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Herrn Professor J. Molnár seinem 80. Geburtstag gewidmet

�Juli ��� �����

1. Einleitung

1.1. Wir betrachten Punktsysteme in Ebenen konstanter Krümmung,
die keinen Häufungspunkt haben. Im folgenden werden diese Punktsysteme
diskret genannt.

Es sei fPig ein diskretes Punktsystem und Pk � fPig. Es bezeichne
Dk die Menge derjenigen Punkte der Ebene, deren Abstand von Pk kleiner
oder gleich dem Abstand von den anderen Punkten des Punktsystems ist. Die
Menge Dk ist die zum Punkt Pk gehörige Dirichlet–Voronoische Zelle (kurz
D–V Zelle). Die Menge der zum Punktsystem fPig gehörigen D–V Zellen
bilden eine normale Zerlegung der Ebene in konvexe Vielecken, wenn jede
Zelle endlich ist.

Die Punkte Pj � Pk � fPig j �= k sind benachbart, wenn die entsprechen-
den D–V Zellen Dj und Dk eine gemeinsame Seite haben. Mit Qk1� Qk2� � � �

� � � � Qks bezeichnen wir die Ecken von Dk .

In dieser Arbeit untersuchen wir die Extrema der Inhalte und Umfänge
der D–V Zellen von diskreten Punktsystemen, wobei die Punktsysteme be-
stimmte Bedingungen erfüllen. Wir charakterisieren die Punktsysteme nach
diesen Bedingungen.

J. Molnár [5] hat Kreissysteme unter angegebenen Bedingungen un-
tersucht. Sein Problem kann man auch folgenderweise formulieren. Die
Kreismittelpunkte werden als Punkte des Punktsystems fPig betrachtet. Wir
nehmen an, dass PjPk � 2r für beliebige Punkte Pj � Pk � fPig, j �= k und
PkQkq � R (q = 1� 2� � � � � s) für jeden Punkt Pk � fPig, wobei 0 �r �R.
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Die Grundaufgabe ist, den Inhalt (Umfang) der D–V Zelle Dk zu mini-
malisieren und die Zahlen r� R finden, für die jede D–V Zelle von fPig den
minimalen Inhalt (Umfang) hat.

J. Horváth und M. I. Stogrin [3] untersuchten solche diskrete Punktsys-
teme fPig, für die PjPk � 2r für beliebige benachbarte Punkte Pj � Pk � fPig
und PkQkq � R (q = 1� 2� � � � � s) für jeden Punkt Pk � fPig.

In diesem Fall ist die Frage, was das Maximum der Inhalte (Umfänge)
der D–V Zellen ist, und für welche r und R Punktsysteme fPig existieren,
für die jede D–V Zelle den maximalen Inhalt (Umfang) hat.

1.2. In diesem Artikel beschäftigen wir uns mit den folgenden zwei
Problemen.

1.2.1. Wir nehmen an, dass PjPk � 2r für beliebige Punkte Pj � Pk �
� fPig, j �= k und PkQkq � R (q = 1� 2� � � � � s) für jeden Punkt Pk � fPig
gelten, wobei 0 �r �R.

1.2.2. Es gelten PjPk � 2r für beliebige benachbarte Punkte Pj � Pk �
� fPig und PkQkq � R (q = 1� 2� � � � � s) für jeden Punkt Pk � fPig, wobei
0 �r �R.

In beiden Fällen ist die Aufgabe, das Maximum bzw. Minimum der
Inhalte (Umfänge) der D–V Zellen zu bestimmen und die Punktsysteme fPig
zu karakterisieren, für welche jede D–V Zelle den maximalen bzw. minimalen
Inhalt (Umfang) hat.

2. Bezeichnungen, Hilfssätze

Es bezeichne k (K� r ) den Kreis vom Mittelpunkt K und Radius r , weit-

erhin k̂ (K� r ) seinen Rand. Es ist int k (K� r ) = k (K� r )nk̂(K� r ).

Hilfssatz �� Es sei der Kreis k (K� r ) gegeben� Wir nehmen an� dass

� (AKC ) �� (BKC ) mit A�B� C � k̂(K� r ) gilt� Sind A und B �xe Punkte

und nimmt � (BKC ) zu� dann nimmt der Inhalt und der Umfang des Dreiecks

ABC streng monoton zu�

Der Beweis des Hilfssatzes findet man in [4] für E2, in [2] für H2 und S2.

Hilfssatz �� Das einem Kreis k (K� r ) einbeschriebene regul�are n�Eck
besitzt unter allen in k (K� r ) enthaltenen konvexen n�Ecken den gr�osstm�og�

lichen Inhalt und Umfang�
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Beweis in [4] für E2, in [2] für H2 und S2.

Hilfssatz �� Es sei der Kreis k (K� r ) und die Punkte A�B� C � k̂ (K� r )
gegeben� Es seien a� b� c die Tangenten an k (K� r ) mit den Ber�uhrunspunkten

A�B� C � Es sei A1 = a � c und B1 = b � c� Gilt � (AKC ) �� (BKC ) und
nimmt � (BKC ) zu� dann nimmt der Inhalt und der Umfang des F�unfecks

KAA1B1B streng monoton ab�

Beweis in [4] für E2, in [2] für H2 und S2.

Hilfssatz �� Das einem Kreis k (K� r ) umbeschriebene regul�are n�Eck
besitzt unter allen den Kreis k (K� r ) enthaltenden n�Ecken den kleinstm�og�

lichen Inhalt und Umfang�

Beweis in [4] für E2, in [2] für H2 und S2.

Es seien die konzentrischen Kreise k (K� r ) und k (K�R) mit r �R
gegeben. Mit H (r� R) bezeichnen wir das konvexe Vieleck, das dem Kreis
k̂ (K�R) einbeschrieben ist und dessen Seiten mit Ausnahme höchstens einer
den Kreis k̂ (K� r ) berühren. Das Vieleck H (r� R) wurde HAJÓS-Vieleck
genannt.

Hilfssatz � �Haj 	os Lemma
� Es seien die konzentrischen Kreise k (K� r )
und k (K�R) mit r �R angegeben� Unter den konvexen Vielecken� die den

Kreis k (K� r ) enthalten und deren Ecken keine innere Punkte von k (K�R)
sind� besitzt das Vieleck H (r� R) den kleinstm�oglichen Inhalt und Umfang�

Beweis in [5].

Es seien die konzentrischen Kreise k (K� r ) und k (K�R) mit r �R
gegeben. Mit M (r� R) bezeichnen wir das in k (K�R) enthaltene konvexe Vi-
eleck, dessen Ecken mit Ausnahme höchstens einer auf der Kreislinie k̂(K�R)
liegen und dessen Seiten den Kreis k̂ (K� r ) berühren.

Hilfssatz �� Es seien die konzentrischen Kreise k (K� r ) und k (K�R) mit

r �R angegeben� Unter den konvexen Vielecken� deren Seiten die Kreislinie

k̂ (K� r ) schneiden oder ber�uhren und deren Ecken im Kreis k (K�R) liegen�
besitzt das Vieleck M (r� R) den gr�osstm�oglichen Inhalt und Umfang�

Beweis in [3].

Mit R0(r ) bezeichnen wir den Umkreisradius des regulären Dreiecks von
der Seitenlänge 2r .
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Hilfssatz �� Nehmen wir an� dass die Ungleichung

min(AB�AC�BC ) � 2r

f�ur die Seiten des Dreiecks ABC gilt� Der Umkreisradius von ABC ist im

Fall AB = AC = BC = 2r minimal�

Beweis� Der Beweis ist sehr einfach.

Es sei k (K�R) der Umkreis des Dreiecks ABC , wobei AB = 2r und
min(AC�BC ) � 2r mit r �R gelten. Es bezeichne �0 den Winkel � (ACB),

wenn AC = BC in H2 und AB = AC in E2 und S2 gilt.

Hilfssatz � Es sei R der Umkreisradius des Dreiecks ABC � f�ur das

min(AB�AC�BC ) � 2r gilt� Dann sind die Winkel von ABC nicht kleiner

als �0� Der Winkel �0 tritt ein� wenn AB = 2r und AC = BC in H2�

AB = AC in E2 und S2 gilt�

Beweis in [3].

Mit R1(r ) bezeichnen wir den Umkreisradius des regulären Dreiecks
Δ(r ), dessen Inkreisradius r ist.

Hilfssatz �� Es sei der Kreis k (K� r ) gegeben� Es gibt ein dem Kreis

k (K� r ) umbeschriebenes regul�ares Dreieck Δ(r ) f�ur alle r � R+ in der euk�

lidischen Ebene� Der Umkreisradius dieses regul�aren Dreiecks ist R1(r ) = 2r �

In der sph�arischen Ebene existiert Δ(r ) f�ur 0 �r ��
2 und sein Umkreis�

radius ist

R1(r ) = arcsin
2 sin rp

1 + 3 sin2 r
�

In der hyperbolischen Ebene existiert Δ(r ) nur f�ur 0 �r �arsh 1p
3
und

der Umkreisradius von Δ(r ) ist

(1) R1(r ) = arsh
2sh rp

1� 3sh2r
�

Im Fall r = arsh 1p
3

ist Δ(r ) ein asymptotisches Dreieck.

Der Beweis beruht auf einfachen Rechnungen.

Definition� Es sei 0 �r �R � R1(r ). Es seien die Kreise k (K� r ) und
k (K�R) gegeben. Das Dreieck ABC (falls es existiert) ist vom Typ Δ1(r� R),

wenn sein Inkreis k (K� r ) ist, A�B � k̂(K�R) und die Ecke C kein innerer
Punkt des Kreises k (K�R) ist.
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Hilfssatz ��� In der sph�arischen Ebene existiert ein Dreieck vom Typ

Δ1(r� R) f�ur alle 0 �r ��
2 und 0 �r �R � R1(r )� In der euklidischen

Ebene existiert ein Dreieck vom Typ Δ1(r� R)� wenn
p

2r �R � 2r ist�

Es gibt ein Dreieck vom Typ Δ1(r� R) in der hyperbolischen Ebene� wenn

0 �shr �1p
3
und R3(r ) �R � R1(r ) sind� wobei

(2) R3(r ) = arsh
p

2 shr

s
1� sh2r + shr cosh r

1� 3sh2r
�

Im Fall R = R3(r ) sind die Seiten AC und BC des Dreiecks ABC parallel�

Wir legen den Beweis nicht ausführlich dar. Die Bedingungen für die
Existenz des Dreiecks vom Typ Δ1(r� R) ergeben sich daraus, dass sich die
Tangenten an k (K� r ) durch A und B schneiden und der Schnittpunkt kein
innerer Punkt des Kreises k (K�R) ist.

Hilfssatz ��� Es sei R�R1(r )� Es seien die Kreise k (K� r ) und k (K�R)
gegeben� Es gibt kein Dreieck ABC � das den Mittelpunkt K enth�alt� dessen

Seiten sich den Kreis k̂ (K� r ) ber�uhren oder schneiden und dessen Ecken

keine innere Punkte von k (K�R) sind�

Die Behauptung des Hilfssatzes folgt daraus, dass R1(r ) der Umkreisra-
dius des regulären Dreiecks mit Inkreis k (K� r ) ist.

Hilfssatz ��� Es seien r � R+ und
p

2r �R � 2r in E2� 0 �r ��
2

und 0 �r �R � R1(r ) in S2� 0 �shr �1p
3
und R3(r ) �R � R1(r ) in

H2� Es seien die Kreise k (K� r ) und k (K�R) gegeben� Wir nehmen an� dass

K ein innerer Punkt des Dreiecks ABC ist� die Seiten von ABC sich den

Kreis k̂(K� r ) ber�uhren oder schneiden und die Ecken von ABC keine innere

Punkte von k (K�R) sind� Dann ist der Inhalt und der Umfang von ABC nicht

gr�osser als der Inhalt und der Umfang von Δ1(r� R)� Gleichheit tritt dann und

nur dann ein� wenn ABC �= Δ1(r� R) ist�

Beweis�

1. Wir nehmen an, dass k (K� r ) der Inkreis des Dreiecks ABC ist und
AB � min(AC�BC ) gilt. Wir halten die Seitengeraden AC , AB fest
und bewegen die Ecke B auf der fixen SeitengeradenAB gegen A bis der

Lage B � k̂(K�R). Nach Hilfssatz 3 nimmt der Inhalt und der Umfang
des Dreiecks ABC streng monoton zu. Eine ähnliche Lageänderung
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wird im Fall von A wiederholt, d.h., wir halten die Seitengeraden AB ,
BC fest und bewegen A gegen B bis Lage A � k̂ (K�R). Der Inhalt
und der Umfang von ABC nimmt streng monoton zu. Endlich haben
wir ein Dreieck vom Typ Δ1(r� R). Die Existenz von Δ1(r� R) ist nach
Hilfssatz 10 garantiert.

2. Nehmen wir an, dass die Ecken des Dreiecks ABC keine äussere Punkte
von k (K�R1(r )) sind. Nach Hilfssatz 2 ist der Inhalt und der Umfang
von ABC maximal, wenn ABC dem Kreis k̂(K�R1(r )) einbeschrieben

ist. In diesem Fall berühren die Seiten des Dreiecks den Kreis k̂ (K� r )
(vgl. Fall 1).

3. Nach den Bedingungen unseres Hilfssatzes kann der Fall (vgl. Hilfs-
satz 11) nicht vorkommen, in dem A� B� C �� int k (K�R1(r )) und min-
destens eine der Ecken ein äusserer Punkt des Kreises k (K�R1(r )) ist.

4. Es gelte A � int k (K�R1(r )) und B�C �� int k (K�R1(r )). Wir drehen
die Gerade BA um B und die Gerade CA um C bis der Lage, in
der die entspechende Seitengeraden den Kreis k̂ (K� r ) berühren. Der
Schnittpunkt, der wieder mit A bezeichnet wird, kann kein äusserer Punkt
von k (K�R1(r )) (vgl. Fall 3) sein. Der Schnittpunkt existiert also und
A �� k (K�R) gilt. Das neue Dreieck ABC besitzt einen grösseren Inhalt
und Umfang als das ursprüngliche. Es ist leicht einzusehen, dass BC �
�max(AC�AB) gilt. Es sei AB �AC . Dann drehen wir die Gerade BC
um B . Während der Anwendung der Drehung erreichen wir entweder
den Fall 1, d.h., BC berührt den Kreis k̂(K� r ), oder den Fall AC = AB .
Der Inhalt und der Umfang des Dreiecks ABC hat wieder zugenommen.
Im letzteren Fall verschieben wir das Dreieck ABC entlang AK bis der
Lage, in der BC den Kreis k̂ (K� r ) berührt oder A � k̂ (K�R) gilt. In
beiden Fällen drehen wir die Gerade BA um B und die Gerade CA um
C bis der Lage, in der die entspechende Seitengeraden den Kreis k̂ (K� r )

berühren. Wenn BC die Tangente von k̂ (K� r ) ist, dann haben wir den
Fall 1 erreicht. Schneidet BC den Kreis k̂ (K� r ), dann wiederholen wir
die Verschiebung und die entsprechenden Drehungen. Die Strecke AK
nimmt streng monoton zu, deshalb erreichen wir mit der Wiederholung
der Verschiebungen und der Drehungen den Fall 1. Der Inhalt und der
Umfang von ABC hat inzwischen zugenommen.

5. Es sei A�B � int k (K�R1(r )) und C �� int k (K�R1(r )). Wir drehen
die Geraden CA und CB um C und die Gerade AB bleibt fest. Wir
erreichen eine der folgenden Fällen. Mindestens eine der neuen Ecken



2019. május 4. –22:36
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A und B liegt auf k̂(K�R1(r )) (Fall 4), oder beide Seitengeraden CA
und CB berühren k̂ (K� r ). Im letzteren Fall, wenn CA �CB ist, dann
drehen wir BA um B bis der Lage, in der BA die Tangente von k̂ (K� r )
ist, oder AC = BC gilt. Es ist klar, dass der Inhalt und der Umfang
des Dreiecks ABC während Anwendung der obigen Transformationen
zugenommen haben. Endlich, im Fall AC = BC verschieben wir die
Gerade AB in Richtung KC bis zur Berührunglage an k̂(K� r ). Nach
Hilfssatz 11 kann nur A�B � int k (K�R1(r )) vorkommen und wir haben
Fall 1 erreicht.

Wir bemerken, dass auch ein einfacherer Beweis in E2 und S2 existiert.

Definition� Wir betrachten ein normales Mosaik in der Ebene konstan-
ter Krümmung, dessen Flächen Vielecke sind. Das Mosaik wird A�sym�

metrisch genannt, wenn zwei beliebige benachbarte Flächen symmetrisch
bezüglich der gemeinsamen Kantengeraden liegen.

Die Winkel des Dreiecks ABC vom Typ Δ1(r� R) werden mit �� � und
	 bezeichnet, wobei � = � � 	 .

Hilfssatz ��� In der Ebene konstanter Kr�ummung existieren A�sym�

metrische Mosaike� deren Fl�achen Dreiecke vom Typ Δ1(r� R) sind� Die

folgenden F�allen sind m�oglich�

Δ1(r� R) ist regul�ar in E2;

Δ1(r� R) ist regul�ar oder � = � =



2
� 	 =

2

v

mit v = 5� 6� 7� � � � in S2�

Δ1(r� R) ist regul�ar oder � = � =



u
� 	 =

2

v

mit u = 3� 4� � � � und

v = 2u+1� 2u+2� � � � in H2�

Beweis� Aus der Definition der A-Symmetrie folgt, dass gleiche Winkel
herum eine Ecke des Mosaiks liegen. Die regulären Dreiecksmosaike sind
vom Typ Δ1(r� R). Im folgenden nehmen wir an, dass das Dreieck ABC vom
Typ Δ1(r� R) und nicht regulär ist. Dann gilt AC = BC �AB . Es ist klar,
dass die Anzahl der Dreiecke herum A und herum B gerade ist. Es bezeichne
2u die Anzahl der Dreiecke herum A und herum B und v die Anzahl der
Dreiecke herum C . Dann ist � = � = �

u , 	 = 2�
v . Wir nehmen an, dass u � 2

und v � 3 sind.

Die Summe der Winkel von ABC ist Ω = 2�
u + 2�

v . Wegen AC = BC �

�AB gilt �
u �

2�
v , woraus ergibt sich v �2u .



2019. május 4. –22:36
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In der euklidischen Ebene gilt Ω = 
 , d.h. (u � 2)(v � 2) = 4. Die
Gleichung hat nur die Lösung u = 3� v = 6 unter den Bedingungen u �
2� v � 3 und v �2u , d.h. das Dreieck ABC kann nur regulär sein.

