles, on the
intersection of 	c , the light cone, with a suitable spacelike hyperplane, we can
reconstruct the warped product M �. In a little more general case when M � is a
warped product as in proposition ���, if we know expc , or its selfintersections,
the duble points, on the intersection of the light cone with �v 
 [a� b] +TcP we
can reconstruct the topology of M �, where �v is the timelike vector orthogonal
to TcP and + is the Minkowski addition and [a� b] is a suitable interval.

Now we mention a simple generalization of proposition ���. The last
proposition said that if we do not see any circels on the sky, and the universe
is such as in the proposition, then we can obtain the topology of the universe
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if we have enough time. Now we prove that if there are circles on the sky we
can get the topology, if we have enough galactic time.

Lemma ���� Let P be a 3�dimensional Riemannian manifold such that

there is no geodeic loop and for every two point in P there is a unique

geodesic� parametrized by arclenght� joining them� If c1� c2 are two distinct

points� Then

H := fx � P j d(c1� x ) = d(c2� x )g

is a smooth embedded submanifold� homeomorphic with R2 �

Proof� It can be prooved by standart methods.

Remark� We said in the preceding proposition that with the help of the

visibility directions we can obtain the S1 circle pairs on S2 = S (�0� 1) � TcP .

It can be seen from the above lemma, that for a circle pair which devides S2

into two pairs of spherial caps, we can choose one cap from each of these
two pairs, continuously in the galactic time, given by the parameter r , such
that if there is a point x in one of the chosen caps then it will stay there if the
time, and consequently the value r , is increasing.

Definintion� If there are �� P� P � as above, where P is the universal
covering space, we call an open set F � P a fundamental domain if � (F̄ ) = P �

and � jF is injective.

Theorem ���� Let M = I � �P � M
� = I � �P

� be warped products� such

that in P there is no geodesic loop and for every two points there is a single

geodesic joining them� and � : P � P � a locally isometric covering map such

that P � is compact� and Γ the deck transformation group associated with � �

Fix a ftg � P �� t � I and a c� � P � then for every t� �t there are tc� � t
c�

with t� �tc� �tc
�

� tc� � t
c� � I such that alone by means of the multivisibility

directions �(t � (t �� c�)) from �0 � TcP for every tc� �t � �tc
�

� t � � I � we can

construct a topological space homeomorphic with P �� provided that R(t �c�) is

great enough�

Proof� As in proposition ��� we shall construct a ball which we shall
increase as there. If we see the matching circle pairs on the sky we will see
“new born circles” also, by the compactness of P � it will happen in some time.

If we take such a circle pair in S2 it is first two points and then it grows to
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an S1 pair which cuts out two pairs of spherical caps and from these we can
choose one by one such that by increasing the radius r , the time parameter t �

is increasing; these will be the two caps which grow, by the remarks after

the last lemma. To this circle pair belongs a pair �(x �Θ(x )), �(x �Θ�1(x ))
of “hyperplanes”, as in proposition ���, such that S (c� r ) � (�(x �Θ(x )) �

� �(x �Θ�1(x ))) is our circle pair. But if we take the ball B(c� r ) around
c then it can be easily shown with the previous lemma that the “hyperplanes”

�(x �Θ(x )), �(x �Θ�1(x )) cut out two “half balls” corresponding to the above

caps, topologically D3 balls, from B(c� r ). By � the images of these two

balls glue together to a ball, B	
r , in P �, but this is not a smooth immersed D3

it can have a break at an S1. Note that if we take the two “half balls” and
glue these together with the transformation Θ, we get a ball, DΘ

r , in P , which

is smooth except a break along an embedded circle S1 in �(x �Θ(x )). And
this is a ball, which is increasing, being blown up such as in proposition ���,
because �(x �Θ(x )) cuts the space P into two parts, in the first part are the
points nearer to c and in the second the points nearer to Θ(c). The two glued
half balls are in distinct parts and each is an increasing, growing, “half ball”
suitable parts of the growing B(c� r ), which are embedded in P and stricly
growing, we mean that if there is a point in this “half ball” then during the

“growing” it will remain in the “half ball”; and the circle S1 � �(x �Θ(x )),
which is on both “half balls”, is embedded, by the above lemma. So the glued

ball DΘ
r is an embedded “ball” which is stricly growing. But topologically it

is the same case as in proposition ���, because if we take this growing ball

DΘ
r and its images by Γ, then we see the same. Embedded balls are being

stricly growing. If we take one of these balls and the points in P which are
first in this ball, under the above simultaneous and uniform growing, then
these will give a fundamental domain from which if we factorize with the
corresponding points at the boundary, which go to the same point under the
map � , then we get a space homeomorphic to P �. So the method is the

next: we will take a ball being growing in the euclidean space B(�0� r ) we

consider it as the homeomorphic immage of DΘ
r where the two “half balls”

are R3
+�B(�0� r ) and R3

��B(�0� r ). Let us consider S (�0� r ) = exp�1
c (S (c� r )) �

TcP ; on this sphere we have the two, growing, caps which are diffeomorphic

images of the two caps of �DΘ
r . So if we would have the corresponding self

intersection points of � (�DΘ
r ) on these two caps in S (�0� r ) � TcP , then

taking a homeomorphism with R3
+ � S (�0r ) � E3 and R3 � S (�0� r ) � E3 ,
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continuous in r , then we would get a homeomorphism between DΘ
r and

B(�0� r ) � E3 with the corresponding self intersection points of � (�DΘ
r ),

which can be derived from the intersection points of Θ̄(DΘ
r ) �DΘ

r , Θ̄ � Γ �
� fI dg. So for this construction we must only know the corresponding self

intersection points of � (�DΘ
r ) on this two caps in S (�0� r ) � TcP , which can

be constructed from the multivisibility directions (see �gure �).

Figure 
� The construction

If there is a selfintersection point of � (DΘ
r ) then this lifts to two points

y1� y2 in S (c� r ), which are also in the union of the two D2 caps. But if
two points have the same image by � then there is a transformation Θ̃ under
which one of these two points goes to the other, let us assume Θ̃(y1) = y2.
So y2 is in S (c� r ) and y2 = Θ̃(y1) is in Θ̃(S (c� r )) = S (Θ̃(c)� r ) therefore it

is in S (c� r ) � S (Θ̃(c)� r ) � �(c� Θ̃(c)) and Θ̃�1(y2) = Θ̃�1(Θ̃(y1)) = y1. But

this shows that the two points are in the �(c� Θ̃(c)), �(c� Θ̃�1(c)) hyperplanes
and in the union of the D2 caps, which are in S (c� r ), so the two points are

in corresponding S1 circle pairs which are both intersecting the union of the

two D2 caps and these corresponding points are in the union of the two D2

caps. And if two coherent points, for a S1 pair, are in the union of the two

D2 caps, then they go by � to the same point in P �. So we got the description
of the selfintersection of S	r ; these are the images of the, from circle pairs
derived, point pairs for which the two points are in the union of the caps. So
if we apply the method of proposition ��� then we get a fundamental domain
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on TcP with side pairings which is homeomorphic to a fundamental domain
on P .

Acknowledgements� My thanks are due to J. Szenthe for his helpful
remarks.
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�� Introduction

A ruled surface in the 3-dimensional Euclidean space E3 is a surface
swept out by a straight line moving along a curve. It can be parametrized by

x(t � v ) = c(t) + ve(t)� t � I � R� v � R�

where c is a base curve or directix and the lines determined by e(t), t � I , are
the generators or the rulings of a given ruled surface. By the condition that
the normal at infinity of the ruling e(t) is orthogonal to the surface normal,
we get a point on a ruling e(t) which is a striction point of the ruling. All
striction points describe the striction curve of the surface.

A ruled surface in a simply isotropic space I 1
3 and doubly isotropic space

I 2
3 is defined in the same way ([1], [6], [7]). The notion of the striction point

on a ruling is transfered to these spaces as a point on a ruling in which the
tangent plane and the asymptotic plane (i.e. the tangent plane of a ruling
at infinity) are orthogonal. In terms of isotropic spaces this happens on the
admissible surfaces (whose tangent planes are non-isotropic almost in all
points) in a point of a ruling in which the tangent plane is isotropic and the
asymptotic plane non-isotropic. According to this definition it is shown in [1],

[6], [7] that in the spaces I 1
3 and I 2

3 there are ruled surface with striction curve
(whose position can vary with respect to the absolute figure of the spaces) and
without it (conoidal surfaces with isotropic or absolute line as a directrix at
infinity).

Mathematics Subject Classi
cation �����	: 53A35
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In this paper we develop the theory of generalized ruled surfaces in

n-dimensional k -isotropic space I kn . The space I kn is introduced in [9] and
studied in [4].

As in the papers [2], [3], where the same problem is treated for the
n-dimensional Euclidean space En , these surfaces are formed by an one-pa-

rameter family of m-dimensional subspaces of I kn .

The classification of the generalized ruled surfaces in I kn on the surfaces
for which the asymptotic and tangent bundle coincide (generalization of tan-
gent surfaces) and on the surfaces for which these bundles differ in dimension
by 1 (generalization of skew surfaces) is the same as in En . The differences in

I kn appear in regarding the striction space of skew surfaces. In En in the points
of the striction space the tangent (m + 1)-plane and the asymptotic bundle are

orthogonal. By defining the striction space of a ruled (m + 1)-surface in I kn
in this way, we demand that in these points the tangent (m + 1)-planes are
isotropic while the asymptotic bundle is non-isotropic. Since this is not always

the case, in I kn there exist skew surfaces for which the striction space exists
and for which it does not exist. Among the latter ones there exist conoidal
surfaces whose generators are parallel to a certain isotropic plane.

For skew ruled surfaces in I kn we introduce the i th parameter of distribu-
tion which has the analogous geometrical interpretation (in terms of isotropic
angles) as the i th parameter of distribution of skew ruled surfaces in En . It is
a generalization of the parameter of distribution of ruled surfaces in E3 given
by the formula

p =
(ċ� e� ė)

ė2 =
�

�
�

where � is the striction (described as the angle between the tangent vector of
the striction curve and the generator) of a ruled surface, � its curvature.

Finally, we apply obtained results on the 2-dimensional ruled surfaces

and ruled hypersurfaces in I kn . However, for the latter ones, it is shown ad-
ditionally that among non-cylindrical skew surfaces there exist only surfaces
with striction space and conoidal surfaces with the generators parallel to some
isotropic plane.

The space I kn is a pair (A�V ) where A is a real n-dimensional affine space
of points and V its corresponding vector space of translations decomposed in
a direct sum of subspaces

V = U1 �U2
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satisfying dim U1 = n � k , dim U2 = k . By B2 = fbn�k+1� � � � �bng a basis
for the subspace U2 is denoted. In U2 a flag of vector spaces U2 := C1 �
� � � � � Cl � Cl+1 � � � � � Ck := [bn], Cl = [bn�k+l � � � �bn] is defined
and fixed. According to it we distinguish the following classes of vectors: the
Euclidean vectors as the vectors in V nU2 and the isotropic vectors of degree
l or l -isotropic vectors, l = 1� � � � k � as the vectors in Cl .

The space U1 is endowed with a Euclidean scalar product h � i : U1 �

�U1 � R which is extended on the whole V by

hx� yi = h�1(x)� �1(y)i�

where �1 : V � U1 denotes the canonical projection. In this way a semi-
definite scalar product on V is defined.

Since the isotropic length jjxjj := j�1(x)j of an l -isotropic vector x is 0
we define the l th- range of x as

[x]l := xn�k+l � l = 1� � � � � k �

where xn�k+l denotes the bn�k+l -coordinate of x.

�� The Natural Basis

Let I � R be an open interval, O a fixed origin in I kn and c : I � I kn a

C 1-curve given by its position vector t 	� c(t). The theory of curves in I kn is
studied in [5]. Let on I be given an one-parameter family of m-dimensional

subspaces Em (t) � I kn , t � I , 1 
 m 
 n � 2.

In the subspaces Em (t) let us define an orthonormal basis fe1(t)� � � � �
em (t)g such that

ei : I � V� i = 1� � � � m�

are functions of class C 1 on I . Let us assume that, if m + 1 
 n � k , the
vectors fe1� � � � � emg are all Euclidean, and if m + 1 = n � k + r , for some
r � f1� � � � � k � 1g, that they are either Euclidean or isotropic vectors of
degree � f1� � � � � rg such that each isotropic degree appears at most once.
More precisely, in the last case there are either n�k Euclidean vectors in the
basis of Em (t) and r�1 isotropic vectors of degree 1� � � � � i�1� i +1� � � � � r , or
n � k � 1 Euclidean vectors and r isotropic vectors of degree 1� � � � � r . Every
isotropic degree appears only once.
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Definition �� The set of points U � I kn given by its parametrized
position vectors

x(t ; v1� � � � � vm ) = c(t) +
mX
i=1

v iei (t)� t � I ; v1� � � � � vm � R

such that

Rank(ċ +
mX
i=1

v i ėi ; e1� � � � � em ) = m + 1

defines a regular (m + 1)-dimensional C 1-surface in I kn . Such a surface is
called an (m + 1)-ruled surface. The curve c is called the base curve or the
directrix of U and each subspace Em (t) is called the generating or ruling
space of U .

The conditions on the rulings e1� � � � � em mentioned before are necessary
for the ruled surface U to posses tangent planes that are not everywhere
isotropic.

Besides the vectors e1(t)� � � � � em (t) we consider also their derivatives

ė1(t)� � � � � ėm (t)�

We define the asymptotic bundle as generated subspace

A(t) = [e1(t)� � � � � em (t)� ė1(t)� � � � � ėm (t)]� t � I �

Let us assume

dimA(t) = m + l � 0 
 l 
 m�

By the isotropic Gram-Schmidt orthogonalization process ([9]), we obtain an
isotropic orthonormal basis fe1� � � � � em � am+1� � � � � am+lg in A(t)�

Generally, the following holds

ėi =
mX
j=1

�
j
i ej +

lX
j=1

�
j
i am+j � i = 1� � � � � m�

However, it is possible to construct a more convenient basis for the generating
space Em (t).

Theorem � �The natural basis�� There exists a subinterval J � I such

that in each generating space Em (t)� t � J � of a regular (m + 1)�ruled surface
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U � I kn there exists an orthonormal basis fe1(t)� � � � � em (t)g of Em (t) which

satis�es

(1)

ėi (t) =
mX
j=1

�
j
i
ej (t) + � iam+i (t)� i = 1� � � � � l �

ėi (t) =
mX
j=1

�
j
i ej (t)� i = l + 1� � � � � m�

where the functions �i �called curvatures� satisfy � i �0� i = 1� � � � � l �

The orthonormal basis fe1(t)� � � � � em (t)g of Em (t) determines uniquely

the orthonormal basis fe1(t)� � � � � em (t)� am+1(t)� � � � � am+l (t)g of A(t)�

Proof� Let us suppose that in Em (t), t � I , an orthonormal basis is given
which satisfies the conditions mentioned before i.e., such that the vectors
e1(t)� � � � � e�(t), 	 = m or 	 � fn � k � 1� n � kg, are Euclidean, and that
among the isotropic vectors there are either isotropic vectors of all degrees
� f1� � � � � rg or the isotropic degree i is missing.

First, let us construct the required basis of Em (t) from the Euclidean
vectors e1(t)� � � �, e� (t). It is constructed as in [2] by means of the isotropic
scalar product. In this way we define the vectors ê1(t)� � � � � ê�(t) which are

mutually orthogonal, for t � I � � I , and the following holds 
1 � 
2 � � � � �

� 
� � 0, where 
i = jjêi jj
2, i = 1� � � � � 	 .

However, it can happen, that beginning from some � � f0� � � � � 	g, the
values 
�+1 = � � � = 
� = 0� This means that the projections of the vectors
ê�+1� � � � � ê� onto U1 are zero-vectors, i.e., that these vectors are not Eu-
clidean. Now, from these vectors we construct mutually orthogonal isotropic
vectors. Let

e(t) =
�X

i=�+1

� i (t)ei(t)�

Hence, for the vector ê

(2) ê(t) = ė(t)�
mX
i=1

� iei (t)
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where

� i = hė� ei i� i = 1� � � � � 	�

��+j = ėn�k+j �

�+j�1X
i=1

� ie
n�k+j
i � j = 1� � � � � i � 1�

��+j = ėn�k+j+1 �

�+j�1X
i=1

� ie
n�k+j+1
i

� j = i � � � � � m � 	�

we have

ê(t) =
�X

i=�+1

� i (t)êi (t)�

By e
n�k+j
i

we have denoted the (n � k + j )-coordinate of the vector ei with

respect to the basis bn�k+1� � � � �bn of U2. Functions � i denote either the
components defined by isotropic scalar product which appear when expanding
ė in basis fe1� � � � � emg or are obtained inductively for the coordinates of ė
in U2. If in the isotropic part of the basis of Em (t) the vector of isotropic
degree i is not missing, then only the first set of formulas for ��+j is applied.

We have already noticed that the vectors ê�+1� � � � � ê� are not Euclidean.
Similarly it can be shown that they are neither isotropic vectors of degree
j � f1� � � � � rg n fig. The index i is excluded only in the case when among
the isotropic vectors of the basis of Em (t) there is an i-isotropic vector.

Let us now determine the extreme values of the i th isotropic coordinate
of the vector ê (only in the case when there is no i-isotropic vector in the

basis of Em (t)) under the condition e2 =
P�

i=�+1(� i )2 = 1 which guarantees
that the extrema exist. We consider the function

F (t � ��+1� � � � � �� ) =
�X

j=�+1

� j (t)ên�k+i
j (t)�

1
2



�� �X
j=�+1

(� j )2(t)� 1

�A �

The necessary conditions for the extrema are


F


�j
= ên�k+i

j � 
� j = 0� j = � + 1� � � � � 	�

Hence, the critical points are

� j =
ên�k+i
j



� j = � + 1� � � � � 	�
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In some generating space Em (t0), t0 � I �, we can assume that e�+1(t0) is the
vector of the maximum of the considered function. Therefore

��+1 = 1� ��+2 = � � � = �� = 0�



(1)
�+1 := ên�k+i

�+1 = [ê�+1]i �



(1)
�+2 := ên�k+i

�+2 = 0� � � � � 
(1)
� := ên�k+i

� = 0�

where [ ]i denotes the i th range of the given vector. Therefore the vector ê�+1
is i-isotropic, while the vectors ê�+2� � � � � ê� are isotropic of degree � r + 1.

Again, there exists an open interval I1 � I � where the previous equations
hold.

If 
(1)
�+1 = 0, then the i th isotropic coordinate of the vector ê is equal to 0.

Therefore, in the basis of A(t) there is no i-isotropic vector. We consider the
(r + 1)st isotropic coordinate and repeat the procedure. If there exists some

j1 � fn � k + r + 1� � � � � ng such that 
(1)
�+j1

:= ê
n�k+j1
�+1 �0, than j1-isotropic

vector ê�+1 is the vector in the basis of A(t). If all 
(1)
�+1 = 0, than all the

vectors ê�+1� � � � � ê� are zero vectors.

If 	 = � + 2, then the vector e�+2 of the Euclidean part of the basis of
Em (t) is uniquely determined, up to a sign. The corresponding ê�+2 is an
isotropic vector of degree �j1.

If 	 �� + 2, we repeat the previous procedure on vectors e�+2� � � � � e�
and obtain a j2-isotropic vector ê�+2 of the basis for A(t). Finally, in the
same manner, we construct an interval J � � � � � I1 and the other vectors
ê�+3� � � � � ê� of the basis of A(t), t � J . For the rest of the vectors e�+1� � � � � e�

we get that the vectors ê�+1, � � �, ê� are zero-vectors.

It is easy to see that the vectors êi , ej , which are Euclidean, are mutually
orthogonal, which with the previous part implies that fe1� � � � � e� � ê1� � � � � ê�g
is the orthogonal set of vectors.