In der sphärischen Ebene gilt Ω �
 , d.h. (u � 2)(v � 2) �4. Unter den
obigen Bedingungen ergeben sich als Lösungen u = 2, v = 5� 6� � � �, d.h., es

gelten � = � = �
2 , 	 = 2�

v mit v = 5� 6� 7� � � � für die Winkel von ABC .

In der hyperbolischen Ebene gilt die Ungleichung (u � 2)(v � 2) �4.
Es ist leicht zu zeigen, dass die Gleichung nur die im Hilfssatz angegebenen
Lösungen hat.

Bezeichnung� Wir betrachten ein Dreieck ABC vom Typ Δ1(r� R), das
zu den im Hifssatz 13 angegebenen Parametern u und v gehört. Es sei K
der Inkreismittelpunkt von ABC , r (u� v ) sein Inkreisradius und AK = BK =
= R(u� v ).

Bemerkung� Ist AC jjBC und � (CAB) = � (CBA) = �
u , dann existiert

ein A-symmetrisches Mosaik für u � 3, dessen Flächen zu ABC kongruente
Dreiecke sind. Es bezeichne K den Inkreismittelpunkt des Dreiecks ABC ,
r (u�	) sein Inkreisradius und AK = BK = R(u�	).

Bezeichnung� Es sei R2(r ) der Umkreisradius des gleichschenkligen

Dreiecks ABC , wobei R2(r ) = 1
2AB ist, die Seiten AC und BC den Kreis

k (r ) berühren und der Halbierungspunkt von AB der Mittelpunkt von k (r ) ist.

Durch einfache Rechnungen ergibt sich die Behauptung von

Hilfssatz ��� In der euklidischen Ebene gilt R2(r ) =
p

2r � in der

sph�arischen Ebene ist R2(r ) = arcsin
p

2 sin rp
1+sin2 r

� In der hyperbolischen Ebene

existiert R2(r ) nur f�ur 0 �r �arsh1 und R2(r ) = arsh
p

2shrp
1�sh2r

� Ist r = arsh1�

dann sind zwei Seiten des Dreiecks ABC 	vgl� Bezeichnung oben
 parallel�

Definition� Es sei 0 �r �R und R2(r ) �R � R1(r ). Die Kreise
k (K� r ) und k (K�R) sind gegeben. Das Dreieck ABC ist vom Typ Δ2(r� R),

wenn sein Umkreis k (K�R) ist, die Seiten AC und BC den Kreis k̂ (K� r )
berühren und die Seite AB den Kreis k̂ (K� r ) schneidet oder im Fall R =
= R1(r ) berührt.

Das Dreieck vom Typ Δ2(r� R) existiert unter den Bedingungen im Hilfs-
satz 14 und ist gleichschenklig.
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Definition� Es sei 0 �r �R � R2(r ). Die Kreise k (K� r ) und k (K�R)
sind gegeben. Das Dreieck ABC ist vom Typ Δ3(r� R), wenn sein Umkreis
k (K�R), AB der Durchmesser dieses Kreises ist und mindestens eine der
Seiten AC und AB (im Fall R = R2(r ) beide Seiten) den Kreis k̂ (K� r )
berühren.

Hilfssatz ��� Es sei 0 �r �R � R1(r )� wobei r ��
2 in S2 und

r �arsh1 in H2 sind� Es seien die Kreise k (K� r ) und k (K�R) gegeben� Wir

nehmen an� dass K kein �ausserer Punkt des Dreiecks ABC ist� die Seiten von

ABC den Kreis k̂ (K� r ) schneiden oder ber�uhren und die Ecken von ABC

keine innere Punkte von k (K�R) sind� Der Inhalt und der Umfang von ABC

ist im Fall R2(r ) �R � R1(r ) f�ur ein Dreieck vom Typ Δ2(r� R)� im Fall

r �R � R2(r ) f�ur ein Dreieck vom Typ Δ3(r� R) minimal�

Beweis� Sind die Ecken A� B� C äussere Punkte von k (K�R), dann
erhalten wir ein Dreieck vom kleineren Inhalt und Umfang, wenn wir die
Schnittpunkte der Halbgeraden KA� KB� KC und der Kreislinie k̂(K�R)

nehmen. Das neue Dreieck ABC ist dem Kreis k̂ (K�R) einbeschrieben. Es
sei AB � max(AC�BC ). Wir halten die Ecken B und C fest und bewegen

die Ecke A gegen C auf der Kreislinie k̂(K�R). Dann erreichen wir eine der
folgenden Lagen. Die Seite CA berührt k̂ (K� r ), oder AB ist der Durchmesser

von k̂ (K�R). Im ersten Fall halten wir die Ecken A und C fest und bewegen
die Ecke B gegen C auf k̂ (K�R) bis der Lage, in der AB eine Tangente

von k̂(K� r ), oder AB der Durchmesser von k̂ (K�R) ist. Nach Hilfssatz 1
nimmt der Inhalt und der Umfang von ABC während Anwendung der obigen
Änderungen von ABC streng monoton ab.

Ist R2(r ) �R � R1(r ), dann haben wir ein Dreieck vom Typ Δ2(r� R)

erhalten. Gilt aber r �R � R2(r ), dann istAB der Durchmesser von k̂(K�R).
Es sei BC � AC . Jetzt bewegen wir C gegen B auf k̂(K�R). Dann erreichen

wir die Lage, in der BC den Kreis k̂ (K� r ) berührt, d.h. das Dreieck ABC
vom Typ Δ3(r� R) ist und kleineren Inhalt und Umfang als das ursprüngliche
hat.

Die Winkel des Dreiecks ABC vom Typ Δ2(r� R) werden mit �� � und
	 bezeichnet, wobei � = � � 	 .
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Hilfssatz ��� Es sei 0 �r �R2(r ) �R � R1(r )� 	vgl� Hilfssatz ��
� In
der Ebene konstanter Kr�ummung existieren A�symmetrische Mosaike� deren

Fl�achen Dreiecke vom Typ Δ2(r� R) sind� Nur die folgenden F�allen sind

m�oglich�

Δ2(r� R)� ist regul�ar in E2;

Δ2(r� R)� ist regul�ar oder � = � =



u
� 	 =

2

v

mit u = 2� v = 3;

u = 3� v = 4� 5 in S2;

Δ2(r� R)� ist regul�ar oder � = � =



u
� 	 =

2

v

mit u = 4� 5� � � �

und v = u + 1� u + 2� � � � � 2u � 1 in H2�

Der Gedankengang des Beweises ist derselbe wie im Hilfssatz 13. Wir
verwenden, dass der Umkreismittelpunkt des Dreiecks vom Typ Δ2(r� R) ein
innerer Punkt des Dreiecks ist. In diesem Fall gelten die Ungleichungen
� � 	 �2� .

Bemerkung� In der sphärischen Ebene ist die Anzahl der Dreiecke vom
Typ Δ2(r� R) im entsprechenden A-symmetrischen Mosaik die folgende.
u = 2� v = 3 : 6 Dreiecke;
u = 3� v = 4 : 24 Dreiecke, die Ecken des A-symmetrischen Mosaiks sind

die Ecken und Flächenmittelpunkte des Mosaiks f4� 3g;
u = 3� v = 5 : 60 Dreiecke, die Ecken des A-symmetrischen Mosaik sind

die Ecken und Flächenmittelpunkte des Mosaiks f5� 3g.

Bezeichnung� Wir betrachten ein Dreieck ABC vom Typ Δ2(r� R), das
zu den im Hilfssatz 16 angegebenen Parametern u und v gehört. Es sei K der
Umkreismittelpunkt und R(u� v ) der Umkreisradius von ABC . Es bezeichne
r (u� v ) den Radius des Kreises vom Mittelpunkt K , der die Schenkel von
ABC vom Typ Δ2(r� R) berührt.

Definition� Wir betrachten ein normales Mosaik in der Ebene konstan-
ter Krümmung, dessen Flächen Dreiecke vom Typ Δ2(r� R) sind. Das Mo-
saik wird C �symmetrisch genannt, wenn zwei beliebige benachbarte Dreiecke
symmetrisch bezüglich des Mittelpunktes der gemeinsamen Seite liegen.

Wir nehmen an, dass die benachbarten Dreiecksflächen vom Typ Δ2(r� R)
des Mosaiks entweder symmetrisch bezüglich der gemeinsamen Kantengera-
den, oder symmetrisch bezüglich des Mittelpunktes der gemeinsamen Kante
liegen und beide Symmetrien vorkommen. Dann wird das Mosaik G�symmet�

risch genannt.
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Haben zwei benachbarte Dreiecke des Mosaiks beide Symmetrien, dann
nehmen wir immer nur ihre A-Symmetrie in Betracht.

Hilfssatz ��� Es sei r eine positive reelle Zahl� zu der ein Dreieck ABC
vom Typ Δ2(r� R) geh�ort� Es sei weiterhin R2(r ) �R � R1(r ) 	vgl� Hilfs�

satz �
� In der Ebene konstanter Kr�ummung existieren G�symmetrische

Mosaike mit Dreiecks��achen vom Typ Δ2(r� R) nur in den folgenden F�allen�

In der euklidischen Ebene gilt � = � �	 ��
2 f�ur die Winkel von

Δ2(r� R)�

In der sph�arischen Ebene existieren G�symmetrische Mosaike nicht�

In der hyperbolischen Ebene existieren zwei Type der Mosaike� Im ersten

Typ liegen 2p Winkel � und q Winkel 	 herum einer beliebigen Ecke des

Mosaiks und es gilt 2p� + q	 = 2
 � wobei �
p+q �� �2�

2p+q � F�ur die

m�oglichen Werte von p und q gelten die folgenden� q = 1� p�3; q = 2� p�
�2; q = 3� 4� p � 2; q � 5� p � 1�

Im zweiten Typ liegen entweder 2p1 Winkel � und q1 Winkel 	 herum

einer Ecke des Mosaiks� oder 2p2 Winkel � und q2 Winkel 	 herum einer

Ecke� Dann gelten

� = � =
q


p1q + q1p
und 	 =

2p

p1q + q1p

�

wobei p = p1�p2 �0� q = q2�q1 �0� 1 �p�q �2p� q1 � 1� p1 � 1+p�

Beweis�

1. In der euklidischen Ebene existieren G-symmetrische Mosaike, dessen
Flächen nicht reguläre kongruente Dreiecke vom Typ Δ2(r� R) sind. Be-
trachten wir nämlich ein beliebiges gleichschenkliges Dreieck ABC ,
wobei � = � �	 ��

2 ist. Dann spiegeln wir das Dreieck an den
Mittelpunkt einer der Schenkel. So entsteht ein Parallelogramm. Mit
Verschiebungen um die linearen Kombinationen der nicht parrallelen
Seitenvektoren des Parallelogramms können wir ein G-symmetrisches
Mosaik bilden. Es ist klar, dass unendlich viele G-symmetrische Mosaike
mit denselben Flächen existieren.

2. In der sphärischen Ebene ist die Anzahl der Winkel herum einer beliebi-
gen Ecke wegen � = � gerade. Aus den Ungleichungen 2� + 	 �
 und
� �	 �2� folgt, dass die Anzahl der Winkel � 2 oder 4 ist.

a) Liegen 4 Winkel � herum einer Ecke, dann gilt 4� + 	 = 2
 . Für
jede Ecke kann diese Bedingung nicht gelten, sonst existiere eine
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Ecke, herum der 2 Winkel 	 sind. Dann gibt es mindestens eine
Ecke, herum der 2 Winkel � liegen. Dann gilt 2� + k	 = 2
 . Es ist
leicht einzusehen, dass nur der Fall k = 2 vorkommen kann. Daraus
folgt 	 = 2� , was nicht möglich ist.

b) Es gibt keine Ecke, herum der 4 Winkel � liegen. Es gilt 2� +
+ k	 = 2
 . Aus den Ungleichungen 4� + 2	 �2
 und � �	
folgt, dass nur k = 2� 3 möglich ist. In beiden Fällen, wenn wir das
entsprechende Mosaik konstruiren möchten, ergibt sich Ecke, herum
der 4 Winkel � liegen.

In der sphärischen Ebene existieren also G-symmetrische Mosaike nicht.

3. In der hyperbolischen Ebene betrachten wir ein Dreieck vom Typ
Δ2(r� R), für die � �	 �2� gilt. Dann spiegeln wir das Dreieck
an seiner Basis, so entsteht ein Rhombus mit Winkeln 2� und 	 . Die
Existenz eines Mosaiks mit Dreieck Δ2(r� R) ist mit der Existenz eines
Mosaiks äquivalent, dessen Flächen zu diesem Rhombus kongruent sind.

a) Im ersten Fall gilt für das Dreiecksmosaik, dass dieselbe Anzahl
vom Winkel � herum die Ecken des Mosaiks zusammentreffen. Es
bezeichne 2p die Anzahl der Winkel � und q die Anzahl der Winkel

	 . Dann gilt 2p� + q	 = 2
 . Daraus ergibt sich 	 = 2��2p�
q . Aus

� �	 �2� folgt �
p+q �� �2�

2p+q . Es gilt noch die Ungleichung

2�+	 �
 , woraus erhält man 2�(q�p) �
(q�2). Durch einfache
Rechnungen ergeben sich die möglichen Werte von p und q .

b) Im Mosaik vom zweiten Typ existieren Ecken, für die die Anzahl
der Winkel � herum den Ecken nicht gleich ist. Es gelten 2p1� +
+ q1	 = 2
 , 2p2� + q2	 = 2
 , wobei q1 �= q2 wegen p1 �= p2 gilt. Es
ist klar, dass ein anderes Typ von Ecken nicht existiert.

Es seien p1 �p2, p = p1�p2, q = q2�q1. Es gilt p�0, q �0 offenbar.
Aus den obigen Gleichungssystem folgt 2p� = q	 . Aus � �	 �2� erhalten
wir die Ungleichung p�q �2p.

Durch einfache Rechnungen ergeben sich

� = � =
q


p1q + q1p
und 	 =

2p

p1q + q1p

�

Wegen der Ungleichung 2� + 	 �
 muss auch

p + q
p1q + q1p

�
1
2
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gelten. Aus q1 � 1 und p1 = p + p2 � 1 + p folgt, dass die obige Ungleichung
für p�1 gilt.

Wir bemerken, dass mehrere Herumlegung der Dreiecke für eine Ecke
existiert, d.h. mehrere Mosaike extremal sind.

3. Sätze

Satz �� Es sei 0 �r �R� Wir nehmen an� dass das Punktsystem fPig
f�ur einen beliebigen Punkt Pk � fPig die folgenden Eigenschaften hat� Die

D�V Zelle Dk enth�alt den Kreis k̂ (Pk � r ) und die Ecken von Dk liegen in

k (Pk � R)� Der Inhalt und Umfang einer beliebigen D�V Zelle von fPig ist f�ur
das Vieleck H (r� R0(r )) minimal�

Das Mosaik� deren Fl�achen zu H (r� R0(r )) kongruent sind� existiert nur

im Fall� wenn das Vieleck H (r� R0(r )) mit Winkel 2�
3 regul�ar ist� In diesem

extremalen Fall sind die Punkte von fPig die Ecken eines regul�aren Dreiecks�
mosaiks von der Kantenl�ange 2r �

Beweis� Es gilt Pj Pk � 2r für beliebige Pj � Pk � fPig, weil Dk den

Kreis k̂ (Pk � R) enthält. Aus Hilfssatz 7 folgt, dass die Ecken von Dk nur im
Fall zum Kreis k (Pk � R) gehören, wenn R �R0(r ) ist, d.h., die Ecken von
Dk ausser int k (Pk � R0(r )) liegen. Nach Hilfssatz 5 ist der Inhalt und Umfang
einer beliebigen D–V Zelle von fPig für das Vieleck H (r� R0(r )) minimal.

Das Minimum tritt für alle D–V Zellen ein, wenn sich ein Mosaik mit
zu H (r� R0(r )) kongruenten Flächen bilden lässt. Die Winkel des Vielecks

H (r� R0(r )) sind gleich 2�
3 mit Ausnahme von höchstens zwei Winkeln. Diese

zwei zurückgebliebende Winkel sind grösser als 2�
3 . Das Vieleck H (r� R0(r ))

also regulär sein.

Daraus folgt, dass die Punkte des Punktsystems fPig sind die Ecken eines
regulären Dreiecksmosaiks von der Kantenlänge 2r .

Satz �� Es sei 0 �r �R� Wir nehmen an� dass das Punktsystem fPig
f�ur einen beliebigen Punkt Pk � fPig die folgenden Eigenschaften hat� Die

D�V Zelle Dk enth�alt den Kreis k̂ (Pk � r ) und die Ecken von Dk liegen in

k (Pk � R)� Der Inhalt und Umfang einer beliebigen D�V Zelle von fPig ist f�ur
das regul�are n0�Eck maximal� der einem Kreis vom Radius R einbeschrieben

ist� wobei n0 =
h

2�
�0

i
� 	Die De�nition von �0 �ndet man vor Hilfssatz ��
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Jede D�V Zelle ist nur im Fall vom maximalen Inhalt und Umfang�

wenn R = R0(r ) ist und ein Mosaik mit zu H (r� R0(r )) kongruenten Fl�achen

existiert� In diesem extremalen Fall sind die Punkte von fPig die Ecken eines

regul�aren Dreiecksmosaiks von der Kantenl�ange 2r �

Beweis� Aus Hilfssatz 7 folgt, dass ein Punktsystem unter den obigen
Bedingungen nur im Fall existiert, wenn R � R0(r ). Die Ecken von Dk

liegen in k (Pk � R), deshalb ist der Inhalt und Umfang von Dk für eine fixe
Eckenzahl nicht grösser als der Umfang und Inhalt des dem Kreis k (Pk � R)
einbeschriebenen regulären n-Ecks.

Wir zeigen, dass n � n0 =
h

2�
�0

i
. Aus der Definition der D–V Zelle folgt,

dass eine ihrer Ecken der Mittelpunkt des Umkreises irgendeines Dreiecks
PiPjPk ist. Ist der Radius dieses Umkreises nicht grösser als R, dann gilt
� (PjPkPi ) � �0 nach Hilfssatz 8. Daraus ergibt sich n � n0. Der Winkel �0
ist im Fall der grösste, wenn R = R0(r ) ist, d.h., PiPjPk ein reguläres Dreieck
von der Seitenlänge 2r ist. Daraus folgt schon die Behauptung des Satzes.