Finally, let us construct the vectors of the basis of A(t), t � J , from
the isotropic vectors e�+1� � � � � em . The vectors ê�+1� � � � � êm defined by (2)

are isotropic vectors of degree � fr + 1� � � � � kg 
 fig. Together with the
vectors obtained from the Euclidean vectors, these vectors span A(t). The
same isotropic degree of these vectors can appear either if one of the vectors
fe1� � � � � emg is Euclidean and the other isotropic, or if both are isotropic (the
case when both are Euclidean is treated in the previous part of the proof).
Suppose that eE is Euclidean vector and eI is isotropic of degree i such that
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êE and êI are isotropic of degree j . Then instead of the vector eE in the basis
of Em (t) we take the vector

eE + �eI � � = �
e
n�k+j
E

e
n�k+j
I

which is again unit Euclidean vector, orthogonal to other Euclidean vectors,
such that deE + �eI is of isotropic degree �j . Similarly we treat the case of
two isotropic vectors eI 1� eI 2 of isotropic degrees I1 �I2. In the basis of
Em (t) instead of the vector eI 1 we take the vector eI 1 + �eI 2 which is again
unit isotropic of degree I1. In that way we orthogonalize the obtained vectors
ê�+1� � � � � êm in the unique way and obtain the required orthonormal basis for
Em (t), t � J .

Finally, in order to get that the formulas (1) hold, we rename the obtained
vectors by permuting their indices. By normalizing the vectors ê1(t)� � � � � êl (t)
we define the required unit vectors

am+1(t)� � � � � am+l (t)

of the basis of A(t).

�� The Striction Space

The tangent (m + 1)-plane of a regular (m + 1)-ruled surface U in a point
P(t ; v1� � � � � vm ) of the generating space Em (t) is spanned by

[xt � x1� � � � � xm ]P = [ċ +
mX
i=1

vi ėi � e1� � � � � em ]P �

The tangent (m + 1)-planes of U in all points of one fixed generating space
Em (t) lie in

T (t) = [ċ� ė1� � � � � ėm � e1� � � � � em ]�

T (t) is called the tangent bundle of U in Em (t). The asymptotic bundle of
U in Em (t) is a subspace of the tangent bundle T (t) spanned by the tangent
(m + 1)-planes at points at infinity of Em (t). Therefore

m + l 
 dimT (t) 
 m + l + 1�

We distinguish two cases:

(a) dimT (t) = m + l ,

(b) dimT (t) = m + l + 1�
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Case �a�� In this case there exists a base curve c such that

ċ(t) � [e1� � � � � em � am+1� � � � � am+l ]�

We can write

ċ =
mX
i=1

� iei +
lX

j=1

� j am+j �

The tangent (m + 1)-plane in a point P(v1� � � � � vm ) � Em (t) is spanned by the
vectors e1� � � � em and by

xt = ċ +
mX
i=1

v i ėi =
mX
i=1

��� i +
mX
j=1

�
j
i vj

�A ei +
lX

j=1

�
� j + v j� j

�
am+j �

Hence we can conclude that in the points of Em (t) which satisfy

(3) � j + v j� j = 0� j = 1� � � � � l �

the tangent (m + 1)-plane does not exist. Since � i �0, i = 1� � � � � l , the
points that satisfy (3) form a (m � l )-dimensional subspace Km�l (t) of the
generating space Em (t). This subspace is called the space of regression.

Specially, if a base curve is such that c(t) is a point of a space of
regression, then

ċ =
mX
i=1

� iei �

i.e., c is tangent to the generating space Em (t). Therefore the following
theorem holds:

Theorem �� If for a generating space Em (t) the tangent bundle T (t) and
the asymptotic bundle A(t) coincide� then there exists a subspace Km�l (t) of
Em (t) in whose points the tangent vector ċ(t) of the base curve belongs to

Em (t) and the tangent (m + 1)�planes of the surface does not exist�

Among the tangent surfaces in I kn there appear specially tangent surfaces
of a curve lying in some non-isotropic as well as in isotropic j -plane, j �
� f1� � � � � n � 1g.

Case �b�� In this case there exists a base curve c such that

ċ �� [e1� � � � � em � am+1� � � � � am+l ]�
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Therefore there exists a unit vector am+l+1 which extends the orthonormal
basis of A(t) to an orthonormal basis of T (t) in Em (t). Hence the vector ċ
can be written in the form

ċ =
mX
i=1

� iei +
lX

j=1

� j am+j + � l+1am+l+1� � l+1 �0�

The tangent (m + 1)-plane in a point P(v1� � � � � vm ) � Em (t) is spanned by the
vectors e1� � � � � em and by

xt = ċ+
mX
i=1

v i ėi =
mX
i=1

�
� i+

mX
j=1

�
j
i
v j
�
ei+

lX
j=1

�
� j + v j � j

�
am+j +� l+1am+l+1�

Definition �� A point P of a generating space Em (t) is called the stric-
tion (central) point if the tangent (m + 1)-plane of a surface U in P is
j -isotropic, for some j � f1� � � � � kg.

Case I� Let m + 1 
 n � k .

The tangent (m + 1)-plane is non-isotropic if it is spanned by m + 1
Euclidean vectors. It is j -isotropic, for some j � f1� � � � � kg, if and only if
there exists an isotropic vector of degree � � f1� � � � � kg parallel to it.

�� Let am+l+1 be Euclidean.

Since the vectors e1� � � � � em , am+1� � � � � am+l+1 are linearly independent,
and �l+1 �0, the vector xt is Euclidean. Hence, the tangent (m + 1)-plane
is non-isotropic in every point of Em (t). In this case, the striction point does
not exist.

In this case if among the vectors am+1� � � � � am+l there are no Euclidean,
we can conclude

�1(ėi (t)) =
mX
j=1

�
j
i
�1(ej (t))� i = 1� � � � � m�

Thus �1(e1)� � � � � �1(em) span a fixed m-plane in U1. Therefore, the generators

e1� � � � � em are parallel to a k -isotropic (m + k )-plane in the space I kn . Such
a ruled surface is called (m + k )-conoidal (there exists a (m + k )-plane such
that the generators are parallel to it) with generators parallel to a k -isotropic
plane.

The surfaces of type 3 in I 1
3 are example of such surfaces.
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�� Let am+l+1 be a �-isotropic vector, for some � � f1� � � � � kg�

If all the vectors am+1� � � � � am+l are Euclidean, i.e., if the asymptotic
bundle is non-isotropic, then the tangent (m +1)-plane is j -isotropic, for some
j � f1� � � � � kg if and only if

(4) � j + v j� j = 0� j = 1� � � � � l �

Since � j �0� j = 1� � � � � l , the previous l equations for the variables v1� � � � � vm
determine a (m�l )-dimensional subspace Zm�l (t) � Em (t) of striction points.
This subspace is called the striction �central� space�

Specially, in the case l = m there exists a unique striction point in every
generating space Em (t). The set of all striction points, t � J , is called the
striction �central� curve�

The surfaces of type 1 and 2 in I 1
3 are examples of such surfaces.

If among the vectors am+1� � � � � am+l there exist vectors that are not Eu-
clidean (including the possibility that none of these vectors is Euclidean), then
the tangent (m + 1)-plane is j -isotropic, for some j � f1� � � � � kg in the points
of some (m � l �)-dimensional subspace of Em (t), 0 
 l � 
 l . In particular,
in the case l � = 0, tangent (m + 1)-plane is j -isotropic in every point of the
surface. But such surfaces do not fit in the notion of an admissible surface
([1], [6], [7]), which has a non-isotropic tangent plane everywhere except
along the striction space, and therefore they will be excluded from the further
study.

In I 1
3 such surfaces do not exist.

Case II� Let m + 1 = n � k + r , r � f1� � � � � k � 1g.

In this case, a (m + 1)-plane is non-isotropic if it is spanned by n � k
Euclidean vectors, one 1-isotropic, � � �, one r -isotropic vector. A (m+1)-plane
is j -isotropic, for some j � f1� � � � � kg, if there exists a �-isotropic vector,
� � fr + 1� � � � � kg parallel to it. Again, we distinguish the following cases:

�� If am+l+1 is �-isotropic, for some � � fr + 1� � � � � kg, and the vectors
am+1� � � � � am+l are Euclidean or �̄-isotropic, �̄ � f1� � � � � rg, that is, if A(t) is
non-isotropic, then there exists the (m � l )-dimensional striction space Zm�l

defined by the system (4).

The surfaces of type A,B in I 2
3 are examples of such surfaces.

As before, the surfaces satisfying that among the vectors am+1� � � � � am+l
there are vectors that are �̄-isotropic, �̄ � fr + 1� � � � � kg, are excluded from
the further study.
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Such surfaces do not exist in I 2
3 .

�� If am+l+1 is Euclidean or �-isotropic, � � f1� � � � � rg then the striction
space in Em (t) does not exist.

In this case, when the vectors am+1� � � � � am+l are neither Euclidean nor
j -isotropic, j � f1� � � � � rg, then for the projections ẽ1� � � � � ẽm of the vectors
e1� � � � � em onto the space U1 � bn�k+1 � � � � � bn�k+r we have

˙̃ei =
mX
j=1

�
j
i ẽj � i = 1� � � � � m�

Hence ẽ1� � � � � ẽm span a fixed m-plane in U1 � bn�k+1 � � � � � bn�k+r , and
the surface is (m + k � r )-conoidal with generators parallel to some isotropic
plane.

The surfaces of type C and D in I 2
3 are examples of such surfaces.

Let us summarize:

Theorem �� Two main types of skew ruled (m + 1)�surfaces in the space

I kn are described as follows�

�a� if m + 1 
 n � k and am+l+1 is Euclidean or m + 1 = n � k + r and

am+l+1 is Euclidean or ��isotropic� � � f1� � � � � rg� then the surfaces is a ruled

surface without the striction space	

�b� if m + 1 
 n � k and am+l+1 is ��isotropic� � � f1� � � � � kg or

m + 1 = n � k + r and am+l+1 is ��isotropic� � � fr + 1� � � � � kg� while the

asymptotic bundle A(t) is non�isotropic� then the surface is a ruled surface

with the striction space�

Among surfaces without the striction space� we distinguish the following

subtype�

�a
� if m + 1 
 n � k and none of am+1� � � � � am+l is Euclidean or m +
+ 1 = n � k + r and none of am+1� � � � � am+l is Euclidean nor j �isotropic�
j � f1� � � � � rg� then the surface is a conoidal surface with generators parallel

to an isotropic plane�

For the (m + 1)-ruled surfaces U we define the i th parameter of distribu-
tion by

�i =
�l+1
�i

� i = 1� � � � � l

which is invariant under an admissible transformation of parameters.
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The parameter of distribution of 2-ruled surfaces in I 1
3 � I

2
3 coincides with

the first parameter of distribution here defined.

Let now U be a (m + 1)-ruled surface such that the isotropic degrees of
vectors of the natural basis are constant (on an open interval J ) and dimT (t) =
= m + l + 1. Let the orthonormal basis of tangent bundle T (t) for t � J

fe1� � � � em � am+1� � � � � am+l+1g

be extended to an orthonormal basis of I kn
fe1� � � � em � am+1� � � � � am+l+1� am+l+2� � � � � ang�

In such a way we have obtained an associated n-frame of an (m + 1)-ruled
surface U . The following expressions for the derivatives hold

ėi (t) =
mX
j=1

�
j
i ej (t) + � iam+i (t)� i = 1� � � � � l �

ėi (t) =
mX
j=1

�
j
i ej (t)� i = l + 1� � � � � m�

ȧm+i = ��� iei +
X

ej =isotropic



j
i ej +

lX
j=1

�
j
i am+j + � iam+l+1 +

+
n�m�lX

j=2

�
j
i am+l+j � i = 1� � � � � l �

ȧm+l+1 =
X

ej =isotropic



j
l+1ej +

lX
j=1

�̄ j am+j +
n�m�lX

j=1

� j am+l+j �

ȧm+l+i =
X

ej =isotropic



j
l+iej +

lX
j=1

�̄
j
i
am+j + �̄iam+l+1 +

+
n�m�lX

j=2

�
j
i am+l+j � i = 2� � � � � n � m � l �

where

� =
n

1� if am+i � ei and their derivatives are Euclidean
0� otherwise,

�
j
i = �� i

j � �
j
i = �� ij � �̄

j
i = ��ij � �̄

i = �� i � �̄ i = �� i � �
j
i = �� i

j �
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if the corresponding vectors and their derivatives are Euclidean.

The striction space Zm�l (t) � Em (t) is given by l equations for the
variables v1� � � � � vm . In particular, in the case l = m there exists a unique
striction point in Em (t). The set of all striction points for t � J determines
the striction curve s . It is given by

s(t) = c(t)�
mX
i=1

� i

� i
(t)ei(t)� t � J�

The base curve c is the striction curve if and only if v1 = � � � = vm = 0, i.e., if

and only if �1 = � � � = �m = 0. Hence, if the base curve is the striction curve
then

(5) ṡ =
mX
i=1

� iei + �m+1a2m+1�

If the striction curve s is an admissible curve parametrized by the arc length,

then the coefficients �1� � � � � �� are the direction cosines of the tangent vector ṡ

� i = cos� i � i = 1� � � � � ��

where � i = � (ṡ� ei ) is the angle between the projections of the corresponding
vectors onto U1, and e1� � � � � e� are the only (because m = l ) Euclidean vectors
of the natural basis.

The coefficients ��+1� � � � �m represent the isotropic angles

��+i = �

��ṡ� �+i�1X
i=1

� iei

�A � i = 1� � � � � m � ��

Finally, the following is also true

�m+1 = �

	
ṡ�

mX
i=1

� iei



�

The angles � i , i = 1� � � � � m , �m+1 are called the i th strictions of (m + 1)-ruled
surface U .

In the case when l �m , the striction space Zm�l determines a (m � l + 1)-
ruled surface. This surface is called the striction �central� surface� Its para-
metrized position vector is given by

x(t ; v l+1� � � � � vm ) = c(t)�
lX

i=1

� i

� i
(t)ei(t) +

mX
i=l+1

v iei �
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In the points of the striction space the tangent (m� l + 1)-plane is spanned by

xt =
mX
i=1

���̄ i � lX
j=1

�
j
i

� j

� j
+

mX
j=l+1

�
j
i
v j

�A ei + � l+1am+l+1�(6)

xl+1 = el+1� � � � � xm = em �

where

�̄ i =

�
� i �

�
� i

� i

�̇
� if i = 1� � � � � l �

� i � if i = l + 1� � � � � m�

Since the vector am+l+1 is �-isotropic, � � f1� � � � � kg, when m + 1 
 n � k
or � � fr + 1� � � � � kg when m + 1 = n � k + r in the case when the striction
space exists, the projection of the tangent (m � l + 1)-plane onto U1 or onto
U1�bn�k+1�� � ��bn�k+r is contained in m-plane spanned by the projections
of the vector e1� � � � � em . Therefore, if l = 1, the projection of the striction
surface is the envelope of the projection of the family of generators. These

surfaces are generalization of the surfaces of type 1 in I 1
3 and of type A in

I 2
3 . Therefore, the following theorem holds:

Theorem �� The projection of the striction m�surface onto U1 �U1 �
bn�k+1 � � � � � bn�k+r � is the envelope of the projections of the family of

the generators�

�� ��Ruled Surfaces in I kn

2-ruled surfaces are given by

x(t � v ) = c(t) + ve(t)�

Let us consider the case of non-cylindrical skew surfaces, i.e., m = l = 1.
Theorems 2, 4 and the previous considerations imply that there are exactly

the following types of 2-ruled surface in I kn :

Corollary �� Among the surfaces without the striction curve there are

exactly two types�

�a
� conoidal surfaces with generators parallel to some isotropic plane	

�a�� if dimU1 � 3� surfaces having both tangent and asymptotic plane

non�isotropic�

Among the surfaces with the striction curve there are exactly two types�
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202 ŽELJKA MILIN ŠIPUŠ

�b
� surfaces whose projections of the striction curve to U1 �U1 � b1)
degenerates to a point	

�b�� surfaces whose projections of the striction curve is the envelope of

the projection of the generators�

More precisely we have:

I� m + 1 = 2 
 n � k , i.e., dimU1 � 2.

In this case, the generator is determined by a unit Euclidean vector e.
The vector a is determined by

ė = �a�

where � = jjėjj, if ė is Euclidean, or � = [ė]j , if ė is j -isotropic, for some
j � f1� � � � � kg. [ ]j denotes the j th range.

There exists the striction point in E1(t) if and only if a3 is some �-

isotropic vector, � � f1� � � � � kg. This point is determined by �1 + v�1 = 0.
The set of all striction points determines the striction curve.

A base curve c is the striction curve if and only if v = 0. If c parametrized
by the arc length, then

ċ = e + �2a3�

or, in the projection onto U1

�1(ċ) = �1(e)�

The projection of the striction curve is therefore the envelope of the projection

of the family of generators. Such surfaces are the surfaces of type 1 in I 1
3 and

of type A in I 2
3 .

The striction curve c can also be degenerated, i.e., �1(c) can be a point.

Such surfaces are the surfaces of type 2 in I 1
3 and of type B in I 2

3 .

The parameter of distribution of 2-ruled surface with the striction curve
is defined as

� =
�2

�
�

where

�2 = � (ċ� e)�

The striction curve does not exist if and only if a3 is an Euclidean vector. If
the vector a is j -isotropic, for some j � f1� � � � � kg, then the projection of ė
onto U1 � bn�k+1 � � � � � bn�k+j�1 is zero-vector. Therefore, the projection
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of e is constant. The generators e are parallel to some (k � 1)-isotropic
(k � j + 2)-plane, for j �1, and to k -isotropic (k + 1)-plane for j = 1. Such a
surface is (k � j + 2)-conoidal.

Furthermore, if e� a� a3 are all Euclidean (dimU1 � 3), we get a surface
of type (a2).

II� m + 1 = 2 = n � k + r . This is possible only in the case when

n � k = 1� r = 1, i.e., in the space I n�1
n . The vector e can be either a

unit Euclidean or a unit 1-isotropic vector. In both cases, a is defined by

ė = �a�

Furthermore, the striction point exists if and only if a3 is �-isotropic, for
some � � f2� � � � � kg. For such a striction curve we have the same conclusions
as in the previous case.

The striction curve does not exist if and only if a3 is 1-isotropic, in the
case when e is Euclidean, or if and only if a3 is Euclidean, in the case when
e is 1-isotropic. If the vector a is j -isotropic, for some j � f2� � � � � kg, then
the projection of ė onto U1 � bn�k+1 � � � � � bn�k+j�1 is zero-vector. In
these cases the surfaces are (k � j + 2)-conoidal. More precisely, if j = 2 and
e is Euclidean, this k -plane is (k � 1)-isotropic; if e is 1-isotropic then it is
k -isotropic. If j � f3� � � � � kg, this (k � j + 2)-plane is (k � 1)-isotropic.

�� (n � 1)�Ruled Surfaces in I kn

We consider the surfaces such that the generating spaces En�2(t) are
(n � 2)-dimensional and the surfaces are non-cylindrical skew surfaces, i.e.,
m = n � 2, l = 1. Then the asymptotic bundle is generated by

A(t) = [e1� � � � � en�2� an�1]

and the following equations for the derivatives hold

ė1(t) =
mX
j=1

�
j
1ej (t) + �1an�1(t)�

ėi (t) =
mX
j=1

�
j
i ej (t)� i = 2� � � � � n � 2�

From Theorem 2 it follows immediately:
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Corollary �� There exist exactly the following types of ruled hyper�

surfaces in I kn �

�a� conoidal surfaces with generators parallel to an isotropic plane	

�b� surfaces with the striction space�

More precisely:

I� Let n � 1 
 n � k . This is possible if and only if k = 1, i.e., in the

space I 1
n . In this case the generators e1� � � � � en�2 are all Euclidean.

There exists the striction space Zn�3(t) in the generating space En�2(t)
if and only if an is equal to the completely isotropic vector b1. Then, in the
projection onto U1, the (n � 2)-striction surface is the envelope of the family
of generators.

Obviously, the striction curve exists if and only if n = 3.

The striction space does not exist if and only if an is Euclidean. Since the
vectors e1� � � � � en�2 are also Euclidean, the vector an�1 must be completely
isotropic. The projection onto U1 of the generators span a constant (n � 2)-

plane. Therefore, generators are parallel to an isotropic hyperplane in I 1
n .

Such a surface is (n � 1)-conoidal.

II� Let n�1 = n�k +r , for some r � f1� � � � � k�1g, i.e., we consider the

space I r+1
n . In this case the generators can be either Euclidean or j -isotropic,

j � f1� � � � � rg.

Let the generators be such that there are n�k Euclidean and one of each
of j -isotropic vectors, j � f1� � � � � rg n fig. The striction space Zn�3 exists if
and only if an is (r +1)-isotropic vector. In projection onto U1�bn�k+1�� � �
� � � � bn�1 the striction surface is the envelope of the family of generators.