Satz �� Es sei 0 �r �R� weiterhin im euklidischen Fall
p

2r �R � 2r �
in der sph�arischen Ebene r ��

2 und r �R � R1(r )� im hyperbolischen

Fall r �arsh 1p
3
und R3(r ) �R � R1(r )� 	Die Radien R1(r ) und R3(r )

�ndet man in 	�
 und 	�
�
 Schneiden oder ber�uhren die Seiten der D�V Zelle

Dk f�ur einen beliebigen Punkt Pk � fPig den Kreis k̂ (Pk � r ) und sind ihre

Ecken keine innere Punkte von k (Pk � R)� dann ist der Inhalt und Umfang einer

beliebigen D�V Zelle nicht gr�osser als der Inhalt und Umfang des Dreiecks

vom Typ Δ1(r� R)�

Jede D�V Zelle ist dann und nur dann vom maximalen Inhalt und Um�

fang� wenn ein Mosaik 	vgl� Hilfssatz ��
 existiert� deren Fl�achen zu Δ1(r� R)
kongruent sind� d�h� f�ur die F�alle r = r (u� v ) und R = R(u� v ) 	vgl� Bezeich�
nung nach Hilfssatz ��
�

Beweis� Wir betrachten ein Punktsystem fPig, das den Bedingungen des
Satzes entsprechend ist. Es sei Pk � fPig ein beliebiger Punkt. In welchem
Fall ist der Inhalt und Umfang der entsprechenden D–V Zelle maximal? Aus
R3(r ) �R folgt, dass die Zelle Dk ein Dreieck ist. Nach Hilfssatz 12 ist der
Inhalt und Umfang von Dk maximal, wenn das Dreieck vom Typ Δ1(r� R) ist.

Das Mosaik, deren Flächen Dreiecke vom Typ Δ1(r� R) sind, existiert nur
für r = r (u� v ) und R = R(u� v ) nach Hilfssatz 13. Im extremalen Fall sind
die Punkte von fPig die Inkreismittelpunkte der Flächen vom Typ Δ1(r� R).
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Satz �� Es sei 0 �r �R � R1(r )� weiterhin in der sph�arischen Ebene

r ��
2 � Schneiden oder ber�uhren die Seiten der D�V Zelle Dk f�ur einen

beliebigen Punkt Pk � fPig den Kreis k̂ (Pk � r ) und sind ihre Ecken keine

innere Punkte von k (Pk � R)� dann ist der Inhalt und Umfang einer beliebigen

D�V Zelle nicht gr�osser als der Inhalt und Umfang des Dreiecks vom Typ

Δ2(r� R) f�ur R2(r ) �R � R1(r ) und ist gr�osser als der Inhalt und Umfang

des Dreiecks vom Typ Δ3(r� R) f�ur r �R � R2(r )�

f�ur R2(r ) �R � R1(r ) tritt der minimale Inhalt und Umfang f�ur jede

D�V Zelle ein� wenn A�symmetrische oder G�symmetrische Mosaike mit

Fl�achen vom Typ Δ2(r� R) existieren� d�h� f�ur die im Hilfssatz �� und ��

angegebene Werte von r und R�

Beweis� Wir betrachten ein Punktsystem fPig, das den Bedingungen des
Satzes entspricht. Es sei Pk � fPig ein beliebiger Punkt des Punktsystems und
Dk die zum Punkt Pk gehörige D–V Zelle. Wir wählen das Dreieck ABC
derart, dass seine Ecken zu Dk gehören und Pk der Punkt des Dreiecksbe-
reichs ist. Es ist offenbar, dass der Inhalt und Umfang von Dk nicht kleiner
als der Inhalt und Umfang von ABC ist und Gleichheit tritt nur im Fall
Dk = ABC ein. Nach Hilfssatz 15 ist der Inhalt und Umfang von ABC
für R2(r ) �R � R1(r ) nicht kleiner als der Inhalt und Umfang des Dreiecks
vom Typ Δ2(r� R) und Gleichheit tritt nur im Fall ABC = Δ2(r� R) ein.

Jede D–V Zelle ist vom minimalen Inhalt und Umfang, wenn ein Mosaik
mit Flächen vom Typ Δ2(r� R) existiert. Ist dieses Mosaik A-symmetrisch
bzw. G-symmetrisch, dann können nur die im Hilfssatz 16 bzw. 17 gegebene
Kreisradien r und R eintreten.

Die Punkte des Punktsystems fPig sind die Umkreismittelpunkte der
Flächen vom Typ Δ2(r� R). Wenn r �R � R2(r ) ist, dann ist der Inhalt
und Umfang einer beliebigen D–V Zelle grösser als der Inhalt und Umfang
des Dreiecks vom Typ Δ3(r� R). Gleichheit kann nie erreicht werden, weil ein
Dreieck vom Typ Δ3(r� R) keine D–V Zelle ist. Sein Umkreismittelpunkt ist
nämlich kein innerer Punkt des Dreiecks.
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Universität Sopron
Institut für Mathematik
9400 Sopron, Ungarn
jhorvath�emk�nyme�hu
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1. Introduction

Let (M� g), n = dim M � 4, be a semi-Riemannian manifold satisfying
at every point the following condition: the tensors R � C and Q(S� C ) are
linearly dependent. This is equivalent on the set U consisting of all points of
M at which Q(S� C )�0 to

R � C = LQ(S� C ) �(1)

where L is some function on U . For precise definition of the symbols used
we refer to Sections 2 and 3 of this paper. We recall that the case: S�0, C�0
and Q(S� C ) = 0 at a point x � M was considered in [10](Theorem 3.1). In
this paper, without loss of generality, we restrict our investigations to the set
UL � U defined by UL = fx � U jL�0 at xg. Manifolds fulfilling (1) were
studied among others in: [6], [7], [10], [12], [13] and [14].

Let M be a hypersurface in a semi-Riemannian space of constant curva-
ture N n+1

s (c), n � 4, with signature (s� n + 1 � s). We denote by UH the
subset of M consisting of all points at which the tensor H 2 is not a linear
combination of the tensor H and the metric tensor g induced on M from the
metric of the ambient space.

The results of [6], [7], [13] and [14] are related to hypersurfaces in
semi-Euclidean spaces En+1

s , n � 4, fulfilling (1). For instance, in [13] (see
Theorem 4.1 and Theorem 4.2) it was shown that if M is a hypersurface in

The authors are supported by the grant 2 P03A 006 17 from the Polish State Committee

of Scientific Research (KBN).
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E
n+1
s , n � 4, satisfying (1) then on UH �UL we have: rank

�
S � �

n�1 g
�

= 1
and

R � C = Q(S� C ) �(2)

i.e. (1) with L = 1. An example of a hypersurface M in E
n+1
s , n � 4,

satisfying (2) was found in [6]. Some partial results on hypersurfaces in
semi-Riemannian spaces of constant curvature satisfying (1) are contained in
[13] (see also Section 4 for details). In this paper we investigate hypersurfaces
M in a semi-Riemannian space of constant curvature N n+1

s (c), c�0, n �
4, fulfilling (1). In Section 4 (see Proposition 4.3) we prove that if (2) is
satisfied on UH�� of a hypersurface M in N n+1

s (c), n � 4, then the ambient
space must be semi-Euclidean. Therefore we investigate hypersurfaces M in
N n+1
s (c) with nonzero sectional curvature c satisfying (1). Theorem 4.1 states

that if M is a such hypersurface then on UH �UL we have:

S � �

n
g = � w � w � � � R � w � T �xM �(3)

R � C =
1

n � 1
Q(S� C ) �(4)

R � R =
e�

n(n + 1)
Q(g� R) �(5)

It is known that (5) is equivalent to the fact that at every point of UH � UL
the type number of M is equal to two ([5], Theorem 5.1). At the end of
Section 4 we present also a corrected version of some results from [13].
In Section 5 (Example 5.1) we present an example of a warped product
manifold satisfying (4), which can be locally realized as a hypersurface in
N n+1
s (c), c�0, n � 4. The type number of that hypersurface is equal to two,

i.e. it is pseudosymmetric. On the other hand, there exist pseudosymmetric
hypersurfaces in N n+1

s (c), c�0, n � 4, with type number two, which do not
satisfy (4). Namely, generalized Cartan hypersurfaces ([2], see also Example
5.2) have such properties. The hypersurface constructed in Example 5.1, resp.,
in Example 5.2, fulfils

(a) rank (H 2 � tr (H )H ) = 1 � (b) rank (H 2 � tr (H )H ) = 2 �(6)

respectively. We prove (see Proposition 5.1(i)) that at every point x � UH

of a pseudosymmetric hypersurface M in N n+1
s (c), n � 4, (6)(a) or (6)(b)

must be satisfied. Moreover, Proposition 5.1(iii) shows that (6)(a) implies
(4). On the other hand, Proposition 5.1(ii) states that hypersurfaces fulfilling
(6)(b) cannot satisfy the condition (1), and consequently, (4). We mention
that warped products as Riemannian submanifolds have been investigated by
Professor Bang-Yen Chen, see [3].
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2. Basic notations

Throughout this paper all manifolds are assumed to be connected para-
compact manifolds of class C�. Let (M� g) be an n-dimensional, n � 3,
semi-Riemannian manifold. We denote by r, R, C , S and � the Levi-
Civita connection, the Riemann-Christoffel curvature tensor, the Weyl con-
formal curvature tensor, the Ricci tensor and the scalar curvature of (M� g),
respectively. The Ricci operator S is defined by g(SX�Y ) = S (X�Y ),
where X�Y � Ξ(M ), Ξ(M ) being the Lie algebra of vector fields on M .
We define the endomorphisms X 	A Y , R(X�Y ) and C(X�Y ) of Ξ(M )
by (X 	A Y )Z = A(Y�Z )X � A(X�Z )Y , R(X�Y )Z = [rX �rY ]Z �
� r[X�Y ]Z and C(X�Y ) = R(X�Y ) � 1

n�2(X 	g SY + SX 	g Y �
� �

n�1X 	g Y ), respectively, where X�Y� Z � Ξ(M ) and A is a sym-
metric (0� 2)- tensor. Now the Riemann-Christoffel curvature tensor R, the
Weyl conformal curvature tensor C and the (0� 4)-tensor G of (M� g) are
defined by R(X1� X2� X3� X4) = g(R(X1� X2)X3� X4), C (X1� X2� X3� X4) =
= g(C(X1� X2)X3� X4) and G(X1� X2� X3� X4) = g((X1 	g X2)X3� X4), re-
spectively, where X�Y� Z�X1� X2� � � � � Ξ(M ). We define the following
subsets of M : UR = fx � M jR � �

(n�1)n G�0 at xg, US = fx � M jS �
� �

n g�0 at xg, UC = fx �M jC�0 at xg and U = US �UC . We note that
U � UR. Let B(X�Y ) be a skew-symmetric endomorphism of Ξ(M ) and let
B be a (0� 4)-tensor associated with B(X�Y ) by

B(X1� X2� X3� X4) = g(B(X1� X2)X3� X4) �(7)

B is said to be a generalized curvature tensor if the following conditions are
fulfilled

B(X1� X2� X3� X4) + B(X2� X3� X1� X4) + B(X3� X1� X2� X4) = 0 �
B(X1� X2� X3� X4) = B(X3� X4� X1� X2) �

Clearly, the tensors R, C and G are generalized curvature tensors. For
symmetric (0� 2)-tensors E and F we define their Kulkarni-Nomizu product
E 	 F by

(E 	 F )(X1� X2� X3� X4) = E (X1� X4)F (X2� X3) + E (X2� X3)F (X1� X4)

� E (X1� X3)F (X2� X4)� E (X2� X4)F (X1� X3) �

The tensor E 	 F is also a generalized curvature tensor. For a symmetric
(0� 2)-tensor E we define the (0� 4)-tensor E by E = 1

2 E 	 E . In particular,
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we have g = G = 1
2 g 	 g . We note that the Weyl tensor C can be presented

in the form

C = R � 1
n � 2

g 	 S +
�

(n � 2)(n � 1)
G �(8)

We have also (see e.g. [7], Section 3)

Q(E� E 	 F ) = �Q(F� E ) �(9)

Let B(X�Y ) be a skew-symmetric endomorphism of Ξ(M ) and let B be the
tensor defined by (7). We extend the endomorphism B(X�Y ) to derivation
B(X�Y )� of the algebra of tensor fields on M , assuming that it commutes
with contractions and B(X�Y ) � f = 0 for any smooth function on M . Now
for a (0� k )-tensor field T , k � 1, we can define the (0� k + 2)-tensor B � T by

(B � T )(X1� � � � � Xk ;X�Y ) = (B(X�Y ) � T )(X1� � � � � Xk ;X�Y )

= �T (B(X�Y )X1� X2� � � � � Xk )� � � � � T (X1� � � � � Xk�1�B(X�Y )Xk ) �

In addition, if A is a symmetric (0� 2)-tensor then we define the (0� k+2)-tensor
Q(A�T ) by

Q(A�T )(X1� � � � � Xk ;X�Y ) = (X 	A Y � T )(X1� � � � � Xk ;X�Y )

= �T ((X 	A Y )X1� X2� � � � � Xk )� � � � � T (X1� � � � � Xk�1� (X 	A Y )Xk ) �

In particular, in this manner, we obtain the (0� 6)-tensors B � B and Q(A�B).
Setting in the above formulas B = R or B = C, T = R or T = C or T = S ,
A = g or A = S , we get the tensors R �R, R �C , C �R, R � S , C � S , Q(g� R),
Q(S� R), Q(g� C ) and Q(g� S ).

A semi-Riemannian manifold (M� g), n � 3, is said to be pseudosymmet-
ric if at every point of M the tensors R �R and Q(g� R) are linearly dependent.
This is equivalent to

R � R = LR Q(g� R)(10)

on UR, where LR is some function on UR. The class of pseudosymmetric
manifolds is an extension of the class of semisymmetric manifolds. A mani-
fold (M� g), n � 3, is called semisymmetric ([16]) if on M we have R �R = 0.
Some geometrical considerations show that (10) is a more natural curvature
condition than the condition of semisymmetry. For a presentation of facts
related to this statement we refer to a recent review paper [1].
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3. Some curvature identities

Lemma ��� �cf� ���� Lemma 	�
� Let (M� g)� n � 3� be a semi�Rieman�
nian manifold� Let at a point x � M be given a nonzero symmetric (0� 2)�
tensor E and a generalized curvature tensor B such that Q(E�B) = 0 at x �
Moreover� let Y be a vector at x such that the scalar � = a(Y ) is nonzero�
where a is a covector de�ned by a(X ) = E (X�Y )� X � TxM � Then at x we

have two possibilities �i� the tensor E is of rank one �precisely� E = 1
� a�a�

and

S
X�Y�Z

a(X )B(Y�Z�X1� X2) = 0 �

�ii� the tensor E � 1
� a � a is nonzero and B = �

2 E 	 E � � � R�

Lemma ��� Let (M� g) be a semi�Riemannian manifold� If the curvature
tensor R of M is of the form

R = 	 S + 
 g 	 S + � G �(11)
where 	� 
� � are some functions on M � then the above decomposition of R
is unique on the set U�

Proof� Let x � U and suppose that R = �i S + �i g 	S + �i G � i = 1� 2.
If �1��2 then S̄ = � g	S +�G , which in view of Lemma 3.1 of [8], implies
S = �g + �u � u . This equality together with the above decomposition of R,
in virtue of Remark 2.1 of [11], leads to C = 0 at x , a contradiction. Thus
we have �1 = �2. Next, if we would have �1��2 then we would obtain
g 	 S = G . But this immediately implies S = ̃g , a contradiction. Finally,
if �1 = �2 and �1 = �2 then obviously we also have �1 = �2.

From Theorem 4.1 of [12] we can deduce that if (M� g) is a semi-
Riemannian manifold such that

(i) R � R =
�

n(n � 1)
Q(g� R) �

(i i) R � R = Q(S�R) � (n � 2)�
n(n � 1)

Q(g� C ) �(12)

(i i i) R � C =
1

n � 1
Q(S� C ) �

then at every point x � U �M we have

S =
�

n
g + � w � w � w � T �xM � � � R � S

X�Y�Z
w (X )C(Y�Z ) = 0 �(13)

Thus taking into account also Theorem 4.2 of [12] we have the following
equivalence:
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Proposition ��� For every semi�Riemannian manifold (M� g) the con�

ditions ���� and ��	� are equivalent on U �M �

Finally, as a simple consequence of Theorem 4.2 of [9], we obtain:

Lemma ��� If the curvature tensor R of a semi�Riemannian manifold

(M� g) satis�es ����� �����i� and �����ii� then

R = 	 S � 	
�

n
g 	 S +

�
�

n(n � 1)
+ 	

�2

n2

�
G �(14)

4. Hypersurfaces satisfying R � C = LQ(S� C )

Let M , n � 3, be a connected hypersurface isometrically immersed in
a semi-Riemannian manifold (N� gN ). We denote by g the metric tensor of
M induced from the metric tensor gN . Further, we denote by r and rN

the Levi-Civita connections corresponding to the metric tensors g and gN ,
respectively. Let � be a local unit normal vector field on M in N and let
� = gN (�� �) = 
1. We can present the Gauss formula and the Weingarten
formula of (M� g) in (N� gN ) in the form: rN

XY = rXY + � H (X�Y ) �
and rX � = �AX , respectively, where X�Y are vector fields tangent to M ,
H is the second fundamental tensor of (M� g) in (N� gN ), A is the shape
operator and H k (X�Y ) = g(AkX�Y ), k � 1, H 1 = H and A1 = A. We
denote by R and RN the Riemann-Christoffel curvature tensors of (M� g) and
(N� gN ), respectively. The Gauss equation of (M� g) in (N� gN ) has the form
R(X1� � � � � X4) = RN (X1� � � � � X4) + � H (X1� � � � � X4), where H = 1

2 H 	 H

and X1� � � � � X4 are vector fields tangent to M . Let the equations x r = x r (yk )
be the local parametric expression of (M� g) in (N� gN ), where yk and x r are
the local coordinates of M and N , respectively, and h� i � j � k � f1� 2� � � � � ng
and p� r� t � u � f1� 2� � � � � n + 1g. Let H hij k = HhkHi j � HhjHik denote the

local components of the tensor H . Now the Gauss equation turns into

Rhij k = RN
prtuB

p
h B r

i B t
j B

u
k + � H hij k � B r

k =
�x r

�yk
�(15)

where RN
rstu , Rhij k and Hhk are the local components of the tensors RN ,

R and H , respectively. We assume that the ambient space (N� gN ) is a
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conformally flat space. Using (8), (15) and the formulas (18) and (19) of
[15] we get

Chij k = 
 Ghij k + � H hij k +
�

n � 2
(g 	 (H 2 � tr (H )H ))hij k �(16)


 =
1

(n � 2)(n � 1)
(� � 2eSr tB r

hB
t
kg

hk + e�) �(17)

where eSr t are the local components of the Ricci tensor eS of the ambient
space, Ghij k are the local components of the tensor G and e� and � are the

scalar curvatures of (N� gN ) and (M� g), respectively. From (16) we find

C �H =
�

n�2
(Q(g�H 3) + (n�3)Q(H�H 2)� tr (H )Q(g�H 2)) + 
Q(g�H ) �(18)

C �H 2 = �(Q(H�H 3) +
1

n�2
(Q(g�H 4)� tr (H )Q(g�H 3)

� tr (H )Q(H�H 2))) + 
Q(g�H 2) �(19)

Let now M be a hypersurface in a semi-Riemannian space of constant
curvature N n+1

s (c), n � 4. Clearly, (15) and (17) turn into

Rhij k = � H hij k +
e�

n(n + 1)
Ghij k �(20)


 =
1

n � 2

�
�

n � 1
� e�
n + 1

�
�(21)

respectively, where c = e�
n(n+1). Contracting (20) with g i j and gkh , respec-

tively, we obtain

Shk = � (tr (H )Hhk �H 2
hk ) +

(n � 1)e�
n(n + 1)

ghk �(22)

� = � ((tr (H ))2 � tr (H 2)) +
(n � 1)e�
n + 1

�(23)

respectively, where tr (H ) = ghkHhk , tr (H 2) = ghkH 2
hk and Shk are the

local components of the Ricci tensor S of M . Using (22) and Theorem 4.1
of [15] we can deduce that UH � US � UC � M . It is known that at
every point of a hypersurface M in N n+1

s (c), n � 4, the following condition
of pseudosymmetry type is fulfilled ([15]): the tensors R � R � Q(S�R) and
Q(g� C ) are linearly dependent. Precisely, on M we have

R � R � Q(S�R) = � (n � 2)e�
n(n + 1)

Q(g� C ) �(24)
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Evidently, if the ambient space is En+1
s then (24) reduces to R �R = Q(S�R).