The striction space does not exist if and only if an is i-isotropic. Then
an�1 must be (r + 1)-isotropic. Now the projection of generators onto the
space U1 � bn�k+1 � � � � � bn�1 is a constant (n � 2)-plane. Hence the
generators are parallel to a (k � i)-isotropic hyperplane. Such a surface is
(n � 1)-conoidal.

Let the generators be such that there are n � k � 1 Euclidean and one
of each of j -isotropic vectors, j � f1� � � � � rg. Then, the striction space Zn�3
exists if and only if an is again (r +1)-isotropic. It does not exist if and only if
an is Euclidean. In the case when the striction space exists, in the projection
onto U1 � bn�k+1 � � � � � bn�1, the striction surface is the envelope of the
family of generators.
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In the case when it does not exist, an�1 must be (r + 1)-isotropic. By
projecting onto U1 � bn�k+1 � � � � � bn�1 we see that the generators span a
constant (n � 2)-plane. Such a surface is (n � 1)-conoidal. The hyperplane to
which all the generators are parallel is k -isotropic.
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�� Introduction

One of the most known and well-studied problem of scheduling theory
is P jj Cmax. There is a fixed set of jobs T = fT1� � � � � Tng. Each job must
be processed exactly one of m identical parallel machines. Ti (i = 1� � � � � n)
denotes both the job itself and its processing time which is the same on all
machines. If the processing of a job started on a machine then it must be
finished without any interruption. One machine can process only one job at
the same time. Each job and machine are available at time zero. The goal is
to minimize the makespan, i.e., the time when the last job is finished.

A schedule of the set of jobs T is a partition P = fP1� P2� � � � � Pm g

which means that part Pi is loaded to machine i . Denote by L(P) the
makespan if partition P is applied and let L(Pi ) be the load of machine i
in this case. Then L(P) = maxfL(Pi ) j i = 1� � � � � mg = maxf

P
Tk�Pi

Tk j i =

= 1� � � � � mg. A schedule P� is optimal if for any other partition P the
inequality L(P�) � L(P) holds. It is obvious that optimal schedule exists as
the number of partitions is finite. Throughout the paper the makespan of the
optimal schedule is denoted by C �(T) or simply C �.

The P jj Cmax problem is NP-complete. Therefore several heuristic
procedures have been suggested. One of the earliest algorithms is Graham’s
LPT list scheduling [1]. Let A be a heuristic algorithm. Denote by CA(T) the

Mathematics Subject Classi�cation ������� 90B35
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makespan of the partition of set T determined by A for a given number of
machines. Let

Rm (A) = sup
T

�
CA(T)
C �(T)

�

be the performance ratio of the algorithm. In [1] Graham introduced the
LPT list scheduling algorithm: First we arrange the jobs into a nonincreasing
order of their processing times, then the tasks are scheduled in this order
individually in such a way that each job is assigned to a machine which has
minimal current load.

Theorem � ������ Rm (LPT) = 4m�1
3m �

Graham’s example to show the tightness of the theorem is

T
� = f2m � 1� 2m � 1� 2m � 2� 2m � 2� � � � � m + 1� m + 1� m� m�mg�

i.e., it has two copies of jobs with processing time l = m+1� m+2� � � � � 2m�1,
and three copies of jobs with processing time m . The number of jobs is 2m+1.
In the optimal solution the last three jobs are on the same machine. The load
of this machine is 3m . Pairs are formed from the remaining 2m� 2 jobs such
that the sum of the two processing time is again 3m and these pairs are loaded
to the remaining m � 1 machines. The LPT list scheduling assigns the first
2m jobs to the machines that each machine has two jobs and total processing
time 3m � 1. The makespan is obtained after the assignment of the last job
with length m and is 4m � 1. This note is devoted to show that for any other

task-set T holds that CLPT(T)
C �(T) �4m�1

3m .

�� There is no other tight example

Theorem �� Let T�T
�� Then

CLPT (T)
C �(T) �4m�1

3m �

Remark �� Let us introduce the following notation:

Rm�n(A) = sup
T

�
CA(T)
C �(T)

� jTj = n

�
�

It is obvious that Rm (A) = supn fRm�n(A)g. It is not too hard to prove that

Rm�n(LPT) is strictly less than 4m�1
3m , if n �2m + 1, i.e. n �jT�j.

The tightness of the bound of the performance ratios are shown by the
notion of counterexample.



2005. április 28. –21:04

GRAHAM’S EXAMPLE IS THE ONLY TIGHT ONE FOR P jj Cmax 209

Definition �� Let A be a heuristic method. Assume that the number of
machines is fixed. Let p, and q be positive numbers with p �q . A (p�q)
counterexample is a set T of jobs such that CA(T) = p, and C �(T) = q .
T is minimal (p�q) counterexample if it is a counterexample and has minimal
number of jobs.

The next definition will be useful.

Definition �� The moment during the execution of the LPT list schedul-
ing algorithm just before assigning the last task is denoted by *.

Lemma �� Assume that m � 2� let T be minimal (p�q) counterexample

for the algorithm LPT� Then the following inequality holds� Tn �
m

m�1 (p�q)�

where Tn is the last job with minimum processing time�

Proof� Task Tn was assigned to the earliest possible time, say s . It can
be supposed by minimality of T that before assigning Tn the makespan is less
than p, and by assigning Tn it is equal to p. There is a machine among the

other ones with completion time not higher than q � p�q
m�1 . Task Tn has been

assigned to the least loaded machine, thus s � q � p�q
m�1 . After assigning the

last task the completion time p is reached, thus the processing time of job Tn

is at least p �
�
q � p�q

m�1

�
= m

m�1(p � q).

Definition 	� Let T be a job-set, for which jTj � 2m holds. The
schedule of T is regular, if

1. At most two jobs are scheduled for every machines,

2. If two jobs Ai and Bi are assigned to machine i and Ai �Bi , then job
Ai precedes job Bi .

3. If two jobs are assigned to machines i , and j , say Ai � Bi and Aj � Bj ,
resp., and i �j , then Ai � Aj , and Bi � Bj .

Lemma �� Suppose that there is an optimal schedule such that at most

two jobs are scheduled for any machine� Then the regular schedule is optimal

and LPT produces the regular schedule�

Proof� The statement follows immediately.

Proof of Theorem �� Suppose that there is a minimal counterexample
T for which q = 3m and p �4m � 1 holds. Then Tn �m according to
Lemma 1. Thus, each machine has at most two jobs in the optimal schedule.
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This is a contradiction according to Lemma 2, because in such a case the

heuristic solution is optimal. Thus Rm (LPT) � 4m�1
3m .

Now suppose that q = 3m and p = 4m � 1. Then it follows from Lemma
1 that Tn � m . If Tn �m , then a contradiction is obtained similarly, thus
Tn = m . Hence it is easy to see that the completion time of the machine to
which Tn is assigned by LPT is exactly 3m � 1 at * therefore the completion
times of all other machines are also exactly 3m � 1. Then the completion
time of every optimal machine is exactly 3m . It follows from Lemma 2 that
there is at least one machine of the optimal solution having more than two
jobs. From C � = 3m , and Tn = m it follows that the number of these jobs is
3, and the processing time of each of them is m . At moment * there are two
machines having a job with processing time m . The processing times of the
other job on the same machines are exactly 2m � 1. Each of these jobs are
assigned in the optimal schedule together with a job of processing time m +1.
These jobs are scheduled at time * together with jobs having processing time
2m � 2, etc. By induction we get that the counterexample T must be equal
to T�.
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Introduction

This work was motivated by works [4]–[6], [9], [10] where nonlinear
parabolic functional differential equations of certain types were considered.
In [4], [5] M. Chipot, L. Molinet, B. Lovat considered the equation

(0�1) Dtu �
nX

i �j=1

Di [ai j (l (u(�� t))Dju] + a0(l (u(�� t))u = f in Ω � R+

where Ω � Rn is a bounded domain with sufficiently smooth boundary,

nX
i �j=1

ai j (�)�i�j � �j�j2 for all � � Rn � � � R

with some constant ��0,

l (u(�� t)) =
Z

Ω
g(x )u(x � t)dx

with a given function g � L2(Ω). Existence and asymptotic properties (as
t ��) of solutions of initial-boundary value problems for (0.1) were proved.
Such problems arise in diffusion process (for heat or population), where the
diffusion coefficient depends on a nonlocal quantity.

In [9], [10] systems of nonlinear parabolic functional problems were con-
sidered when modelling diffusion, convection, absorption reaction of chem-
icals in porous media and reactive transport through an array of cells with
semi-permeable membranes.
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Finally, in [6] a climate model was considered where the differential
equation contained discontinuous and delay terms. Some results on the sta-
bilization (as t � �) of solutions to certain nonlinear parabolic functional
differential equations with discontinuous and delay terms were proved in [13]
by using methods of [7], [8] proving stabilization results for the above men-
tioned climate model without delay terms.

The aim of the present paper is to consider equations of the form
(0�2)

Dtu �
nX
i=1

Di [ai (t � x � u(t � x )� Du(t � x ); u)] + a0(t � x � u(t � x )� Du(t � x ); u) = f

in QT = (0� T )�Ω with certain homogeneous boundary and initial conditions,
where the functions

ai : QT � Rn+1 � Lp(0� T ;V ) � R

(with a closed linear subspace V of the Sobolev space W 1�p(Ω), 2 	 p��)
have certain special forms such that they contain terms which do not de-
pend continuously on u . These equations are generalizations of the parabolic
functional differential equations of [4]–[6], [13] and in certain special cases
can be considered as models for nonlinear diffusion processes where the
diffusion coefficient depends on a nonlocal quantity. The conditions I–V of
the existence theorem on (0.2) are generalizations of the above conditions
with respect to (0.1).

In Section 1 we shall prove a general existence theorem for (0.2) in the
continuous case. In Section 2 a special form of (0.2) with discontinuous terms
will be studied. First we prove existence of weak solutions, then we prove the
uniqueness of the solution if certain additional conditions are satisfied. Some
results on boundedness and stabilization of the solution as t � � will be
shown in a separate paper.