Similarly, in this case, (20) and (21) reduce to

(a) Rhij k = � H hij k � (b) 
 =
�

(n � 2)(n � 1)
�(25)

Let M be a hypersurface in semi-Riemannian space N n+1
s (c), n � 3. We

recall that UH is the set consisting of all points of M at which the tensor H 2

is not a linear combination of H and g . It is known that on the set M �UH
the tensors R � R and Q(g� R) are linearly dependent (cf. [13], Proposition
3.1(ii)). Thus we see that if for a hypersurface M in N n+1

s (c), n � 3, its set
UH is empty then M is pseudosymmetric. In particular, if at every point of a
hypersurface M , in a Riemannian space form, there are at most two distinct
principal curvatures then M is pseudosymmetric.

Proposition ��� Let M be a hypersurface in N n+1
s (c)� n � 4� satisfying

���� Then on UH �UL �M we have

H 3 = tr (H )H 2 + �H � � =
1

n � 1
(tr (H 2)� (tr (H ))2) �(26)

�� =
�̃

n + 1
� �

n � 1
�(27)

Proof� We note that (1), in view of Corollary 4.1 of [8], implies (15)
from that paper, so we have

H 3 = tr (H )H 2 + �H + �g �(28)

In addition, on the set UH �UL we have ([13], Proposition 3.9) the equality
C � S = 0, i.e., tr (H )C �H � C �H 2 = 0. Applying to this (18) and (19) we
find

Q(g�H 4) = 2tr (H )Q(g�H 3)� (�(n � 2)
 + (tr ((H )2)Q(g�H 2)

+ �(n � 2)
tr (H )Q(g�H ) + (n � 2)Q(H� tr (H )H 2 �H 3) �

and, in virtue of (28) also

Q(g�H 4�2tr (H )H 3+(�(n�2)
+(tr (H )2)H 2�(n�2)(�
tr (H )+�)H ) = 0 �

This leads to

H 4 = 2tr (H )H 3 � (�(n � 2)
 + (tr (H )2)H 2 + (n � 2)(�
tr (H ) + �)H + �g �

But (28) implies H 4 = tr (H )H 3 = �H 2 + �H , so we have

tr (H )H 3�(�(n�2)
+�+(tr (H )2)H 2+(�(n�2)
tr (H )+(n�3)�)H +�g = 0�
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Comparing this equality with (28), we obtain

�(�(n�2)
 + �)H 2 + (tr (H )(�(n�2)
 + �) + (n�3)�)H + (� + tr (H )�)g = 0 �

Whence, in view of x � UH , we immediately get
(a) �(n � 2)
 + � = 0 � (b) � = 0(29)

and � = 0. Thus (29)(b) and (28) lead to the first equality of (26). Finally,
applying to (29)(a), (21) and (23) we obtain � = 1

n�1 ((tr (H )2� tr (H 2)) and
(27). This completes the proof.

From Lemma 1.1 of [4] we have

Proposition ��� LetM be a pseudosymmetric hypersurface in N n+1
s (c)�

n � 4� Then on UH �M we have

H 3 = tr (H )H 2 + �H � � =
1
2

(tr (H 2)� (tr (H )2) �

Corollary ��� Let M be a pseudosymmetric hypersurface in N n+1
s (c)

satisfying ���� Then on the set UH �UL �M we have � = 0� i�e�
�

n � 1
=

e�
n + 1

�(30)

We recall that (24) holds on every hypersurface M in N n+1
s (c). Using

now (8) we have

R � C = Q(S� R)� (n � 2)e�
n(n + 1)

Q(g� R) +
(n � 3)e�

(n � 2)n(n + 1)
Q(g� g 	 S ) �

Thus if M satisfies (1) then taking into account also (9) we get

(L� 1)Q(S�R) = � (n � 2)e�
n(n + 1)

Q(g� R)� L

n � 2
Q(g� S )

+
1

n � 2

�
L�

n � 1
+

(n � 3)e�
n(n + 1)

�
Q(g� g 	 S ) �(31)

Proposition ��� LetM be a hypersurface in N n+1
s (c) satisfying R � C =

= Q(S� C )� If UH � M is nonempty then the ambient space must be semi�
Euclidean�

Proof� Under our assumption (31) turns into
(n � 2)e�
n(n + 1)

Q(g� R) +
1

n � 2
Q(g� S )�(32)

� 1
n � 2

�
�

n � 1
+

(n � 3)e�
n(n + 1)

�
Q(g� g 	 S ) = 0 �
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Let x � UH and suppose that e��0. Thus we can rewrite (32) in the form

Q(g� R +
n(n + 1)

(n � 2)2e� S � n(n + 1)

(n � 2)2e�
�

�

n � 1
+

(n � 3)e�
n(n + 1)

�
g 	 S ) = 0

whence, we have

R = � n(n + 1)

(n � 2)2e� S +
n(n + 1)

(n � 2)2e�
�

�

n � 1
+

(n � 3)e�
n(n + 1)

�
g 	 S + � G

for some � � R. But such decomposition of R implies pseudosymmetry of
M (see Theorem 4.2 of [9]). On the other hand, for every pseudosymmetric
hypersurface M in N n+1

s (c) we have (5) on UH . Applying now (30) to (5)
and (24) we get (12)(i) and (12)(ii). Next using Lemma 3.3 we obtain (14).
Comparing the two obtained decompositions of R, in view of Lemma 3.2, we
easily get a contradiction. This completes the proof.

Proposition ��� Let M be a hypersurface in N n+1
s (c)� c�0� n � 4�

satisfying ���� Then at every point x � UH �UL �M we have �	� and

S
X�Y�Z

w (X )C(Y�Z ) = 0 �(33)

Proof� According to Proposition 4.3, c�0 implies L�1 and we can
rewrite (31) in the form

Q(S�R) = �1 Q(g� R) + �2 Q(g� S ) + �3 Q(S�G) �(34)

�1 = � (n � 2)e�
n(n + 1)(L� 1)

� �2 = � L

(n � 2)(L� 1)
�

�3 = � 1
(n � 2)(L� 1)

�
L�

n � 1
+

(n � 3)e�
n(n + 1)

�
�

We note that �1�0 (e� = 0, in view of Theorem 4.1 of [13], leads to L = 1)

and (34) is equivalent to Q
�
S � �1g� R � �3G + �2

�1
S
�

= 0. According to

Lemma 3.1 we have a priori two cases:
(a) S � �1g = � w � w . In this case we have also

S
X�Y�Z

w (X )B(Y�Z ) = 0 �(35)

where B = R��3G+ �2
�1

S . But S = �2
1G+�1�(g	w�w ) and B = R�(�3�

� �1�2)G + �2�(g 	 w � w ). It is easy to see that the generalized curvature
tensor P , defined by P = g	w�w satisfies SX�Y�Z w (X )P(Y�Z ) = 0. Thus
(35) implies that also SX�Y�Z w (X )B1(Y�Z ) = 0, where B1 = R � (�3 �
� �1�2)G . Applying now Theorem 4.1 of [9] we obtain our assertion.
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(b) R � �3G + �2
�1

S = e�(S � �1g) 	 (S � �1g) � e� � R � This equality can

be written in the form R = (� � �2
�1

) S � ��1 g 	 S + (�3 + ��2
1 )G , where

� = 2e�. In the same manner as in the proof of Proposition 4.3 we can show
that this leads to a contradiction.

Theorem ��� Let M be a hypersurface in N n+1
s (c)� c�0� satisfying ����

Then at every point x � UH �UL �M we have �	�� �	�� and

L =
1

n � 1
� R �R =

�

n(n�1)
Q(g� R) � R �R = Q(S�R)� (n�2)�

n(n�1)
Q(g� C ) �

Proof� Using Proposition 4.4 we get (3) and (33). Applying Proposition
3.1 we complete the proof.

At the end of this section we present a corrected version of some results
of [13]. The equality (17) is the corrected version of a formula from [15]
defining the function 
 . Unfortunately, in the proof of Proposition 3.10 of
[6] was used that false formula. However, if we apply (17) in the proof of
Proposition 3.10 of [13] then we do not obtain new results. Precisely, (45) and
(47) of Proposition 3.10 of [13] are equivalent to (39) and (40) of Proposition
3.9 of [13], respectively. Thus we see that Proposition 3.10 is superfluous.
Further, (56) of [13] must be removed and (61)(b) of [13] should be replaced
by (27) from this paper. Therefore, Theorem 4.3 of [13] has the following
form:

Theorem ��� If M is a hypersurface in E
n+1
s � n � 4� ful�lling ��� then

on UH �UL �M we have

R � S = 0 � C � S = 0 � R � C = Q(S� C ) �

C � R =
n � 3
n � 2

Q(S�R) � A
3 = tr (A)A2 � � �

n � 1
A � � = 
1 �

A(W ) = 0 � S =
�

n � 1
g + � w � w � w � T �xM � � � R �(36)

where the vector W is related to w by g(W�X ) = w (X )� X � TxM �

Thus we see that the part of the assertion of Theorem 4.3 of [13], stating
that if (1) is fulfilled on a hypersurface M in N n+1

s (c), n � 4, with nonempty
set UH �UL � M , then the ambient space must be semi-Euclidean is false,
in general. However, as we prove in Proposition 4.3, the above statement
is true in the case when R � C = Q(S� C ), i.e. L = 1, and in view of
Theorem 4.1 of [13], only in this case. Examples of hypersurfaces M in
E
n+1
s , n � 4, satisfying (36), with nonempty set UH � UL, were found in

[6]. Furthermore, as we present in Example 5.1, there are hypersurfaces in
N n+1
s (c), c�0, n � 4, fulfilling (1) with nonempty set UH �UL �M .
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5. Examples

Let now M be a hypersurface in N n+1
s (c), n � 4, such that UH �M is

nonempty. From Theorem 5.1 of [5] it follows: (10) holds at a point x � UH
if and only if at this point rank H = 2, i.e. the type number of M at this
point is equal to 2. On any hypersurface in N n+1

s (c) we have the following
identity (see e.g. [4], eq. (22))

R � R � e�
n(n + 1)

Q(g� R) = �Q(H 2� H ) �(37)

Further, it is known (see [4], Lemma 1.1) that if rank H = 2 at a point
x � UH then

Q(H 2� H ) = 0 �(38)

Therefore, if rank H = 2 at a point x � UH then, by (38), (37) reduces to
(5). It is easy to see that (5) implies

(a) R � S =
e�

n(n + 1)
Q(g� S ) � (b) R � C =

e�
n(n + 1)

Q(g� C ) �(39)

We note also that in the particular case, if M is a hypersurface in a semi-
Euclidean space E

n+1
s , n � 3, then (5) reduces on UH �M to R � R = 0.

Proposition ��� LetM be a pseudosymmetric hypersurface in N n+1
s (c)�

n � 4�
�i� ����a� or ����b� is satis�ed at every point x � UH �M �
�ii� If c�0 and at x � UH � M we have ����b� then �
� cannot be satis�ed
at this point�
�iii� If c�0 and at a point x � UH �M we have ����a�� i�e�

H 2
i j � tr (H )Hi j =

1
�
aiaj � � � R � f0g �(40)

then the following relations are ful�lled at x  �
�� �	�� and

(a) akak = 0 � ak = g j kaj � (b) Si j �
�

n
gi j =

�

�
aiaj �(41)

Proof� (i) The relation (38), by the identity Q(H�H ) = 0, yields on
UH �M

Q(H 2 � tr (H )H�H ) = 0 �(42)

Now, applying to (42) Lemma 3.1 and Lemma 1.1 of [4] we obtain easily our
assertion.
(ii) Applying (23) into (22) we find

S � �

n
g = �(tr (H )H �H 2)� �

n
((tr (H ))2 � tr (H 2)) g �(43)
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We assume that (4) holds at x . Now, in view of Proposition 4.4, we have (3)
at x . Thus (43) turns into

�

n
((tr (H ))2�tr (H 2)) g = �(tr (H )H�H 2)� � w�w� ��R � w�T �xM�(44)

Applying to this (6)(b) we deduce that (tr (H ))2 � tr (H 2) = 0. Now (44)
yields (6)(a), a contradiction with (6)(b).
(iii) The assumption that x � UH implies rank H = 2 at x . This, in view of
Lemma 1.1 of [4], gives

H 3
i j = tr (H )H 2

i j + �Hi j � � � R �(45)

Further, (40) and (42), in view of Lemma 3.1(i), imply

al H hij k + ah H i l j k + ai H l hj k = 0 �(46)

On the other hand, transvecting (40) with H i
l we get

(a) H 3
l j = tr (H )H 2

l j +
1
�
akHkl aj � (b) akHkl = 	 al � 	 � R �(47)

Now (47)(a), by (40) and (47)(b), turns into H 3
l j = (tr (H ) + 	)H 2

l j �
� 	tr (H )Hl j . This, together with (45), yields 	H 2

l j = (� + 	tr (H ))Hl j .

Since x � UH , the last relation implies 	 = 0 and � = 0. Thus (45) and
(47)(b) reduce to

(a) H 3
i j = tr (H )H 2

i j � (b) akHkl = 0 �(48)

respectively. Transvecting now (46) with a l and using (48)(b) we get a lalH =
= 0, whence we obtain (41)(a). Next, contracting (40) and using (41)(a), we
get (tr (H ))2 = tr (H 2). Substituting this into (23) we get (30). Applying (30)
to (22) we obtain (41)(b). Further, using (20), (30), (41)(b) and (46), we can
check that alChij k +ahCi l j k +aiCl hj k = 0 at x . This fact, in view of Lemma
3.6 of [9], implies Q(a�a� C ) = 0, whence Q( �� a�a� C ) = 0 and by making

use of (41)(b) we get Q
�
S � �

n g� C
�

= 0. The last equality, by (30), turns

into Q(S� C ) = (n�1)e�
n(n+1) Q(g� C ), which together with (39)(b), yields (4). This

completes the proof.

Example ���� We denote by (fM� eg), dim fM = n � 1 � 3, the warped
product defined in Example 4.1 of [7]. We denote by eR, eS and e� its curvature
tensor, the Ricci tensor and the scalar curvature, respectively. In [7] it was
shown that (fM� eg) is semisymmetric (eR � eR = 0) and

rank (eS ) = 1 � e� = 0 �(49)



2019. május 4. –22:36

32 RYSZARD DESZCZ, MARIAN HOTLOŚ

on fM . In addition (see [7], Example 5.1), on fM is defined the Codazzi tensor
h such that eR =

�

2
h 	 h � � = 
1 �(50)

on fM . This means that (fM� eg) can be locally realized as a hypersurface in
E
n+1
s . Further, h fulfils

rank (h) = 2 � h3 = tr (h) h2 �(51)

From (50), by a suitable contraction and making use of (49), we find

rank (h2 � tr (h) h) = 1 �(52)

Let now M be an open nonempty interval of R, g11 = 1 the metric tensor on
M and F the function on M defined by F (x1) = exp(ax1), x1 � M , a �0.
We consider the warped product M � F

fM of (M� g) and (fM� eg) with the
warping function F . We have

Δ1F = g11F1F1 = a2 F 2�(53)

tr (T ) = g11T11 = g11
�
r1F1 �

1
2F

F1F1

�
=
a2

2
F�

where F1 = �1F = �F
�x1 . The scalar curvature � of M � F

fM is constant and

� = � (n � 1)na2

4
�(54)

The last relation is an immediate consequence of (25) of [7] and (53). Using
(23) and (24) of [7] and (54) we get on M �fM

rank (S � �

n
g) = 1 �(55)

We define on M �fM the (0� 2)-tensor H , with the local components

H11 = 0 � H1	 = H	1 = 0 � H	
 =
p
F h	
 �(56)

where �� � � f2� 3� � � � � ng. Using the fact that h is a Codazzi tensor, we can
check that H is also a Codazzi tensor. Moreover, by making use of (51) and
(56) we obtain rank (H ) = 2 and (48)(a). Applying now in (22) of [7] the
relations (53), (54) and (56) we get

R =
�

2
H 	H +

e�
n(n + 1)

G �(57)

where the constant e� is defined by (30). Thus we see that M � F
fM can

be locally realized as a hypersurface in a semi-Riemannian space of constant
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curvature N n+1
s (c), c = e�

n(n+1) . From (57), by a suitable contraction and
making use of (55), we get (6)(a). Finally, in view of Proposition 5.1, we see
that M � F

fM fulfils (4).

Example ��� ([2], Section 6) Let N 2(c) be a minimal surface with
nonzero constant curvature c in the unit (n + 1)- sphere Sn+1(1). We denote
by M the tubular hypersurface T�

2
(N 2(c)) with radius �

2 about N 2(c). This

hypersurface is called a generalized Cartan hypersurface. Such hypersurface
has at every point three principal curvatures: k , �k , 0� � � � � 0, k�0. It is easy
to check that (6)(b) holds on M . Further, we have (tr (H ))2 � tr (H 2) =

= �tr (H 2) = �2k2. Now from (23) it follows that �
n�1 � e�

n+1 is nonzero on
M . Thus we see that (30) is not satisfied on M . Therefore from Corollary
4.1 it follows that (1) cannot be satisfied on M .
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50-370 Wroc�law
Poland
hotlos�im�pwr�wroc�pl
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1. Introduction

Let K be an algebraic number field of degree n with ring of integers ZK .
It is a classical problem in algebraic number theory to decide if there is an
element � in K such that

f1� �� �2� � � � � �n�1g

is an integral basis. Such an integral basis is called power integral basis. A
further problem is to find all elements which generate power integral bases.

The index of a primitive algebraic integer � of K is defined as the
module-index

I (�) = (Z+
K : Z+[�])�

Obviously � generates a power integral basis if and only if I (�) = 1.

Note that

I (�) =

����� Q
1�j�k�n

�
�(j ) � �(k )

������p
jDK j

(1)

where �(i) (i = 1� � � � � n) are the conjugates of � and DK is the discriminant
of K .

Using Baker’s method the first explicit bounds for the absolute values of
the solutions of index form equations were given by K. Győry [7]. These

Research supported in part by Grant T-037367 from the Hungarian National Foundation
for Scientific Research



2019. május 4. –22:36
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upper bounds imply that up to equivalence there are only finitely many
generators of power integral bases. For a detailed discussion of algorithmic
results on calculating generators of power integral bases see the monograph
I. Gaál [3].

Higher degree fields having subfields are very often given as composites
of certain subfields. The problem of existence of power integral bases in such
fields was investigated in [1], [4] and [5]. The purpose of this paper is to
add some new results to this area and consider new applications, involving
also infinite parametric families of fields, which are not covered by the former
results.

2. New results

Let f � g � Z[x ] be distinct monic irreducible polynomials (over Q) of
degrees m and n , respectively. Let � be a root of f and let � be a root of
g . Set L = Q(�), M = Q(� ) and assume that the composite field K = LM
has degree mn . Denote by d(f )� d(g) the discriminants of f and g . Further
we assume that there exists a square-free number q , such that f is a perfect
power modulo q , that is

f (x ) � (x � t)m (mod q)(2)

with some t � Z.

Remark �� If gcd(d(g)� d(f )) = 1, then the results of [1] are hardly
applicable for higher degree number fields. If condition (2) is satisfied, we
can draw conclusions on the existence of power integral bases even in higher
degree fields. Further, the result of [4] are also not applicable, because g is an
arbitrarily polynomial, so usually there are no square-free numbers p� q such
that f and g are congruent to xm and xn modulo q and p, respectively.

Remark �� The case d = gcd(d(f )� d(g))�1 have already been consid-
ered in [5]. In this case both f and g have a multiple linear factor modulo q ,
where q is a prime divisor of d. The result given below gives a condition
when [5] is not applicable.

Consider the order Of = Z[�] of the field L, the order Og = Z[� ] of the
field M and the composite order Of g = Of Og = Z[�� � ] in the composite

field K = ML. Obviously f1� �� � � � � �m�1g, f1� � � � � � � �n�1g and

f1� �� � � � � �m�1� � � ��� � � � � �m�1�� � � � � �n�1� ��n�1� � � � � �m�1�n�1g�

are Z-bases of Of , Og and Of g , respectively.
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Our main result is the following:

Theorem �� If there exists a power integral basis in Of g � then the con�

gruence

(d(g))m(m�1) � �1 (mod q)(3)

is satis�ed�

As a consequence we have:

Theorem �� If ��� is not satis�ed� then Of g does not admit any power

integral basis�

3. Proof of Theorem 1

Denote by �(i) (1 � i � m) the conjugates of � � L and by � (j )

(1 � j � n) the conjugates of � � M . Denote by �(i �j ) the conjugate of any

element � � K under the automorphism mapping � to �(i) and � to � (j )

(1 � i � m , 1 � j � n). Denote by N the smallest normal extension of K
and let q0 be a prime ideal of N lying above a prime divisor q0 of q .

Since f (x ) � (x � t)m (mod q), hence f (x ) =
Qm
j=1(x � �j ) �

� (x � t)m (mod q0), that is �j � t (mod q0), where 1 � j � m .

The discriminants of the polynomials f and g are

d(f ) =
Y

1�i�j�m

�
�(i) � �(j )

�2

d(g) =
Y

1�i�j�n

�
� (i) � � (j )

�2
�(4)

These are also the discriminants of the bases f1� �� � � � � �m�1g of the order

Of and f1� � � � � � � �n�1g of the order Og , respectively. As it is known
(cf. W. Narkiewicz [10]) the discriminant of the order Of g is

D(Of g ) = d(f )n � d(g)m �(5)

We can represent any element � � Of g in the form

� =
m�1X
i=0

n�1X
j=0

xi j�
i� j(6)
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with xi j � Z. The index of � corresponding to the order Of g (that is

(O+
f g : O+

f g [�])) is

IOf g (�) =
1q

jD(Of g )j

Y
(i1�j1)�(i2�j2)

����(i1�j1) � �(i2�j2)
���

where the pairs of indices are ordered lexicographically. Now we rearrange
the factors in the product above. Using (4) and (5) we have

IOf g (�) = I1 � I2 � I3�

where

I1 =
mY
i=1

Y
1�j1�j2�n

������
(i �j1) � �(i �j2)

� (j1) � � (j2)

����� �

I2 =
nY
j=1

Y
1�i1�i2�m

������
(i1�j ) � �(i2�j )

�(i1) � �(i2)

����� �(7)

I3 =
Y

(i1�j1)�(i2�j2)
i1�i2�j1�j2

����(i1�j1) � �(i2�j2)
��� �

Obviously, the factors of I1� I2� I3 appearing in (7) are algebraic integers.
Further, using symmetric polynomials we can see that I1� I2� I3 � Z. If �
generates a power integral basis in Of g , then the index of � is 1, hence by
I1 � I2 � I3 = �1 we also have I1� I2� I3 = �1 which implies that the factors of
I1� I2� I3 are in fact units.

For any 1 � i1�i2 � m and 1 � j1�j2 � n we have�
�(i1�j1) � �(i2�j1)

�
+
�
�(i2�j1) � �(i2�j2)

�
+
�
�(i2�j2) � �(i1�j1)

�
= 0

which implies the equation�
�(i1) � �(i2)

�
	i1i2j1j2 +

�
� (j1) � � (j2)

�

i1i2j1j2 + �i1i2j1j2 = 0(8)

with

	i1i2j1j2 =
�(i1�j1) � �(i2�j1)

�(i1) � �(i2) � 
i1i2j1j2 =
�(i2�j1) � �(i2�j2)

� (j1) � � (j2) �

�i1i2j1j2 = �(i2�j2) � �(i1�j1)�
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By the above arguments these elements are units in

O = Z
�
�(i1)� �(i2)� � (j1)� � (j2)�

where
�
Q
�
�(i1)� �(i2)� � (j1)� � (j2)� : Q

�
� m(m � 1)n(n � 1).

Consider equation (8) modulo q0.

By our assumptions �(i1) � �(i2) � 0 (mod q0), hence by equation (8)
we get

� (j1) � � (j2) � ��i1i2j1j2 � 

�1
i1i2j1j2

(mod q�)(9)

where ��i1i2j1j2 � 

�1
i1i2j1j2

is also a unit in O. This can be done for all i1�i2,

j1�j2, so multiplying the left and right sides of equation (9) (for all i1�i2
and j1�j2) we become

(d(g))m(m�1) � �1 (mod q0)(10)

since on the right side a power of the norm of a unit appears. This is a
congruence with rational integers, hence as a consequence we also have

(d(g))m(m�1) � �1 (mod q0)�(11)

We can prove (11) for all prime divisor q0 of q , that is (3) must be satisfied.

4. Applications

Example �� A parametric family of totally real cyclic sextic fields

One of the most interesting application of Theorem 1 is the case when

f (x ) = x3 � (a + 1)x2 + (a + 2)x + 1�

g(x ) = x2 � ax � 1

and m = 3� n = 2. This family was investigated by Odile Lecacheux [8] which
has motivated our present result. We have

d(f ) = (a2 � a + 7)2�

d(g) = a2 + 4�

Let us consider the polynomial f . We get

f (x ) �

�
x �

a + 1
3

�3

=
1

27
� (a2 � a + 7) � (a + 4 � 9x )�
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Set q = a2 � a + 7 and assume that q is square free. If a � 2 (mod 3), then
gcd(q� 9) = 9. Because of it we consider the family when a � 0� 1 (mod 3).
Then we have gcd(q� 3) = 1 which means

f (x ) �

�
x �

a + 1
3

�3

(mod q)�

Using congruence (3), by Theorem 1 if there exists a power integral basis
in Of g the following is satisfied:

(a2 + 4)6 � (a � 3)6 � �1 (mod q) �(3)

Using Maple for finding solutions we have the following:

if a �� [�840� 840], then (3) is not satisfied, so by Theorem 2 there exist
no power integral basis in Of g .

Considering the values jaj840, (3) can only be satisfied for

a = �15��2� 1� 4�

Example �� Composite of a totally real cyclic quintic and a quadratic

�eld

Another application of Theorem 1 is the case when

f (x ) = x5 + a2x4 � (2a3 + 6a2 + 10a + 10)x3+

(a4 + 5a3 + 11a2 + 15a + 5)x2 + (a3 + 4a2 + 10a + 10)x + 1�

g(x ) = x2 � ax � 1

and m = 5� n = 2. The totally real cyclic quintic family generated by a root
of f was investigated by E. Lehmer [9], see also cf. I. Gaál and M. Pohst [6].
We have

d(g) = a2 + 4�

Let us consider the polynomial f . Set q = a4 + 5a3 + 15a2 + 25a + 25 and
assume that q is square free. Then we have

f (x ) �

�
x +

a2

5

	5

(mod q)�

Using congruence (3), by Theorem 1 if there exists a power integral basis
in Of g , then

(a2 + 4)20 � �1 (mod q)(3)
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is satisfied. Using Maple we have that if a �2�4�1016, then (3) is not satisfied,
so by Theorem 2 there exist no power integral basis in Of g .
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A SMALL CONVEX POLYTOPE WITH LONG EDGES, MANY
VERTICES AND QUADRANGLE FACES ONLY

By

ZOLTÁN GYENES

�Received June ��� �����

It is known (see [1] or [2]) that there exists a 3-dimensional convex
polytope of diameter 3 with arbitrary large number of vertices and edges of
length at least 1. However, the constructions in these papers contain many
triangle faces. We show a construction with quadrangle faces only by proving
the following:

Theorem �� There exists a ��dimensional convex polytope in a sphere of

diameter � with �k�� �k � 4� vertices� edge�lengths at least 	 and quadrangle

faces only


To prove this we verify the following

Lemma �� There exist a convex polygon with �k �k � 4� vertices A1�

A2� � � � � A2k and a point O in the interior of it� so that the intersection of OAi

and Ai�1Ai+1 is the midpoint of the former �i = 1� 2� � � � � 2k � A2k+1 = A1�


Proof� Take an arbitrary “horizontal” line e and two points, A1 and O on
it, the former is on the “left”. Let’s take A2 “below” e, so that A2A1 = A2O .
If we have already chosen Ai (2 � i � 2k � 5), then denoting the midpoint
of OAi by Fi , we choose Ai+1 on the line of Ai�1Fi , so that Ai�1AiAi+1O

is a convex quadrangle. We choose the Ai ’s for 1 �i � 2k � 4 in such a
way that the orthogonal projection of Ai onto e is between A1 and O . This
is possible, since if this assumption holds for Ai , then it will hold for Ai+1
as well, provided that Ai+1 is close enough to Fi .

The author was supported by Hung. Nat. Sci. Found. (OTKA) grant no. T032042
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Now we choose A2k�3 on the line of A2k�5F2k�4, so that it is above the
line e, and the distance between O and the orthogonal projection of A2k�3

onto e is not equal to A1O
2 (this is clearly possible).

We choose A2k�2 on the line of A2k�4F2k�3, so that A2k�3F2k�2 is
orthogonal to e (again this is possible). Let us denote the distance of A2k�2
from e by a2k�2, the orthogonal projection of A2k�2 to e by B2k�2 and the

ratio
OB2k�2
A1O

by � (�0). We have ��1 by the construction of A2k�3.

Finally we choose A2k�1 on the line of A2k�3F2k�2 “above” e, so that

its distance from e is (�+2)2

2(��1)2
a2k�2 and A2k on the line of A2F1 “above” e,

so that its distance from e is 3(�+2)
2(��1)2

a2k�2. It is easy to check, that this is a

proper polygon with the point O .

Now the construction of the polytope is the following. Contract the
polygon in lemma 1 from O so that the distances OAi become smaller thanp

2. Take a parallel plane lying at distance 1 from the plane of the polygon
and translate the polygon and the point O into that plane by a shift orthogonal
to the planes. Denote the corresponding points by A�1� � � � A

�

k
� O �. Choose two

more points: O ��� O ��� so that O ���� O� O �� O �� are on a line in this order and
O ���O = OO � = O �O �� = 1. Finally, let the vertices of the polytope be:
A1� A3� � � � � A2k�1, A�2� A

�

4� � � � � A
�

2k � O
��� O ���.
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Because of the construction of the polygon the faces of this polytope are
the quadrangles O ���Ai�1Ai+1A

�

i
and AiA

�

i�1A
�

i+1O
�� (we have to check only

that these fourtuples are coplanar and this is true, since the midpoint of O ���A�
i

is on Ai�1Ai+1). Thus the edges are the segments O ���Ai , AiA
�

i+1, A�
i
Ai+1,

A�
i
O ��, all of which are longer than 1 because O ���Ai is longer than O ���O = 1,

AiA
�

i+1 is longer, than OO � = 1, etc. Finally, the polytope is in the Thales

sphere of O ���O ��. This proves our theorem.
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1. Introduction

Let G �= 0 denote any Abelian group. Define p(G) as the smallest positive
integer p for which there exists a nonzero element g of G with pg = 0. If
no such integer exists, we write p(G) = �. Thus, p(G) = � if and only if
G is torsion free, otherwise it is a prime number that equals the order of the
smallest nontrivial subgroup of G . In particular, if G is finite, then p(G) is
the smallest prime divisor of jGj.

For nonempty subsets A�B � G with jAj = k and jB j = � , define

A + B = fa + b j a � A� b � Bg

and

A +̇ B = fa + b j a � A� b � B� a �= bg�

If G is torsion free, that is, G is an ordered Abelian group, then the
elements of A and B can be enumerated as a1 �a2 ��� � �ak and b1 �
�b2 ��� ��b� such that

a1 + b1 �a2 + b1 ��� ��ak + b1 �ak + b2 ��� ��ak + b� �

Thus we can conclude that jA + B j � k + � � 1 and jA +̇ B j � k + � � 3. In
particular, jA + Aj � 2k � 1 and jA +̇ Aj � 2k � 3.

According to the Cauchy–Davenport theorem [3], if p is a prime number
and p � k + � � 1, then jA + B j � k + � � 1 holds for any A�B � Z�pZ
with jAj = k � jB j = � . This result has been generalized in several ways. In

* Visiting the Rényi Institute of the Hungarian Academy of Sciences. Research partially
supported by Hungarian Scientific Research Grants OTKA T043623 and T043631.
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particular, the following improvement can be obtained easily from Kneser’s
theorem [13, 16] or can be proved directly with a combinatorial argument,
see [11].

Theorem �� If A and B are nonempty subsets of an Abelian group G

such that p(G) � jAj + jB j � 1� then jA + B j � jAj + jB j � 1�

The case of restricted addition is apparently more difficult. In 1994 Dias
da Silva and Hamidoune [4] proved the following analogue of the Cauchy–
Davenport theorem, thus settling a problem of Erdős and Heilbronn (see [8]).

Theorem �� If A is a k �element subset of the p�element group Z�pZ� p

a prime� then

jA +̇ Aj � minfp� 2k � 3g�

Later Alon, Nathanson and Ruzsa [1, 2] applying the so-called ‘polyno-
mial method’ gave a simpler proof that also yields

jA +̇ B j � minfp� jAj + jB j � 2g

if jAj �= jB j. Some lower estimates on the cardinality of A +̇ B in arbi-
trary Abelian groups were obtained recently by Lev [14, 15], and also by
Hamidoune, Lladó and Serra [10] in the case A = B . Moreover, some more
refined results in elementary Abelian groups have been proved by Eliahou
and Kervaire, see [5, 6, 7].

In [12] we obtained the following extension of the Dias da Silva–Hami-
doune theorem.

Theorem �� If A is a k �element subset of an Abelian group G � then

jA +̇ Aj � minfp(G)� 2k � 3g�

The aim of the present note is to give a short alternative proof of this
result.
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2. The Key Idea of the Proof

The case p(G) = 2 being fairly obvious, we will assume that p(G) � 3 in
order to avoid some minor technicalities. In this case Theorem 3 is clearly
equivalent to the following.

Theorem �� If A is a k �element subset of an Abelian group G with

p(G) � 2k � 3� then

jA +̇ Aj � 2k � 3�

Indeed, if 2k � 3 �p(G), then one can apply Theorem 4 for any subset
A� of A with p(G) = 2jA�j � 3 to obtain the result; one only has to note that
A� +̇ A� � A +̇ A.

Since A is contained in a finitely generated subgroup H of G , and
obviously p(H ) � p(G), it is enough to prove Theorem 4 in the case when
G is finitely generated. In this case we can write

G = G1 �G2 � � � ��Gm �

where each group G i is isomorphic either to the infinite cyclic group Z or
to a cyclic group Z�p�Z with some prime number p � p(G) and positive
integer � . We have seen that the theorem is true if G �= Z, and Theorem 2
claims the same if G �= Z�pZ for some prime number p. In view of all this,
to prove Theorem 4 it is enough to verify the following two statements.

Statement �� If Theorem � is valid for the Abelian groups G1 and G2�

then it also holds for their direct sum G1 �G2�

Statement �� Let p � 3 be a prime number and let � be a positive

integer� If Theorem � is valid for the group Z�p�Z� then it also holds for the

group Z�p�+1
Z�

The key observation is that we can verify both statements using the same

argument, based on the following notion. Let G1 and G2 be two Abelian
groups for which we have already verified Theorem 4 for all possible values

of k , and let 	 : G1 	G1 
 G2 be any map. On the set of all ordered pairs

(g1� g2) (g1 � G1� g2 � G2), define an additive structure G� by introducing
an operation +� as follows:

�
g1� g2� + �

�
h1� h2� =:

�
g1 + h1� g2 + h2 + 	

�
g1� h1���
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Note that if the map 	 is symmetrical, then the operation +� is commutative.
Now Statements 5 and 6 can be easily derived from the following lemma.