�� Existence of solutions

Let Ω � Rn be a bounded domain having the uniform C 1 regularity

property (see [1]) and p � 2 be a real number. Denote by W 1�p(Ω) the usual
Sobolev space of real valued functions with the norm

kuk =

�Z
Ω

(jDujp + jujp)

�1�p
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and let V �W 1�p(Ω) be a closed linear subspace. Denote by X =Lp(0� T ;V )
the Banach space of the set of measurable functions u : (0� T ) � V such that
kukp is integrable and define the norm by

kukpLp(0�T ;V ) =
Z T

0
ku(t)kpV dt �

The dual space of X = Lp(0� T ;V ) is X � = Lq (0� T ;V � ) where

1	p + 1	q = 1 and V � is the dual space of V (see, e.g., [11], [14]).

Assume that

I. The functions ai :QT�R
n+1�Lp(0� T ;V )�R satisfy the Carathéodory

conditions for arbitrary fixed v � Lp(0� T ;V ) (i = 0� 1� � � � � n).

II. There exist bounded (nonlinear) operators g1 : Lp(0� T ;V ) � R+ and
k1 : Lp(0� T ;V ) � Lq (QT ) such that

jai (t � x � �0� �; v )j 	 g1(v )
h
j�0j

p�1 + j�jp�1
i

+ [k1(v )](t � x )� i = 0� 1� � � � � n

for a.e. (t � x ) � QT , each (�0� �) � Rn+1 and v � Lp(0� T ;V ) and there

exists 
 �0 such that k1 is continuous as a map from Lp(0� T ;W 1���p(Ω))
into Lq (QT ).

III.
Pn

i=1[ai (t � x � �0� �; v )�ai (t � x � �0� �
� ; v )](�i � �

�
i ) �0 if � �� � .

IV. There exist a constant c2 �0 and a bounded operator k2 :

Lp(0� T ;V ) � L1(QT ) such that

(1�3)
nX
i=0

ai (t � x � �0� �; v )�i � c2
�
j�0j

p + j�jp] � [k2(v )
�

(t � x ) (k2 � 0)

for a.e. (t � x ) � QT , all (�0� �) � Rn+1, v � Lp(0� T ;V ),

(1�4) lim
kvkX��

kk2(v )kL1(QT )

kvk
p
X

= 0

and k2 is continuous as a map from Lp(0� T ;W 1���p(Ω)) into L1(QT ).

V. If (uk ) � u strongly in Lp(0� T ;W 1���p(Ω)) and (�0�k ) � �0, (�k ) �
� � then

(1�5) ai (t � x � �0�k � �k ; uk ) � ai (t � x � �0� �; u) as k ��

for a.e. (t � x ) � QT (i = 0� 1� � � � � n).
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Then we may define operator A : Lp(0� T ;V ) � Lq (0� T ;V � ) by

[A(u)� v ] =Z
QT

�
nX
i=1

ai (t � x � u(t � x )� Du(t � x ); u)Div + a0(t � x � u(t � x )� Du(t � x ); u)v

�
dtdx �

u� v � X = Lp(0� T ;V )�

Theorem ���� Assume I�V� Then A : X � X � is bounded� demi�

continuous� pseudomonotone with respect to D(L) = fu � X : Dtu �

� X � � u(0) = 0g and it is coercive� Consequently �see� e�g�� [2]�� for any

f � X � there exists a �weak� solution u � D(L) of

(1�6) Dtu + A(u) = f � u(0) = 0�

Proof� a) Boundedness of A (i.e. A maps bounded sets of X into

bounded sets of X � ) follows from I, II and Hölder’s inequality.

b) We show that A is demicontinuous, i.e. if (uk ) � u strongly in X then

(A(uk )) � A(u) weakly in X � . Assuming that (uk ) � u strongly in X , we
obtain by V for a subsequence
(1�7)

ai (t � x � uk (t � x )� Duk (t � x ); uk ) � ai (t � x � u(t � x )� Du(t � x ); u) a.e. in QT
since for a subsequence (uk ) � u and (Duk ) � Du a.e. in QT . So, by
using II and Hölder’s inequality, we can apply Vitali’s theorem to obtain that

(A(uk )) � A(u) weakly in X � .

c) By using arguments of [3], we show that A is pseudomonotone with
respect to D(L), i.e.

uk � D(L)� (uk ) � u weakly in X� (Dtuk ) � Dtu weakly in X � �(1�8)

lim sup
k��

[A(uk )� uk � u] 	 0(1�9)

imply

(1�10) lim
k��

[A(uk )� uk � u] = 0 and (A(uk )) � A(u) weakly in X � �

Since W 1�p(Ω) is compactly imbedded in W 1���p(Ω), one may apply a
well known imbedding theorem, see [11]. Consequently, (1.8) implies that
for a subsequence (denoted for simplicity again by (uk ))

(1�11) (uk ) � u strongly in Lp(0� T ;W 1���p(Ω))
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and

(1�12) (uk ) � u in the norm of Lp(QT ) and a.e. in QT �

Define the function pk by

pk (t � x ) =
nX
i=1

�
ai (t � x � uk (t � x )� Duk (t � x ); uk )�(1�13)

�ai (t � x � u(t � x )� Du(t � x ); u)
�

(Diuk �Diu) +

+
�
a0 (t � x � uk (t � x )� Duk (t � x ); uk ) � a0 (t � x � u(t � x )� Du(t � x ); u)

�
(uk � u)�

Assumption IV implies
nX
i=1

ai (t � x � uk � Duk ; uk )Diuk + a0(t � x � uk � Duk ; uk )uk �(1�14)

� c2
�
juk j

p + jDuk j
p�� [k2(uk )](t � x ) � c2jDuk j

p � [k2(uk )](t � x )�

By using Young’s inequality, it is not difficult to obtain from (1.14) and II
pk (t � x ) �(1�15)

�
c2
2
jDuk j

p � c3
�
juk j

p + jDujp + jujp + jk1(uk )jq + jk1(u)jq + k2(uk )
�

with some positive constant c3. The expression in (1.15), which is multiplied

by c3, is convergent in L1(QT ) because of (1.11), II, IV, thus it is a.e. con-
vergent and so bounded a.e., for a subsequence. Hence, for a fixed point
(t � x ) � QT
(1�16) pk (t � x ) �0 implies that (Duk (t � x )) is bounded

except possibly a set of zero measure.

One can write pk (t � x ) in the form

(1�17) pk (t � x ) = qk (t � x ) + rk (t � x ) + sk (t � x )

where

qk =
nX
i=1

�
ai (t � x � uk (t � x )� Duk (t � x ); uk ) �

� ai (t � x � uk (t � x )� Du(t � x ); uk)
�
(Diuk �Diu)�

rk =
nX
i=1

�
ai (t � x � uk (t � x )� Du(t � x ); uk)�

� ai (t � x � u(t � x )� Du(t � x ); u)
�
(Diuk �Diu)�

sk =
�
a0(t � x � uk (t � x )� Duk (t � x ); uk ) � a0(t � x � u(t � x )� Du(t � x ); u)

�
(uk � u)�
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Denoting by p�k (t � x ) the negative part of pk (t � x ) and by �k the characteristic

function of p�k , we find by (1.17)

(1�18) �p�k = �kqk + �k rk + �k sk �

(1.11), (1.12), V and II, (1.16) imply

(1�19) (�k rk ) � 0 and (�k sk ) � 0 a.e. in QT �

Since �kqk � 0, p�k � 0, (1.18), (1.19) imply that

(1�20) p�k (t � x ) � 0 a.e. in QT �

Further, by (1.15)

pk (t � x ) � �c3[juk j
p + jDujp + jujp + jk1(uk )jq + jk1(u)jq + k2(uk )]

where the right hand side is convergent in L1(QT ) and so it is equiintegrable,
which implies that (p�k ) is equiintegrable. Combining this fact with (1.20),
we obtain

(1�21) lim
k��

Z
QT

p�k = 0�

By (1.8), (1.9)

(1�22) lim sup
k��

Z
QT

pk = lim sup
k��

[A(uk )� uk � u] � lim
k��

[A(u)� uk � u] 	 0�

thus

lim sup
k��

Z
QT

p+
k = lim sup

k��

Z
QT

pk + lim
k��

Z
QT

p�k 	 0�

consequently,

(p+
k ) � 0 in L1(QT )

and so

(1�23) (pk ) � 0 in L1(QT ) and a.e. in QT

for a subsequence. Combining (1.23) with (1.15), we find that (Duk ) is
bounded a.e. Consequently, (rk ) � 0, (sk ) � 0 a.e. in QT which implies
that

(1�24) (qk ) � 0 a.e. in QT �



2005. április 23. –21:13

ON QUASILINEAR PARABOLIC FUNCTIONAL DIFFERENTIAL EQUATIONS 217

Since (Duk ) is bounded a.e. in QT , for a.e. fixed (t � x ) � QT is has a
convergent subsequence: (Duk )(t � x ) � v (t � x ). Consequently, by (1.11),
(1.12) we obtain from V

nX
i=1

[ai (t � x � u(t � x )� v (t � x ); u)� ai (t � x � u(t � x )� Du(t � x ); u)][vi(t � x )�Diu(t � x )]=0

which implies v (t � x ) = Du(t � x ) (for a.e. (t � x )) by III, i.e.

(1�25) (Duk ) � Du a.e. in QT �

By (1.22), (1.23)

(1�26) lim
k��

[A(uk )� uk � u] = 0�

further, by (1.11), (1.12), (1.25), V, Hölder’s inequality, Vitali’s theorem we
obtain that

(A(uk )) � A(u) weakly in X � �

i.e. with (1.26) we have proved (1.10).

d) Finally, by IV

[A(v )� v ]
kvkX

� c2kvk
p�1
X �

kk2(v )kL1(QT )

kvkX
=

kvk
p�1
X

�
c2 �

kk2(v )kL1(QT )

kvkpX

�
� +�

as kvkX �� which implies coercivity of A.

Remark �� According to part c) of the proof, if assumptions I–V are
satisfied such that (1.3) holds in the following weaker form:

(1�27)
nX
i=0

ai (t � x � �0� �; v )�i � c2j�j
p � [k2(v )](t � x )

then (1.8), (1.9) imply that (uk ) � u and (Duk ) � Du a.e. in QT and

(A(uk )) � A(u) weakly in X � for a suitable subsequence.
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�� Existence and uniqueness with discontinuous terms

In this section we shall consider equations (0.2) if the functions ai have
the following form:

ai (t � x � �0� �; v ) =(2�28)

b([H (v )](t � x ))a1
i (t � x � �0� �) + b̃([G(v )](t � x ))a2

i (t � x � �0� �)�

i = 1� � � � � n;

a0(t � x � �0� �; v ) = b1([G1(v )](t � x ))a1
0(t � x � �0� �) +(2�29)

b2([G2(v )](t � x ))a2
0(t � x � �0� �) + a3

0 (t � x � �0� �)

where a1
i � a

2
i (i = 0� 1� � � � � n) satisfy the Carathéodory conditions, a3

0 is
measurable;

(2�30) ja1
i (t � x � �0� �)j 	 c1(j�0j

p�1 + j�jp�1) + k1(x )

with some constant c1, k1 � Lq (Ω), i = 0� 1� � � � � n;

ja2
i (t � x � �0� �)j 	 c1(j�0j

� + j�j�)�(2�31)

with some 0 	 
�p � 1� i = 0� 1� � � � � n;

ja3
i (t � x � �0� �)j 	 c1j�0j

p�1 + k1(x )�(2�32)

Further,
nX
i=1

[a1
i (t � x � �0� �) � a1

i (t � x � �0� �
� )](�i � � �i ) �0 if � �� � ;(2�33)

nX
i=1

[a2
i (t � x � �0� �) � a2

i (t � x � �0� �
� )](�i � � �i ) � 0;(2�34)

nX
i=1

a1
i (t � x � �0� �)�i � c2j�j

p � k2(x )(2�35)

with some constant c2 �0, k2 � L1(Ω);
nX
i=1

a2
i (t � x � �0� �)�i � 0;(2�36)

a1
0 (t � x � �0� �)�0 � c2j�0j

p � k2(x );(2�37)

a3
0 (t � x � �0� �)�0 � 0�(2�38)
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The functions b� b̃ : R � R are continuous, bi : R � R are measurable
and satisfy the following conditions: there exist positive constants c3� c4� c5
such that

c3 	 b(� ) 	 c4� c3 	 b1(� ) 	 c4�(2�39)

0 	 b̃(� ) 	 c5j� j
p�1��� jb2(� )j 	 c5j� j

p�1��0(2�40)

with some 
0 �
.

Finally, the operators H�G�Gi satisfy:

H�G1 : Lp(0� T ;W 1���p(Ω)) � L1(QT ) and(2�41)

G�G2 : Lp(0� T ;W 1���p(Ω)) � Lp(QT )(2�42)

are linear and continuous operators.

Since the functions bi are locally bounded, we may define for any � �0
(see [12])

b
�
i (� ) = ess supj���̃ j��bi (�̃ )� b�i (� ) = ess infj���̃ j��bi (�̃)�

bi (� ) = lim
��0

b
�
i (� )� bi (� ) = lim

��0
b�i (� )�

Similarly define

a3��
0 (t � x � �0� �) = ess sup

j	0�	̃0j���j	�	̃j��
a3

0 (t � x � �̃0� �̃)�

a3��
0 (t � x � �0� �) = ess inf

j	0�	̃0j���j	�	̃j��
a3

0 (t � x � �̃0� �̃)�

a3
0(t � x � �0� �) = lim

��0
a3��

0 (t � x � �0� �)�

a3
0(t � x � �0� �) = lim

��0
a3��

0 (t � x � �0� �)�

Theorem ���� Assume (2.28)–(2.42)� Then for any f � Lq (0� T ;V � )

there exists u � Lp(0� T ;V )� �1 � L�(QT )� �2 � L
p

p�1��0 (QT )� �3 �
� Lq (QT ) such that

Dtu � Lq (0� T ;V � )� u(0) = 0�(2�43)

[Dtu� v ] +
nX
i=1

Z
QT

n
b([H (u)](t � x ))a1

i (t � x � u� Du) +

(2�44) + b̃([G(u)](t � x ))a2
i (t � x � u� Du)

o
Divdtdx +
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+
Z
QT

n
�1(t � x )a1

0(t � x � u� Du) + �2(t � x )a2
0(t � x � u� Du) + �3(t � x )

o
vdtdx = [f � v ]

and for a�e� (t � x ) � QT

bi ([Gi (u)](t � x )) 	 �i (t � x ) 	 bi ([Gi (u)](t � x ))� i = 1� 2�(2�45)

a3
0(t � x � u(t � x )� Du(t � x )) 	 �3(t � x ) 	 a3

0(t � x � u(t � x )� Du(t � x ))�

Remark �� Clearly, if bi � a
3
0 are Carathéodory functions, (2.42)–(2.45)

means that u is a weak solution in usual sense.

Remark �� The value of the operators H�G�Gi in (t � x ) may have e.g.
one of the following forms:

u(�(t)� x ) where � : [0� T ] � [0� T ] is a C 1 function, �(t) 	 t � � �(t) �0;Z
Ω

g1(t � x � �)u(t � �)d�;
Z
Qt

g2(t � �� x � �)u(�� �)d�d� ;

tZ
0

g3(t � �� x )u(�� x )d� ;

Z

Ω

g4(t � x � �)u(t � �)d���
Z
Γt

g5(t � �� x � �)u(�� �)d�d��� where Γt = [0� t]� �Ω�

ess sup(t �x )�QT

Z
Ω
jg1(t � x � �)jqd� ���

ess sup(t �x )�QT

Z
QT

jg2(t � �� x � �)jqd�d� ���

ess sup(t �x )�QT

Z t

0
jg3(t � �� x )jqd� ���

ess sup(t �x )�QT

Z

Ω

jg4(t � �� �)jqd�� ���

ess sup(t �x )�QT

Z
ΓT

jg5(t � �� x � �)jqd�d�� ��� 
 �1 � 1	p�

Proof of Theorem ���� Let functions j � C�
0 (R), j̃ � C�

0 (Rn+1) be
supported by the unit ball with the properties

j � j̃ � 0�
Z
j = 1�

Z
j̃ = 1
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and for any positive integer k define functions jk � j̃k by

jk (� ) = kj (k� )� j̃k (�0� �) = kn+1j̃ (k�0� k�)�

Then the convolutions (with fixed t � x )

(2�46) bk1 = b1 � jk � bk2 = b2 � jk � a3�k
0 = a3

0 � j̃k

are smooth functions (of �� (�0� �), respectively). Then we may define opera-
tors

A�Bk
1 � B

k
2 � B

k
3 : Lp(0� T ;V ) � Lq (0� T ;V � )

by

[A(u)� v ] = [A(u)� v ]T =

=
nX
i=1

Z
QT

fb([H (u)](t � x ))a1
i (t � x � u� Du) + b̃([G(u)](t � x ))a2

i (t � x � u� Du)gDivdtdx�

[Bk
l (u)� v ] = [Bk

l (u)� v ]T =
Z
QT

bkl ([Gl (u)](t � x )a l0(t � x � u� Du)vdtdx � l = 1� 2�

[Bk
3 (u)� v ] = [Bk

3 (u)� v ]T =
Z
QT

a3�k
0 (t � x � u� Du)vdtdx �

By Theorem 1.1 the operator

A + Bk
1 + Bk

2 + Bk
3 : Lp(0� T ;V ) � Lq (0� T ;V � )

is bounded, demicontinuous, pseudomonotone with respect to D(L) and it is
coercive, because we can show that the functions ai , i = 1� � � � � n , defined

by (2.28) and a0 = ak0 , defined by

ak0 (t � x � �0� �; v ) = bk1 ([G1(v )](t � x ))a1
0(t � x � �0� �) +

+bk2 ([G2(v )](t � x ))a2
0(t � x � �0� �) + a3�k

0 (t � x � �0� �)

satisfy the conditions I–V.

The conditions I, II follow easily from (2.30)–(2.32), (2.39)–(2.42) and
Young’s inequality since according to the definitions (2.46)

c3 	 bk1 (� ) 	 c4�(2�47)

jbk2 (� )j 	 c�5j� j
p�1��0 + c�6� ja3�k

0 (t � x � �0� �)j 	 c�1j�0j
p�1 + k̃1(x )(2�48)

with some constants c�1� c
�
5� c

�
6 and k̃1 � Lq (Ω).
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The condition III follows directly from (2.33), (2.34), (2.39). Further,
condition IV follows from (2.31), (2.32), (2.35)–(2.38), (2.42), (2.47), (2.48)
since by (2.32), (2.38) and (2.46)

a3�k
0 (t � x � �0� �)�0 � �k � (x )

with some k � � L1(Ω) and from (2.31), (2.42), (2.48) we obtain by using
Young’s inequality for any � �0

jbk2 ([G2(v )](t � x ))a2
i (t � x � �0� �)�0j 	

	 �ja2
i (t � x � �0� �)�0j

p
�+1 + c(�)jbk2 ([G2(v )](t � x ))j

p
p�1�� 	

	 c �1 �(j�0j
� + j�j�) + c � (�)

�
j[G2(v )](t � x )j

p
p�1��0
p�1�� + 1

	

with some constant c �1 (not depending on �) and a constant c � (�) (depend-

ing on �). Choosing sufficiently small � �0, we obtain IV with c2	2 instead
of c2 and

[k2(v )](t � x ) = c � (�)

�
j[G2(v )](t � x )j

p
p�1��0
p�1�� + 1

	

by (2.42). (k2(v ) is independent of k .)

Finally, condition V follows from (2.41), (2.42) and the fact that a1
i � a

2
i

(i = 0� 1� � � � � n), a3�k
0 satisfy the Carathéodory condition; b� b̃ are continuous,

bk1 � b
k
2 are smooth functions.

Because, if (uk ) � strongly in Lp(0� T ;W 1���p(Ω)) then by (2.41), (2.42)

(2�49) (H (uk )) � H (u)� (G1(uk )) � G1(u)

in L1(QT ) and

(2�50) (G(uk )) � G(u)� (G2(uk )) � G2(u)

in Lp(QT ), consequently, (2.49), (2.50) hold a.e. in QT for a subsequence.