Lemma 	� Let A be a k �element subset of G� such that

2k � 3 � minfp
�
G1�� p�G2�g�

Then the set

A +̇ A =: fa + �b j a� b � A� a �= bg

has at least 2k � 3 di�erent elements�

Indeed, letting 	 � 0 we get back the notion of direct sum: G�
�=

�= G1 �G2. Since p
�
G1 �G2� = minfp

�
G1�� p�G2�g, Statement 5 follows

immediately. On the other hand, if we choose G1 = Z�pZ, G2 = Z�p�Z, and
we define

	(x + pZ� y + pZ) =
n

0 if x + y �p
1 otherwise

for x � y � f0� 1� � � � � p � 1g, then G�
�= Z�p�+1

Z. Since

p
�
Z�p�+1

Z
�

= p
�
Z�p�Z

�
= p(Z�pZ) = p�

Lemma 7, coupled with Theorem 2 implies Statement 6 as well.

It only remains to prove Lemma 7.

3. Preliminary Lemmas

For a set X � G� write

X 1 = fg1 � G1 j there exists g2 � G2 with
�
g1� g2� � X g�

We define X 2 in a similar way. For A�B � G� we also introduce

A + B =: fa + �b j a � A� b � Bg�

An immediate consequence of these definitions is the following statement.

Proposition 
� For arbitrary X�Y � G� we have (X nY )1  X 1 nY 1

and X 1 +̇ X 1 � (X +̇ X )1 � X 1 + X 1�

The careful reader may observe that the second part of the statement does
not remain valid in general if, instead of the projection to the first coordinate,
one considers the projection to the second one.
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We have to prove that jA +̇ Aj � 2k � 3 for the k -element set A � G� .
Note that

2jAi j � 3 � 2k � 3 � p
�
G i�

for i = 1� 2. Write A = A0 � C , where C = C1 � � � � � Ct ,

A0 = f(ai � bi ) j1 � i � sg� Ci = f(ci � di j ) j1 � j � kig

for 1 � i � t such that 2 � k1 � k2 � � � � � kt , and a1� � � � � as � c1� � � � � ct

are pairwise different elements of G1. In particular, k = s + k1 + � � � + kt and

jA1j = s + t . The following easy lemma will be used frequently throughout
the proof.

Lemma �� For 1 � �� 
 � t � � �= 
 we have

jC� +̇ C� j � 2k� � 3

and

jC� +̇ C� j � k� + k� � 1�

Proof� Adding 	(c� � c� ) to each element of C 2
� +̇ C 2

� , we obtain the set

(C� +̇ C� )2. Consequently, jC� +̇ C� j = j(C� +̇ C� )2j = jC 2
� +̇ C 2

� j. Since

2jC 2
� j � 3 = 2k� � 3 � 2k � 3 � p

�
G2��

the first estimate follows directly from our hypothesis on G2. Similarly,

(C� +̇ C� )2 is obtained translating the set C 2
� + C 2

� by 	(c� � c� ). In this

case we have

jC 2
� j + jC 2

� j � 1 = k� + k� � 1 � 2k � 5 �p
�
G2��

and thus Theorem 1, applied to G2, immediately implies

jC� +̇ C� j = j(C� +̇ C� )2j = jC 2
� + C 2

� j � k� + k� � 1�
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4. Proof of Lemma 7

Assume first that s = 0, in which case A = C = C1 � � � ��Ct , k = k1 + � � �+ kt .

The numbers ci + ct (1 � i � t) are t distinct elements of C 1 +C 1. It follows

from Theorem 1 that jC 1 + C 1j � 2t � 1, and thus there is a set I of t � 1
pairs (�� �) such that the numbers

ci + ct (1 � i � t)� c� + c� ((�� �) � I )

are all different. Lemma 9 implies jC� +̇ C� j � 1 for these pairs (�� �). It
follows that the sets

Ci +̇ Ct (1 � i � t)� C� +̇ C� ((�� �) � I )

are pairwise disjoint subsets of A +̇ A. Based on Lemma 9 and the inequalities
ki � kt for 1 � i � t , we then indeed obtain

jA +̇ Aj �
X

(���)�I

jC� +̇ C� j +
t�1X
i=1

jCi +̇ Ct j + jCt +̇ Ct j

� (t � 1) +
t�1X
i=1

(ki + kt � 1) + (2kt � 3)

� t � 1 + 2
tX

i=1

ki � (t � 1)� 3 = 2k � 3�

In the sequel we may assume that s � 1. If t = 0, that is, jA1
0j = s = k ,

then we have

jA +̇ Aj � jA1
0 +̇ A1

0j � 2k � 3

according to our assumption on the group G1. Next, if t = 1 then we have
3 � s + 2 � (k + 2) � 2. Note that in this case (A n C ) +̇ C = A0 +̇ C

and C +̇ C are disjoint, since (g1� g2) � C +̇ C implies g1 = c1 + c1, while

g1 = ai +c1 for some 1 � i � s if (g1� g2) � A0 +̇ C . Moreover, the elements
(ai + c1� bi + d1j ) are pairwise different for 1 � i � s , 1 � j � k1, thus we
obtain the estimate

jA +̇ Aj � jA +̇ C j = jA0 +̇ C j + jC +̇ C j

� sk1 + (2k1 � 3) = s(k � s) + 2(k � s)� 3

= ((k + 2)� (s + 2))(s + 2)� 3 � 2k � 3�

as it was to be proved.
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Finally, turning to the general case s � 1� t � 2, we can argue as follows.
First we claim that there is an index 1 � j � t � 1 such that

a1 + cj �� fc1 + ct � c2 + ct � � � � � ct�1 + ctg�

Indeed, were

fa1 + cj j 1 � j � t � 1g = fci + ct j 1 � i � t � 1g�

we would get D + fdg = D with D = fc1� c2� � � � � ct�1g and d = a1 � ct �= 0.
This would in turn imply that the pairwise different numbers

c1� c1 + d� c1 + 2d� � � � � c1 +
�
p
�
G1�� 1

�
d

all belong to D , which is absurd, since

jD j = t � 1 �2t � 2 � k � 3 �2k � 3 � p(G1)�

This way we specified t + 1 pairwise different elements,

a1 + cj � a1 + ct � c1 + ct � c2 + ct � � � � � ct�1 + ct

of the set A1 +̇ A1 whose cardinality is at least 2(s + t) � 3, based on our

assumption on G1. From Proposition 8 it follows that A +̇ A contains at least

2(s + t)� 3� (t + 1) = 2s + t � 4

elements (g1� g2) such that

g1 �� fa1 + cj � a1 + ct � c1 + ct � � � � � ct�1 + ctg�

Denote the set of these elements by E . Introducing F� = f(a1� b1)g +̇ C�

for � = j � t we find that E� Fj � Ft and Ci +̇ Ct (1 � i � t � 1) are pairwise

disjoint subsets of A +̇ A. Obviously jFj j = kj � k1 and jFt j = kt , hence
Lemma 9 implies that

jA +̇ Aj � jE j + jFj j + jFt j +
t�1X
i=1

jCi +̇ Ct j

� (2s + t � 4) + k1 + kt +
t�1X
i=1

(ki + kt � 1)

� 2s + t � 4 + 2
tX

i=1

ki � (t � 1) = 2k � 3�

This completes the proof of Lemma 7.
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Heilbronn conjecture, Electron� J� Combin� 7 (2000), Research paper R4,
10 pages (electronic).

[16] M�B� Nathanson, Additive Number Theory. Inverse Problems and the Geom-
etry of Sumsets, GTM 165, Springer, 1996.

Gyula Károlyi
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1. Introduction

Mathematical modelling of atmospheric pollution caused by industrial
emissions is of great practical importance as it allows not only to estimate
danger for humans but also to develop measures and means to reduce un-
healthy consequences of atmospheric pollution and possible damages caused
by it. These problems can be solved only on the base of complex ecological-
meteorological modelling that, on one hand, has a required degree of detailed
elaboration of a spectrum of atmospheric motions and, on the other hand,
has potential to solve concrete physical tasks related to the transport and
dispersion of pollutants in the air. These problems have been intensively
discussed and investigated in recent years, especially in the context of future
climate changes (see for example [1,2]). The major difficulties arise from
the necessity of a fine grid resolution and carrying out long runs (covering
many years), which lead to huge computational tasks. So the development
of fast but sufficiently accurate numerical algorithms is of great importance,
and techniques for speeding up parallel software implementations [3] must be
intensively used.

The transport and diffusion of pollutants depend on the characteristics of
the underlying surface as well as on atmospheric motions on various scales
(wind and turbulence). The horizontal distribution of a pollutant, having been
emitted from a source, is mainly determined by the wind field. Wind velocity
affects both the distance of the substance spreading and its concentration in
plumes by which the particles are transported. Temperature stratification is
also of great importance as it determines the stability of the atmosphere, and
the latter influences the intensity of turbulence and the thickness of the mixed
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layer on which the character of vertical dispersion of pollutants depends.
Weather conditions influence also the processes of washing out the particles
by atmospheric precipitation and absorption by the underlying surface.

The chemical changes of a substance in the atmosphere are connected to
such meteorological characteristics as the quantity of water vapour or drops,
the air temperature, the intensity of solar radiation and the presence of other
atmospheric substances.

Hence, in any research of practical purpose, the task of the analysis and
forecast of air pollution distributions cannot be studied within the framework
of a hypothetical representation of atmospheric parameters. At the present
stage, in the development of computer engineering, there is an opportunity of
computing concentrations under real meteorological conditions on the base of
complex atmospheric models [4].

2. A complex model of atmospheric state

The fundamental dynamical equations of a malleable medium are based
on the universal physical laws of conservation of mass:

D�

Dt
+ � (r �V ) = 0;(1a)

conservation of momentum:
DV

Dt
+ 2Ω�V = ���1rp � g +r � (� Π) ;(1b)

conservation of energy:

�cp
DT

Dt
� �T

Dp

Dt
= r

�
krT � F rad

�
+ QH ;(1c)

conservation of scalar entities � = (q� qL� qw ):

D�
Dt

= r (kr�) + Qq ;(1d)

and the ideal gas law:

p = �RT�(1e)

In these equations (1a–e) and below the following notations are used:
D
Dt = �

�t +V �r; t is time, � is the density of the medium, V is its velocity,
p is pressure, T is temperature, q is specific concentration of some ingredient,
qL is specific humidity, qW is specific water content, Ω is the angular velocity
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of rotation of reference frame, g is the gravitational acceleration, � is factor
of turbulent viscosity, Π is tensor of tension, cp is specific heat capacity at
constant pressure, � is thermal expansion coefficient, k is the coefficient of

turbulent heat conductivity (diffusion), F rad is the density of radiation energy
flux, QH is the intensity of allocation (absorption) of heat at the expense of
phase transitions of moisture, Qq is the source (sink) of scalars � = (qL� qW )
as a result of phase transitions.

When integrating the system of equations (1), the vector equation (1b)
for V = (v1� v2� v3) should be split into three scalar equations, corresponding
to the three coordinate directions x1� x2� x3. Usually two axes of coordinates
x1� x2 are chosen to be parallel to a hypothetical (smooth) surface of the Earth
(for example, surface of the quiet sea). The first one, x1 is directed to the East,
the second one, x2 to the North, and the third coordinate axis, x3 upwards,
orthogonal to this hypothetical surface of the Earth.

The existing numerical methods for solving the system (1) (finite differ-
ence, finite elements, spectral methods) are based on some discretization of
the differential equations by means of projection into some finite dimensional
space, a discrete set of values of points (grid). The more grid points we have,
the better a function of continuous variable is approximated by the vector
of discrete values of this function in nodes of the grid. Hence, on those
grids which can be used for a realistic modelling of atmospheric circulation,
these methods will actually give solutions only for long-wave processes. At
the same time, equations (1a) and (1b) simulate disturbances as sound and
gravitational waves which weakly influence meteorological phenomena, but
sharply affect the stability of the numerical realization. The question arises
naturally, there arises a question, whether it is possible to alter the original
system of hydrodynamical equations (1) so that they do not include the solu-
tions corresponding to sound, gravitational and other high-frequency waves,
but describe the macroscale disturbances of the circulation.

In [5], maybe for the first time, on the base of an order estimation for
the terms in equations (1a) and (1b), a method of ”filtering” of solutions,
connected to high-frequency waves, was offered. Following the results of this
work, we shall replace the third projection of the equation (1b) for velocity
component v3 by the equation of statics:

1
�

�p

�x3
= �g �(2)

As a consequence of assuming hydrostatic balance in the system of
equations (1), there is no prognostic equation for the vertical movement.
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As system (1) is closed, the vertical velocity should be defined from such
a diagnostic equation in which the hydrostatic balance is supported. Mete-
orological quantities, which are measured directly in operative practice are
pressure p, the absolute temperature T , horizontal wind components, v1 and
v2 and also humidity q . Density � is easily determined from p and T with the
help of equation (1e). On the other hand, the vertical component of velocity
v3, appearing in the equations of system (1), is not measured, and with the
introduction of approximation (2) is not expressed explicitly through other
quantities.

Let us express the vertical velocity at any time on distribution of v1, v2
and T by means of the equation

�

�x3
(r �V ) =

g

CpT
r � V�(3)

which can be obtained by a combination of the first law of thermodynamics
for adiabatic processes:

�Cp
DT

Dt
� Dp

Dt
= 0�

and equations (1e), (1a) and (2). To generalize the equation for the case
of moist air, it is enough to replace absolute temperature by virtual one in
equation (3):

Tv � T (1 + 0� 6078q � qL) �

The transition from the prognostic equation of conservation of mass (1a)
to the diagnostic equation (3) violates the closeness of the complete system
of equations in our circulation model because the equation of hydrostatics (2)
is also diagnostic. Let us add to system (1)–(3) an equation for the tendency
of pressure p. To this aim, we shall combine equations (1e), (1a) and (2) as
follows:

�

�x3

�
�p

�t

�
= gr � (�V) �

Integrating the obtained expression from a given height x3 to the upper
boundary of the model domain x3 = H , we shall get:

�
�p

�t

�
x3=H

�
�
�p

�t

�
x3

= (g�v3)x3=H � (g�v3)x3
+ g

HZ
x3

r̄ � ��V̄
�
d� �(4)
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where the overlines refer to the operator of horizontal divergence and the
velocity vector. Further, using standard assumptions about the absence of tur-
bulent flows and non-adiabatic conditions at height H above the surface of the
earth, which at an order of magnitude exceeds the height of the atmospheric
boundary layer, a condition for the upper boundary can be expressed as:�

�p

�t

�
x3=H

=

�
�p

�x3

�x3
�t

�
x3=H

= � (�gv3)x3=H �(5)

Taking into account the obtained condition in equality (4), this will give
the final equation for the pressure tendency:

�p

�t
= g�v3 � 2 (g�v3)H � g

HZ
x3

r̄ � ��V̄
�
d� �(6)

In order to close the obtained system of equations, it is necessary to define
the physical characteristics of the medium, mode of its movement, to establish
relationships between thermodynamic variables V� �� p� T� q� qL� qW and
factors of transportation �� k and, finally, to establish a method of parame-

terization of source (sink) members F rad� QH � Qq .

To express components u = v1� v = v2� w = v3 of velocity V in the
spherical system of coordinates 	 (longitude), 
 (latitude) and z (height), we
can use the relations x1 = r cos� cos 	� x2 = r cos� sin 	� z = x3 = r sin� .
Let also be

� =
z � F

�
	� �

�
H � F

�
	� �

� � and w =
1

H � F

�
w � (1� �)

�
u

r cos�
�F

�	
+
v

r

�F

��

��
�

where � is a reduced value of vertical coordinate which is terrain-following;
F is the height of the surface; H is the height above sea level of the upper
boundary. The model in the limited area G can be presented by means of the
following system of equations:

�u

�t
= � u

r cos�
�u

�	
� v

r

�u

��
� w

�u

��
+

�
2Ω +

u

r cos�

�
v sin� �

� 1
r cos�

�
v
��

�	
+ (1� �) g

�F

�	

�
+

1
r cos�

�

�	

�
KG

�u

�	

�
+

+
1
r

�

��

�
KG

�u

��

�
+

1

(H � F )2
�

��

�
KM

�u

��

�
�(7)
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�v

�t
= � u

r cos�
�v

�	
� v

r

�v

��
� w

�v

��
+

�
2Ω +

u

r cos�

�
u sin� �

� 1
r

�
v
��

��
+ (1� �) g

�F

��

�
+

1
r cos�

�

�	

�
KG

�v

�	

�
+

1
r

�

��

�
KG

�v

��

�
+

+
1

(H � F )2
�

��

�
KM

�v

��

�
�(8)

1

(H � F )2
�2w

��2 +
1

H � F

�
2
r
� g

�V

�
�w

��
� 2
r

�
1
r

+
g

�V

�
w =(9)

=
1

r cos�

	�
1
r

+
g

�V

���
�u

�	
+
�v cos�

��

�
�

� 1
H � F

�
�F

�	

�u

��
+
�F

��

�v cos�
��

��
�

� 1
H � F

�

��

�
�u

�	
+
�v cos�

��
� 1� �

H � F

�
�F

�	

�u

��
+
�F

��

�v cos�
��

��

�

�

�t
= � u

r cos�
�

�	
� v

r

�

��
� w

�

��
+(10)

+
1

r cos�
�

�	

�
KG

�

�	

�
+

1
r

�

��

�
KG

�

��

�
+

1

(H � F )2
�

��

�
KH

�

��

�
�

� L

�

�
�
dqH
dt

�
+ QK � QI + QR �

�q

�t
= � u

r cos�
�q

�	
� v

r

�q

��
� w

�q

��
+

1
r cos�

�

�	

�
KG

�q

�	

�
+(11)

+
1
r

�

��

�
KG

�q

��

�
+

1

(H � F )2
�

��

�
KH

�q

��

�
+ MX �

�qS
�t

= � u

r cos�
�qS
�	

� v

r

�qS
��

� w
�qS
��

+(12)

+
1

r cos�
�

�	

�
KG

�qS
�	

�
+

1
r

�

��

�
KG

�qS
��

�
+

+
1

(H � F )2
�

��

�
KH

�qS
��

�
+ �

dqH
dt

+ MK �MI�

�qL
�t

= � u

r cos�
�qL
�	

� v

r

�qL
��

� w
�qL
��

+(13)
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+
1

r cos�
�

�	

�
KG

�qL
�	

�
+

1
r

�

��

�
KG

�qL
��

�
+

+
1

(H � F )2
�

��

�
KH

�qL
��

�
+

1
� (H � F )

��VoqL
��

� �
dqH
dt

�MI

��

��
= �g (H � F )

v
�(14)

�p

�t
= g�w̄ � 2 (g�w̄ )�=1 � g (H � F )

1Z
�

1
r cos�

�
��u

�	
+
��v cos�

��

�
d� �(15)

�k

�t
= � u

r cos�
�k

�	
� v

r

�k

��
� w

�k

��
+

KM

(H � F )2

��
�u

��

�2

+

�
�v

��

�2
�
�(16)

� g

v

KH

H � F

�v
��

+
2

(H � F )2
�

��

�
KM

�k

��

�
� ��

��

�t
= � u

r cos�
��

�	
� v

r

��

��
� w

��

��
+(17)

+ C2
�

k


KM

(H � F )2

��
�u

��

�2

+

�
�v

��

�2
�
� g

v

KH

H � F

�v
��

�
�

� C3
�2

k
+

C4

(H � F )2
�

��

�
KM

��

��

�

KM = C1k
2
�
��(18)

Here, in addition to some commonly known symbols and those already

introduced, the following notations are used: � = Cp
�
p
�
p0
�R�Cp is the

reduced pressure;  is the potential temperature; � is the attribute of pres-
ence of condensation of humidity (1: has a place, 0: is absent); Vo is the
established speed of precipitation; k , �-turbulence kinetic energy and its
dissipation, respectively; KG , KM are the horizontal and vertical turbulent
diffusion coefficients for momentum; KH is the vertical turbulent diffusion
coefficient for heat and humidity; (C1� C2� C3� C4) = (0�09; 1�46; 1�83; 0�42)
are constants of closure in the atmospheric boundary. Source-sink functions
of subgrid scale are denoted as follows: QK is the intensity of latent heat
release for vapour condensation; QI is the intensity of latent heat release for
evaporation of water; QR is the intensity of radiation cooling or heating; MX
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is an additional ”source” of substance caused by chemical reactions; MK is
a source of humidity from condensation; MI is a source of humidity from
evaporation.

The mathematical model (7)–(18) differs from known models, widely
used in operative practice, in using vertical coordinate � and due to equations
(9), (14) and (15).

3. Mathematical formulation of the problem and its numerical solution

Forecasting meteorological quantities and pollutant concentrations in the
bounded atmospheric domain G by use of numerical methods is a rather
complicated task. In the case of simpler models the splitting method proves
to be efficient [6,7,8]. We have a more complex model, where the method of
”unilateral influence” can be used [9]. In other words, as boundary conditions
for regional model (7)–(18), we will use results of analysis and forecast
obtained by a macroscale (hemispheric or global) model.

Let the state of the atmosphere at point r = (	� �� �) of the macroscale
area G(r ) � G(r ) be defined by a vector

�(r� t) = (u� v � w� �� T� q� qS � qL� k � �)

of discrete values of the analysis and forecast �
�
r� tm+1

�
= �m+1 (r ), re-

ceived from a macroscale model at time t = tm+1 (m = 0� 1� � � � �M ) with a
step � = tm+1� tm . To compute the atmospheric state in the bounded domain

G for �t 	
h
tm � tm+1

i
, we will solve a task of the following form in vector

representation:

��
�t

= D�� �t 	
h
tm � tm+1

i
��r 	 G�(19)

�
�
r� tm+1

�
= �m+1(r )� m = 0� 1� � � � �M�

Now replace continuum G = G (r ) by a finite set of points by breaking the
region G into a set of J�1 elements of Δ	j , K�1 elements of Δ�k and L�1

elements of Δ�l . Let us construct a vector fri j k =
�
	j � �k � �l

�
, 1 
 j 
 J ,

1 
 k 
 K , 1 
 l 
 Lg, called grid. Then we will have:

	J = 	1 +
J�1X
�=2

Δ	� � �K = �1 +
K�1X
�=2

Δ�� � �L = �1 +
L�1X
�=2

Δ�� �
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In the domain of definition G , instead of function � (r� t), given on the
macroscale grid, we will construct (see Section 4) a function of discrete argu-
ments � �rj k l � tm� = �mj kl on the regional grid in nodes

�
	j � �k � �l � t

m
� 	 R,

1 
 j 
 J , 1 
 k 
 K , 1 
 l 
 L, 1 
 l 
 L. Besides, we construct a grid
operator �, corresponding to the differential operator D in (19) (see Section 4
for details).

After filling up function �
�
tm+1

�
= �m+1 in the nodes of the regional

grid and computing values of the right-hand side functions f
�
tm+1

�
= f m+1 =

= ��m+1, m = 1� 2� � � � �M in all nodes of the grid f �	j � �k � �l �, 1 
 j 
 J ,
1 
 k 
 K , 1 
 l 
 Lg, we will search for a solution of the problem (19)

for � t 	
h
tm � tm+1

i
with the formula

� (t) = �m +
t � tm

�

�
�f m +

t � tm

4�

h
4
�
�m+1 � 2�m + �m�1

�
�

� �
�
f m+1 � f m�1

�
+

+
t � tm

4�

h
5
�
�m+1 ��m�1

�
� �

�
f m+1 + 8f m + f m�1

�
�

� t � tm

4�

h
2
�
�m+1 � 2�m + �m�1

�
� �

�
f m+1 � f m�1

�
+

+
t � tm

4�

h
3
�
�m+1 ��m�1

�
� �

�
f m+1 + 4f m + f m�1

�i�
(20)

for each node of the grid,
�
	j � �k � �l

�
, 1 
 j 
 J , 1 
 k 
 K , 1 
 l 
 L.

The scheme (20) is easily obtained by means of the Taylor expansion of

function � (r� t) for nodes t = tm�1 and t = tm+1 around the node t = tm ,
taking into account the equation (19). The scheme has interpolation proper-

ties, i.e., at t = tm or
�
� = t � tm = 0

�
and t = tm+1 or

�
� = tm+1 � t = 0

�
the equalities � �tm� = �m and �

�
tm+1

�
= �m+1 hold, respectively. Hence,

by use of this method, the maximal error of the solution of problem (19) by

means of (20) is inside the interval tm 
 t 
 tm+1 and is determined by the

order of approximation, i.e., it is equal to O
h
(�)4

i
.

From the above statements it is obvious, that:
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� advance time t of a forecast depends on advance time tM+1 of the fore-
cast gained from the macroscale model;

� a time step � = tm+1 � tm of defining macroscale information in view of
a daily course of meteorological quantities can reach � 
 12 hours;

� in contrast to classical numerical methods for solving equations of math-
ematical physics the offered method does not suffer from stability prob-
lems;

� the accuracy of the solution �i j k (t) depends on the accuracy of the
applied interpolation method for filling up smoothly the given discrete
function in the nodes of the regional grid and the method of approxima-
tion applied for the differential operator D in (19) by grid operator �.

4. Smooth filling up and approximation of differential operators by grid
ones

Denote by � one of the coordinate axes in r =
�
	� �� �

�
and assume

that the linear size of the domain of the macroscale model is in the interval
a 
 � 
 b along this coordinate axis. Let the arbitrary points a ��1 ��2 �
��� � ��N�1 �b form a non-uniform macroscale grid �h [a� b] with a grid
step hi�1 = �i � �i�1. Let us renumber all nodes in some order �0� �1� �2� � � �

� � � � �N and consider the values of the macroscale function � ��i � tm� in the

nodes of this grid as components of a vector � =
��i �tm� � i = 0� 1� � � � � N

�
.

Consider a cubic polynomial Pi�1 (�) = a0 + a1� + a2�
2 + a3�

3 at the

interval
�
�i � �i+1

�
and choose it in such a way that in points �i�1� �i and �i+1

it has the same values as function �. Obviously, the polynomial Pi�1 can be
represented as a sum of quadratic polynomials which in points �i�1� �i and
�i+1 satisfy the conditions

Pi�1 (�)j�=�i�1
= �i�1� Pi�1 (�)j�=�i

= �i � Pi�1 (�)j�=�i+1i
= �i+1�(21)

and a cubic polynomial which has zero values in these points. So it is easy
to check that such a presentation is of the form:

Pi�1 (�) = a i0 + a i1 (���i ) + a i2 (���i )2 + a i3
�
���i�1

�
(���i ) (���i+1) �(22a)

where

a i0 = �i � a i1 =
1

hi�1 + hi

��i+1 ��i
hi

hi�1 +
�i ��i�1

hi�1
hi

�
�
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a i2 =
1

hi�1 + hi

��i+1 ��i
hi

� �i ��i�1

hi�1

�
�(22b)

Obviously it is possible to build on the interval
�
�i � �i+1

�
a similar qubic

polynomial

Pi (�) = bi0 + bi1 (���i+1) + bi2 (���i+1)2 + bi3 (���i ) (���i+1) (���i+2)(23a)

with the following coefficients:

bi0 = �i+1� bi1 =
1

hi + hi+1

��i+2 ��i+1
hi+1

hi +
�i+1 ��i

hi
hi+1

�
�

bi2 =
1

hi + hi+1

��i+2 ��i+1
hi+1

� �i+1 ��i
hi

�
�(23b)

Then in points �i � �i+1 and Pi has �i+2 the same values as �.

In each of the polynomials Pi�1� Pi , parameters a i3 and bi3 are still
arbitrary. Let us construct interpolation function � (�) of the class of functions
C p (p = 3). We will require that the interpolation function �i (�) in area�
�i�1� �i+2

�
satisfies conditions

dkPi�1

d�k

�����
�=�i

=
dk�i
d�k

�����
�=�i

�
dkPi
d�k

�����
�=�i+1

=
dk�i
d�k

�����
�=�i+1

� k = 0� 1� 2� 3�(24)

Such interpolation functions �i (�) exist, they can be expressed as poly-
nomials of degree 2p � 1:

�i (�) =c0+c1 (���i ) +c2 (���i )2 +c3 (���i )3 +c4 (���i )4 +c5 (���i )5�(25a)

and are uniquely defined by conditions (24). In the case of (25a) the coeffi-
cients can be given as

ci5 = � 1

3h5
i

h
2
�
bi0 � a i0

�
� hi

�
bi1 + a i1

�
+ h2

i

�
bi2 � a i2

�i
�

ci4 =
1

3h4
i

h
5
�
bi0 � a i0

�
� hi

�
bi1 + 4a i1

�
+ h2

i

�
bi2 � 4a i2

�i
�

ci3 =
1

hi�1 + hi + hi+1

h�
bi2 � a i2

�
� 2hi (hi + 2hi+1) ci4 � 10h2

i hi+1c
i
5

i
�(25b)

ci2 = a i2 �
�
hi � hi�1

�
ci3� ci1 = a i1 � hi�1hic

i
3� ci0 = a i0�

So constructed, the polynomials �i (�) provide interpolation for a suffi-
ciently wide class of functions inside the interval [a� b] with third order of
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smoothness in points �i � �i+1, where the adjacent intervals
�
�i�1� �i+1

�
and�

�i � �i+2
�

coincide.

Computation of grid values of partial derivatives of the first order �i =

=
�
������

i
and partial derivative of the second order �i =

�
�2�

�
��2

�
i

participating in f mj kl = ��mj kl , we shall carry out on the base of relations

�i+1 + 2

�
1 +

hi
hi�1

�
�i +

hi
hi�1

�i�1 =

=
3
hi


�i+1 �

�
1�

�
hi
hi�1

�2
�
�i �

�
hi
hi�1

�2

�i�1

�
�

�
hih

2
i�1

24

�
1�

�
hi
hi�1

�2
�
�4�
��4 �(26)
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��
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�
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�
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+

�
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�
1 +

hi�1
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�
� 1

�
�i�1 =

=
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h2
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�
hi�1

hi
�i+1 �
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1 +
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�
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�
+

+
h2
i hi�1

360

�
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�
hi�1

hi

�2
�

5
hi�1

hi
+ 2

�
1�

�
hi�1

hi

�2
��

�5�
��5 �(27)

which are obtained by decomposing function � (r� t) in a Tailor series for

the nodes � = �i�1 and � = �i+1 around � = �i , in view of the equalities

�i =
�
������

i
and �i =

�
�2�

�
��2

�
i
.

It is obvious that the relations (26), (27) have third order at hi = hi�1 and

fourth order at hi = hi�1. Derivatives �i =
�
������

i
and �i =

�
�2�

�
��2

�
i

enter in (26), (27) implicitly. But as (26), (27) represent systems of algebraic

equations with three-diagonal matrixes, their solution can be carried out rather
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effectively with the help of the sweep method [10] with boundary conditions:

�h1
6

�
�2 � �1

�
+ �1 + �2 = 2

�2 ��1
h1

�(28a)

�hN�1
6

�
�N � �N�1

�
+ �N�1 + �N = 2

�N ��N�1
hN�1

�(28b)

Here it is necessary to note the main advantage of the offered method for
approximating the derivatives in the (7)–(18). As the solution of the system
of algebraic equations (26), (27) in each point i depends on values in other
points, it depends on �i globally rather than locally. In other words, computed

derivatives �i =
�
������

i
and �i =

�
�2�

�
��2

�
i

on interval [a� b] will

be more smoother, as they are not subjected to computational disturbances,
inherent in the local three-point operators, approximating the derivatives.

5. Providing initial conditions for an ecological problem

Restricted resources of modern computers do not allow us to use spatial
discretization of a general ecological-meteorological problem with sufficient
resolution in order to compute processes of dispersion of a pollutant in the
immediate proximity of single emission sources without involving a class of
processes of “sub-grid” scale. On the other hand, use of a non-uniform grid
with higher resolution in the vicinity of non-uniformly distributed sources is
algorithmically difficult to solve.

As meteorological observations show, in the spectrum of pulsations of
meteorological quantities in the real atmosphere there is a deep minimum
in the area of perturbations with a period of tS � 60 min. Therefore me-
teorological quantities obtained by measurement tools during 4-dimensional
analysis are exposed to an hour averaging. The results of such averaging are
equivalent to the data brought to synoptic maps. Hence, near the emission
sources it is possible to neglect the dependence of meteorological quantities
v1 = u� v2 = v � v3 = w , and KH � KG on spatial coordinates. That is,
the simplest and most accessible approaches of approximation in theoretical
research: the assumptions of uniformity and isotropy of turbulent motions can
be used.

Taking into account the small geometrical size of the area of abundant
concentration near some source, we restrict ourselves in this area to the rect-
angular Cartesian system of coordinates X = (x1� x2� x3). Then the equation
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(11) describing the transport and diffusion of substance q (x1� x2� x3� t) will
take the form

�q

�t
+ v1

�q

�x1
+ v2

�q

�x2
+ v3

�q

�x3
=

�

�x1

�
a
�q

�x1

�
+

�

�x2

�
a
�q

�x2

�
+

�

�x3

�
a
�q

�x3

�
�(29)

Equation (29) describes migration of concentration of aerosol substance
q together with a flow of air with a speed V = (v1� v2� v3) and its diffusion by
isotropic turbulence with turbulent diffusion coefficient a = KG = KG = KH .
The fields vj (j = 1� 2� 3) are considered homogeneous and defined on the
base of a macroscale model at time t = tm (m = 0� 1� � � � �M ) with a step

� = tm+1 � tm .

Equation (29) with constant factors by the substitutions

�j =
vj

2a
� �j = �

v2
j

4a
� q = �

3Y
j=1

e�j t+�j xj � (j = 1� 2� 3)(30)

can be reduced to the relation

��

�t
= a

3X
j=1

�2�

�x2
j

�(31)

It is known [11] that the function � , determined by the conditions

�2�

�r2 =
1
a

��

�t
�

� (0� t) =
Q

4�a
= �0�

������
�����

� (r� 0) = 0�

is expressed by the formula

� (r� t) =
2p
�

M

4�a

�Z
r

2
p

at

e��
2
d��

where

� =
� � r

2
p
a (t � t0)

�
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Hence, the solution of equation (31), describing the distribution of a
pollutant emitted by a continuously working source of capacity Q , placed
at the origin (r = 0), has the form

� (r� t) = QΦ (r� t) =
1
r

2p
�

Q

4�a

�Z
r

2
p

at

e��
2
d��

where Φ (r� t) is the concentration in case of an individual source (Q = 1).

To proceed to the case of an instant source, we will consider a source of

capacity Q placed at point
�
x
ef
1 � x

ef
2 � x

ef
3

�
and continuously working during

a time interval of length � . Such a source is equivalent to two sources of
capacity +Q and �Q , first of them is turned on at t = 0, and the second one
at t = � . The distribution of concentration is thus expressed by the formula

�� (r� t) = Q [Φ (r� t)�Φ (r� t � �)] �

For a time interval of length � , the amount of pollution M = Q� is
emitted, therefore

�� (r� t) =
M

�
[Φ (r� t)�Φ (r� t � �)] �

Passing to a limit at � � 0 and considering M as constant, we will find
that

�0 (r� t) = lim�� (r� t)
��0

= M
�Φ
�t

=
2p
�

M

4�ar
ra

4a
p
at3

e�
r2
4at �

or

�0 (r� t) = MG
�
x1� x2� x3� t � x

ef
1 � x

ef
2 � x

ef
3

�
�

where

G
�
x1� x2� x3� t � x

ef
1 � x

ef
2 � x

ef
3

�
=(32)

=

�
1

2
p
�at

�3

e�

(
x1�x

ef

1

)2
+
(
x2�x

ef

2

)2
+
(
x3�x

ef

3

)2

4at

represents concentration at a point (x1� x2� x3) at time t as an effect of a point

source of capacity M , placed at time t = 0 at the point
�
x
ef
1 � x

ef
2 � x

ef
3

�
.
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If we carry out the obtained expression, returning back to the initial
variable by the rule (30), then as a result we will have:

q (x1� x2� x3� t) = M

�
1

2
p
�a (t � t0)

�3

�(33)

� e�
[
x1�x

ef

1
�v1(t�t0)

]2
+
[
x2�x

ef

2
�v2(t�t0)

]
+
[
x3�x

ef

3
�v3(t�t0)

]2

4a(t�t0) �

Special estimations have been carried out in [8], which have shown that
experimental data appear much below those computed on the base of the
solution (33) for one hour tS � 1 at constant actual meteorological quan-
tities vj (j = 1� 2� 3). This is explained by the presence of real large-scale
fluctuations in the wind velocity, which contribute to an additional dispersion
of the pollutants as well as the orientation of the axis of the plume, formed by
the spreading substance. Such a result can be treated as a “mesoscale effect”
of averaging the concentrations. Its estimation should be connected in view of
features of fluctuations in the wind direction caused, in particular, by action
of atmospheric whirlwinds of various scales. The change of concentration,
depending on the time of averaging to which it concerns, was discussed in
a number of works (for example in [12]) mainly on the base of qualitative
reasons. To eliminate the differences between computed and measured data,
arising as a result of this dependence, certain empirical factors are quite often
used to decrease values of the calculated concentration by several times.