So we have shown that all the conditions of Theorem 1.1 are satisfied,
thus for each k there exists

uk � Lp(0� T ;V ) with Dtuk � Lq (0� T ;V � )� uk (0) = 0�(2�51)

Dtuk + (A + Bk
1 + Bk

2 + Bk
3 )(uk ) = f �(2�52)
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Consequently, for any t � [0� T ]
tZ

0

hDtuk (�)� uk (�)id� + [A(uk )� uk ]t + [Bk
1 (uk )� uk ]t +(2�53)

+ [Bk
2 (uk )� uk ]t + [Bk

3 (uk )� uk ]t = [f � uk ]t �

Since IV is satisfied with a constant c2 and k2(v ) which are independent of
k , we obtain from (2.53) that

(2�54) kukkX � k(A + Bk
1 + Bk

2 + Bk
3 )(uk )k

X � are bounded,

consequently,
kDtukkX � is bounded,(2�55)

kukkL�(0�T ;L2(Ω)) is bounded.(2�56)

(2.54), (2.55) imply that

(uk ) � u weakly in X� strongly in Lp(0� T ;W 1���p(Ω)) and(2�57)

(Dtuk ) � Dtu weakly in X �

for a subsequence (see, e.g., [11]).

Since (uk ) � u in Lp(QT ), it is not difficult to show (by using the
assumptions of our theorem and Hölder’s inequality) that

(2�58) lim
k��

[Bk
i (uk )� uk � u] = 0 (i = 1� 2� 3)� lim

k��
[f � uk � u] = 0�

Thus, applying (2.52) to (uk � u), we find

(2�59) lim
k��

[A(uk )� uk � u] = 0�

Now we apply Remark 1 to operator A which satisfies (1.27), so by (2.57),
(2.59) we obtain that

(uk ) � u� (Dtuk ) � Dtu(2�60)

a.e. in QT and (A(uk )) � A(u) weakly in X �

for a subsequence.

By (2.47) (bk1 ([G1(uk )](t � x ))) is a bounded sequence in L�(QT ), i.e. it

is a bounded sequence of linear continuous functionals on L1(QT ), thus there
exists �1 � L�(QT ) such that for a subsequence

(2�61) lim
k��

Z
QT

bk1 (G1(uk ))gdtdx =
Z
QT

�1gdtdx for any g � L1(QT )�
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Consequently, for any v � XZ
QT

b1(G1(uk ))a1
0 (t � x � uk � Duk )vdtdx =

Z
QT

b1(G1(uk ))a1
0 (t � x � u� Du)vdtdx+

+
Z
QT

b1(G1(uk ))[a1
0(t � x � uk � Duk ) � a1

0 (t � x � u� Du)]vdtdx �
Z
QT

�1vdtdx

because the second term in the right hand side of the equality tends to 0
by (2.47), (2.60) and Vitali’s theorem. Thus

(2�62) (Bk
1 (uk )) � �1a

1
0 (t � x � u� Du) weakly in X � �

Similarly, a3�k
0 (t � x � uk � Duk ) is bounded in Lq (QT ), hence there exists

�3 � Lq (QT ) such that (for a subsequence)

(2�63) a3�k
0 (t � x � uk � Duk ) � �3 weakly in Lq (QT ) as k ���

Finally,

(2�64) (bk2 (G2(uk ))) � �2 weakly in L
p

p�1��0 (QT )�

hence, by using Hölder’s inequality, we obtain that

(2�65) (Bk
2 (uk )) � �2a

2
0 (t � x � u� Du) weakly in X �

with some �2 � L
p

p�1��0 (QT ). By using (2.60)–(2.65), we obtain from (2.52)
as k �� the equality (2.44).

To complete the proof of our theorem, we have to show the inequali-
ties (2.45). Now we use arguments of [12]. Because of (2.57), (2.41), (2.42)

(2�66) G1(uk ) � G1(u)� G2(uk ) � G2(u)

in L1(QT ) and so for a subsequence (2.66) holds a.e. in QT . Thus for arbitrary
small number a �0 there exists a set � � QT such that

�(� ) �a and Gi (uk ) � Gi (u) uniformly in QT n ��(2�67)

Gi (u) � L�(QT n � )� (i = 1� 2)�

Hence for any � �0 there exists k0 �2	� such that

(2�68) j[Gi (uk )](t � x )� [Gi (u)](t � x )j��	2 if (t � x ) � QT n �� k �k0�
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By definition bki ([Gi (uk )](t � x ) is an average of bi over the interval centered

in [Gi (uk )](t � x ) with radius 1	k ��	2 and this interval is contained by the
interval centered in [Gi (u)](t � x ) with radius � , because of (2.68). Thus

b�i ([Gi (u)](t � x )) 	 bki ([Gi (uk )](t � x )) 	 b
�
i ([Gi (u)](t � x ))�

Hence for any � � C�
0 (QT ), � � 0Z

QT n�

b�i ([Gi (u)](t � x ))�(t � x )dtdx 	
Z

QT n�

bki ([Gi (uk )](t � x ))�(t � x )dtdx 	

	

Z
QT n�

b
�
i ([Gi (u)](t � x ))�(t � x )dtdx

which implies by (2.61), (2.64)Z
QT n�

b�i ([Gi (u)](t � x ))�(t � x )dtdx 	
Z

QT n�

�i (t � x )�(t � x )dtdx 	(2�69)

	

Z
QT n�

b
�
i ([Gi (u)](t � x ))�(t � x )dtdx �

The functions Gi (u) (i = 1� 2) are bounded in QT n � thus we obtain
from (2.69) as � � 0Z

QT n�

bi ([Gi (u)](t � x ))�(t � x )dtdx 	
Z

QT n�

�i (t � x )�(t � x )dtdx

	

Z
QT n�

bi ([Gi (u)](t � x ))�(t � x )dtdx �

Since � � C�
0 (QT ) is an arbitrary nonnegative function, we find

(2�70) bi ([Gi (u)](t � x )) 	 �i (t � x ) 	 bi ([Gi (u)](t � x ))� i = 1� 2

for a.e. (t � x ) � QT n � . The equality (2.70) holds for arbitrary a �0,
�(� ) �a , � � QT , thus it is valid a.e. in QT .

Similarly can be proved the inequality for �3(t � x ), by using (2.60).

If certain additional conditions are satisfied then one can prove unique-
ness of the solution.
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Theorem ���� Let the assumptions of Theorem ��	 be satis
ed such that

b(� ) = b̃(� ) = b1(� ) = 1 for all � � R�

a1
i (t � x � �0� �) = �1

i (t � x � �)� i = 1� � � � � n

�it is not depending on �0��

a1
0 (t � x � �0� �) = �1

0 (t � x � �0)

�it is not depending on �� and the function �0 � �1
0 (t � x � �0) is monotone

nondecreasing for a�e� (t � x )� Further� a2
0 (t � x � �0� �) = 1� b2 satis
es a global

Lipschitz condition and G2 is continuous with respect to the norm of L2(QT )
such that

ke�c0t [G2(ec0
 ũ)]kL2(QT ) 	 constkũkL2(QT )

for any constant c0 �0 where the constant is not depending on c0� ũ � �e
c0
 ũ

denotes the function (�� �) 
� ec0
 ũ(�� �)�� Finally�

a3
0 (t � x � �0� �) = �3

0 (�0)

where �3
0 is monotone nondecreasing�

Then the solution of (2.43)–(2.45) is unique�

Proof� Assume that u and u � are solutions of (2.43)–(2.45). Define ũ

and ũ � by

ũ(t � x ) = e�c0tu(t � x )� ũ � (t � x ) = e�c0tu � (t � x )

with some (sufficiently large) constant c0 �0. Transforming (2.44) to ũ and

ũ � and applying them to v = ũ � ũ � , we obtain

[Dt (ũ � ũ � )� ũ � ũ � ] + c0

Z
QT

(ũ � ũ � )2dtdx+(2�71)

+
Z
QT

e�2c0t
nX
i=1

h
�1
i (t � x � ec0tDũ)��1

i (t � x � ec0tDũ � )
i
(ec0tDi ũ�ec0tDi ũ

� )dtdx+

+
Z
QT

e�2c0t
nX
i=1

h
�2
i (t � x � ec0tDũ)��2

i (t � x � ec0tDũ � )
i
(ec0tDi ũ�ec0tDi ũ

� )dtdx+
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+
Z
QT

e�2c0t
h
�1

0 (t � x � ec0t ũ) � �1
0 (t � x � ec0t ũ � )

i
(ec0t ũ � ec0t ũ � )dtdx+

+
Z
QT

e�2c0t
h
�2(t � x )� � �2 (t � x )

i
(ec0t ũ � ec0t ũ � )dtdx+

+
Z
QT

e�2c0t
h
�3(t � x )� � �3 (t � x )

i
(ec0t ũ � ec0t ũ � )dtdx = 0�

By the assumptions of our theorem, several terms in (2.71) are nonnega-
tive, so we obtain from (2.71)

c0

Z
QT

(ũ � ũ � )2dtdx +
Z
QT

e�2c0t [�2(t � x )�� �2 (t � x )](u�u � )dtdx +(2�72)

+
Z
QT

e�2c0t [�3(t � x )�� �3 (t � x )](u� u � )dtdx 	 0�

Since �3
0 is monotone nondecreasing and

lim
��u(t �x )�0

�3
0 (� ) = �3

0(u(t � x )) 	 �3(t � x ) 	 �3
0(u(t � x )) = lim

��u(t �x )+0
�3

0 (� )

and, similarly,

lim
��u� (t �x )�0

�3
0 (� ) 	 � �3 (t � x ) 	 lim

��u� (t �x )+0
�3

0 (� )�

we obtain that u(t � x ) �u� (t � x ) implies

� �3 (t � x ) 	 lim
��u� (t �x )+0

�3
0 (� ) 	 lim

��u(t �x )�0
�3

0 (� ) 	 �3(t � x )

and u(t � x ) �u� (t � x ) implies �3(t � x ) 	 � �3 (t � x ), consequently, the third
term in (2.72) is nonnegative.

Further, since b2 is (globally) Lipschitz continuous, for the second term
in (2.72) we have the estimate


Z

QT

e�2c0t [�2(t � x )� � �2 (t � x )](u � u � )dtdx



=
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=



Z
QT

e�c0tfb2([G2(u)](t � x ))� b2([G2(u � )](t � x ))g(ũ � ũ � )dtdx



	

	 c̃ke�c0t [G2(u)�G2(u � )]kL2(QT )kũ � ũ � kL2(QT ) 	 ĉkũ � ũ � k2
L2(QT )

with some constants c̃� ĉ, not depending on c0. Thus, choosing sufficiently
large c0, from (2.72) we obtain

kũ � ũ � k2
L2(QT )

= 0� i.e. u = u � a.e.
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Terjedelem: 17,16 A/4 ı́v. Példányszám: 500
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