To receive the average concentration of a pollutant at any point P (x � y� z )
for an interval of time tS = 1 hour, suppose that fluctuations of the wind in
a given direction for a considered time interval occur randomly, and their
probability is described by the Gaussian distribution function

f (�) =
1

��
p

2�
exp

�
� (Δ�)2

2�2
�

�
�(34)

Here Δ� is the deviation of wind direction from the mean value over an
interval of length tS ; �� is the standard deviation of wind direction, deter-
mined as a result of processing input array of wind data under the formula

�2
� =

1
N � 1

NX
i=1

(Δ�i )
2�(35)

where N is the volume of the sample.
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The data processing of measurements has allowed us to establish that

�2
� depends on the external interval of averaging for cases of an unstable

and a stable atmosphere. From the obtained results it follows that at the
period of averaging tS � 1 hour the value of �� grows by 26 % for unstable
stratification and 41 % for stable one.

According to the probability theory, the average value of concentration
for the period tS is defined by the expression

qt =

�̄+�
2Z

�̄��
2

qS (�) f (�) d��(36)

where qS (�) is a solution of the diffusion problem (33) for direction � .

By substituting (34) into (36) and by integrating, we will receive:

qt =
qS (x � x0� y � y0� z �H )

2� (x � x0)
�
�̄2 � �2

�

� exp

�
� �2

P

2�2
�

�
�(37)

Here �P is the angle between the average direction of wind �̄ and that
at a considered point P (x � y� z ).

The concept of conditional division of area of dispersion of a pollutant
emitted by a high point source in ”a near zone” and ”a distant zone” allows
us to set concentration fields from the non-uniformly distributed sources at

time t = tm+1 (m = 0� 1� � � � �M ) with a step � = tm+1 � tm and to solve a
task of the forecast of pollution under real weather conditions with the help
of (20).

6. Conclusion

We have presented a new mathematical model and a non-standard nu-
merical method for the effective solution of the complex problem of analysing
and forecasting both meteorological quantities and distribution of atmospheric
pollution over a region. The method offered replaces the Cauchy problem in
the atmospheric model by a boundary-value problem and introduces a specific
interpolation technique that have a number of advantages in the model and
the method is computationally efficient. Firstly, advance time of a forecast
and a time step of giving macroscale information in view of a daily course
of meteorological quantities can be significantly increased and reach up to
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12 hours. Secondly, in contrast to classical numerical methods for solving
equations of mathematical physics, the offered method does not suffer from
stability problems. And thirdly, the accuracy of the simulation depends on
the accuracy of the interpolation method applied for filling up smoothly the
given discrete function in nodes of the regional grid and the method for
approximating the differential operator D in (20) by a grid operator �.

In overall, the approach undertaken in our method promises good com-
putational efficiency. A work to implement the computational scheme for
solving problems in meteorological and ecological forecasting of regions of
Ukraine is in progress and results of its application will be available soon.
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Introduction

The circumscribed circle k of any triangle ABC and the Feuerbach circle
l circumscribed around the midpoints of its sides satisfy a simple relation. If
the radii of these circles are r , R respectively, then

2R = r�(1)

This theorem can be reversed to a less known statement: if (1) holds and the
midpoint of the chord AB of k is on l , then AB can be completed to form a
triangle ABC with circumscribed circle k and Feuerbach circle l .

Fig. 1

This statement and its generalization had already been discussed in [2]
where its equivalence to the theorem of Poncelet and to Zig-zag theorem was
also proved. The generalization mentioned above can be shortly formulated
as follows:
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Ponzag theorem �short version�

If there is an n�gon whose vertices lie on the circle k and the midpoints

of the sides lie on another circle l � then any chord of k with midpoint on l

can be completed to form such an n�gon�

Fig. 2

As an exercise, the present author proved Ponzag theorem by the corre-
spondence principle of Chasles (see [1]). The proof helped him to arrive at
general statements of the same kind.

Fig. 3

Two examples of these generalizations are shown in advance in figures 2
and 3. In Fig. 2 circles kA, kB and l are on the plane such that every segment
AB with endpoints A, B and midpoint F incident to kA, kB , l respectively
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can be completed to form a 4-gon with vertices alternately on kA, kB and
midpoints all on l . A1B1A2B2, a1b1a2b2 are such 4-gons on the figure.

To understand the example in Fig. 3 a point H on the segment AB will
be called ”thirdpoint” of AB if AH = 2 �HB or BH = 2 �HA. The vertices
of the 4-gons A1B1A2B2, a1b1a2b2 are on the same circle k , while certain
thirdpoints of the sides are on l . Every chord AB of k with a thirdpoint on l

can be completed to form such a 4-gon.

A ponzag-type general theorem

We will consider

A) three arbitrary circles kA, kB , l in the plane, or

B) two arbitrary circles kA, kB and any sphere l in 3-space,

and any

A) orientation preserving similarity A of the plane, different from trans-

lations1,

B) dilatation A of the space.

This transformation will be denoted by AP if its centre is translated to P ,
i.e.

AP (Q) = A(Q � P) + P�

In cases A), B) there is always a similarityB of the plane or a dilatation of the
space such that AA(Q) = B holds iff BB (Q) = A. Indeed, if A is determined
by the multiplication of some real or complex number � then B can be defined

as the multiplication by �
��1 . Later we will also use the similarity C of the

plane or the dilatation of the space such that CQ (B) = A holds iff BB (Q) = A.

The rate of enlargement of C is j 1
��1 j.

If we exclude the existence of points A � kA with kB � AA(l ) and
B � kB with kA � BB (l ), then Ponzag process constructing the sequence
of points Ai , Bi in the theorem below will work unambiguosly. Apart from
these conditions the following general theorem holds:

1 such a transformation has a unique fixed point
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General Ponzag theorem

Starting from any pair A1 � kA� B1 � kB of points with

B1 � AA1
(l )(2)

the sequence of points

A1� B1� A2� B2� A3� B3� � � �(3)

�Ai � kA� Bi � kB � can be uniquely determined by the following conditions�

I� Ai+1 � BBi
(l )� Bi � AAi

(l )�

II� Ai+1 di	ers from Ai � Bi+1 di	ers from Bi if it is possible�

If sequence (3) is 2n�step periodic i�e� An+1 = A1 and Bn+1 = B1� then

it is 2n�step periodic starting from any pair of points A1 � kA� B1 � kB
satisfying condition (2)�

On the example in Fig. 2 A is the dilatation of ratio 2. In Fig. 3 kA =
= kB = k and A is the dilatation of ratio 3; in Fig. 3 A is the composition of

rotation 45� and dilatation of ratio
p

2 in Fig. 4. In this last figure there are
infinitely many (twisted) quadrilaterals inscribed in k such that the vertices of
the isosceles right angled triangles based on the sides of the quadrilateral are
all incident to circle l . Traversing along the sides of the quadrilateral these
isosceles triangles are oriented alternately.

Fig. 4

Proof� We do not follow the way of the discovery of the theorem but
trace it back to Zig-zag theorem [2] (refreshed below).

In Zig-zag theorem two arbitrary circles kA, kB of 3-space and a certain
distance � is considered such that none of the spheres of radius � centered at
kA (kB ) contains kB , (kA).
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Zig�zag theorem

Starting from any pair A1 � kA� B1 � kB of points with

A1B1 = �(4)

the sequence of points

A1� B1� A2� B2� A3� B3� � � �(5)

�Ai � kA� Bi � kB � can be uniquely determined by the following conditions�

I� BiAi+1 = �� AiBi = ��

II� Ai+1 di	ers from Ai � Bi+1 di	ers from Bi if it is possible�

If sequence (5) is 2n�step periodic i�e� An+1 = A1 and Bn+1 = B1� then

it is 2n�step periodic starting from any pair of points A1 � kA� B1 � kB
satisfying condition (4)�

Fig. 5

In Fig. 5 a general ponzag configuration (kA� kB � l ) can be seen. The
transformation A is the enlargement of ratio 2, but this speciality of the figure
will not be used in the following argument. The objects of the figure are
defined in the following order:

B1 � kB �

BB1
(l ) = l1� BB1

(Ol ) = B �

1�

fA1� A2g = kA � l1� BB1
(F ) = A1� BB1

(G) = A2�

m = fBB (Ol ) j B � KBg�
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i.e. A1B1A2 is a piece of a general ponzag series. m is a circle, because
m = COl

(kB ) and

jB �

1A1j = jBB1
(OlF )j =

�R

�� 1
= jBB1

(OlG)j = jB �

1A2j�

i.e. ponzag configuration (kA� kB � l ) and zig-zag configuration (kA� m� � =

= �R
��1) are analogous: A1B1A2 is a piece of a ponzag series iff A1COl

(B1)A2

is a piece of a zig-zag series.

Comments�

1. Ponzag theorem is not included in the General Ponzag theorem, the
latter for example does not say anything about the triangle and its midpoints.

2. The Feuerbach circle of an n-gon has a property analogous to that
of the triangle. Namely if the vertices of an n-gon are all lying on circle k
centered at Ok and the midpoints of the sides are lying on circle l centered at
Ol and Ol is the midpoint of MOk then the pedal points of the perpendiculars
from M to the sides of the n-gon are also lying on l .

3. The following elementary problem is a challenge for the reader: The

radii of circles kA� kB � l on Fig� � are denoted by rA� rB � R respectively�

the distance of the center Ol of l from the midpoint of OAOB the central

of circles kA� kB is d� Find the algebraic condition satis�ed by these four

values�
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1. Introduction

The conjugate gradient method (CGM) was first presented for linear
systems in [8]. Later the method was extended to Hilbert space in the same
form [2, 7] and also for nonlinear problems in Hilbert space [2, 3, 4].

In this paper we use the Hilbert space version of the CGM to develop a
numerical algorithm for solving a class of 4th order elliptic problems. Such
problems arise e.g. in the elasto-plastic bending of plates [12, 14]. In this
paper we give the theoretical background and construct the method. We show
that the convergence is linear.

In this paper the CG iteration is executed in FEM subspaces using
Sobolev space background. The iteration involves a preconditioning matrix
obtained as the discretized biharmonic operator. The idea of preconditioning
operators is summarized in [6]; biharmonic preconditioning operators in other
iterative methods arise in [10, 11]. As is well known, fast solvers have already
been developed for the biharmonic problem [1, 5]: the use of such solvers
make our algorithm an efficient method. Hence we do not present any concrete
implementation or numerical result. Owing to the operator preconditioning,
the convergence factor of our method is mesh independent.

2. The problem

In this section we formulate the 4th order boundary value problem and
state that it has a unique weak solution. For this we introduce some notations:
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H : V :=
NX

i �j=1

Hi jVi j (H�V � RN�N )�

div2G :=
NX

i �j=1

�i�jGi j (G � C 2(Ω�RN�N ))�

We underline that in this paper

�2v =
�
�i�j v

�N
i�j=1

denotes the Hessian of v � C 2(Ω).

Now we consider 4th order nonlinear Dirichlet problems of the form���
��
T (u) � div2A(x ��2u) = g(x )

uj�Ω =
�u

��
j�Ω= 0�

(1)

satisfying the following conditions:

(i) Ω � RN is a bounded domain with piecewise smooth boundary.

(ii) The matrix-valued function A : Ω�RN�N � RN�N is measurable and
bounded w.r. to the variable x � Ω and C 2 in the other variables.

(iii) The Jacobian arrays

�A(x �Θ)
�Θ

=

�
�Ars (x �Θ)
�Θik

	N
i�k �r�s=1

� R(N�N )2

are symmetric (i.e., �Ars��Θik = �Aik��Θrs ) and their eigenvalues �
satisfy

0 �m � � �M ��(2)

with constants M 	 m �0 independent of (x �Θ). Reformulating this
assumption, the operators represented by the arrays are self-adjoint w.r.t.
inner product

hH�K i := H : K (H�K � RN�N )(3)

and we have

m jH j2
F
� �A

�Θ
(x �Θ)(H�H ) �M jH j2

F
(H � RN�N )�(4)
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where

�A

�Θ
(x �Θ)(H�H ) :=



�A

�Θ
(x �Θ)H �H

�
�

and

jH j
F

:= hH�H i1
2(5)

is the Frobenius norm of the matrix H .

(iv) g � L2(Ω).

(v) The second derivatives satisfy

������
2A

�Θ2 (x �Θ)

�����
F

� K ((x �Θ) � Ω � RN�N ))

with some K �0 independent of (x �Θ), where

������
2A

�Θ2 (x �Θ)

�����
F

:= sup
jH jF=jK jF=jLjF=1

�
2A

�Θ2 (x �Θ)(H�K� L)

 �

Proposition � ([6, p. 150])� If (i)� � � � � (iv ) hold then problem ��� has a

unique weak solution u� � H 2
0 (Ω)� That is� u� satis�es

Z
Ω

A(x ��2u�) : �2v =
Z
Ω

gv (v � H 2
0 (Ω))�

Remark �� One can also consider problem (1) with the boundary condi-

tions

uj�Ω = A(x ��2u)� 
 �j�Ω= 0 �(6)

i.e., if the condition �u��� = 0 is replaced by the second order conormal

condition corresponding to the operator T . Then Proposition 1 holds in the

space H 2(Ω) �H 1
0 (Ω).
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3. The CGM in Hilbert space

In this section we state the main result for the CGM for nonlinear equations in
Hilbert space [2, 6]. We give the construction of the approximating sequence
and the rate of its convergence. Before constructing the approximating se-
quence, we first summarize the assumptions.

The CG assumptions ([6, p. 99]). Let H be a real Hilbert space, F : H �
� H a continuous operator such that

(a) F is twice Gâteaux differentiable;

(b) the first Gâteaux derivative of F is bihemicontinuous, symmetric and
satisfies

mkhk2 � hF �(u)h� hi �M khk2 (u� h � H )

with constants M 	 m �0 independent of u� h;

(c) there exist u0 � H and constants R�B �0 such that for any u �
� B(u0� R) := fu � H : ku � u0k � Rg there holds kF ��(u)k � B ;

(d) let b � H and 	:H � R such that 	�(u) = F (u) � b. (This 	 exists
by the previous assumptions.) We assume that fu � H : 	(u) � 	(u0)g �
� B(u0� R) holds for the level set corresponding to u0.

(We note that the original paper [2] assumes Frêchet differentiability in
(a), but the Gâteaux sense suffices if the bihemicontinuity of F � is assumed
in (b) as above.)

Construction of the CG iteration� Let u0 � H be as in assumption (c),
p0 = r0 = b � F (u0). For n � N = f0� 1� � � �g, successively, let un+1 := un +
+ cnpn where cn is the smallest positive root of hF (un + cpn)� b� pni = 0; set
rn+1 := b� F (un+1), pn+1 := rn+1 + bnpn , where bn := �hF �(un+1)pn � rn+1i n
hF �(un+1)pn � pni.

We use the following further notations:

for all n � N let 
n := hF �(un)�1rn � rni
1
2 , further, let d := B

M 3

�
3 + M

2m

�
,

�n :=
p
MB

2m2 
n , �n := 4mM
(M+m)2

�n
1+�n

+ d
n , q := M�m
M+m , qn := (q2 + �n )1�2,

Rn :=
p
M

m(1�qn )
n .

Then there holds
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Theorem � [2]� Under the above assumptions �a���d� the following hold�

��� The equation F (u) = b has a unique solution u� � H � and the sequence

(un) of the CG iteration converges strongly to u��

�	� Let N0 � N be such that RN0
�R and �N0

�1� q2� Then

kun � u�k � RN0

 qN0


 qN0+1 � � � qn�1 (n �N0) �

�Note that lim qn = q��

�
� Let N0 be as in �	�� Then for any k �N0 there exists Nk � N such that


n+k �
�
�4

�p
M �p

mp
M +

p
m

�2k

+ n

�
A 
n (n �Nk )

where lim n = 0� �Note that 
n is equivalent to kF (un) � bk and

kun � u�k��

4. The CGM for the boundary value problem

The Sobolev space version of the nonlinear conjugate gradient method
is based on the Hilbert space analogue of CG methods [2]. For second
order problems, the construction and proof of this is found in [6, p. 208]
for problems with nonlinear principal part and in [9] for semilinear problems.
We present the extension of the algorithm in [6] for fourth order problems, i.e.
the application of the Daniel iteration to problem (1). The presented method
is based on the algorithm in [2], we note that computationally convenient
modifications might be also applied using [3].

We consider problem (1) under the assumptions (i)–(v). The correspond-

ing Sobolev space H 2
0 (Ω) is endowed with the inner product

hu� vi
H 2

0 (Ω) :=
Z
Ω

�2u : �2v (u� v � H 2
0 (Ω))�(7)

Remark �� The induced norm

kvk
H 2

0 (Ω) =
����2v


F

���
L2(Ω)

(8)
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(where the notation (5) was used) is equivalent to the usual norm

kvk�
H 2

0 (Ω)
:=

�
�X
j�j=2

Z
Ω

j��v j2
�
A

1
2

�

since

X
j�j=2

j��v j2 +
NX
i �j=1�
i�j

j�i j v j2 =
�2v

2
F

= 2
X
j�j=2

j��v j2 �
NX
i=1

j�i iv j2

which implies

kvk�
H 2

0 (Ω)
� kvk

H 2
0 (Ω) � 2 kvk�

H 2
0 (Ω)

�

The Hilbert space version of the method is established in Theorem 1.
In order to ensure the twice differentiability of the generalized differential
operator simply by that of the nonlinearity A, we apply Theorem 1 in a finite-

dimensional subspace V � H 2
0 (Ω), endowed with the same inner product

(7), and we also assume that V � W 2��(Ω). We are maily interested in
FEM subspaces, i.e., when V consists of piecewise polynomials u such that

u � C 1(Ω). (This, together with the boundary conditions of (1), ensures

V �W 2��(Ω) �H 2
0 (Ω).)

Let

hF (u)� vi
H 2

0 (Ω) :=
Z
Ω

A(x ��2u) : �2v (u� v � V )�

we will see in the proof of Theorem 2 that this expression defines an operator
F : V � V . Further, let b � V the element defined by

hb� vi
H 2

0 (Ω) =
Z
Ω

gv (v � V )�

Denote by u� � V the unique solution of the problem

hF (u�)� vi
H 2

0 (Ω) = hb� vi
H 2

0 (Ω) (v � V )�

The CG iteration constructs a sequence (un) � V together with (pn) � V
and the residuals rn = b � F (un) � V as follows.
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Let u0 � V be arbitrary. Then r0 � V is the solution of the problemZ
Ω

�2r0 : �2v = �
Z
Ω

(A(x ��2u0) : �2v � gv ) (v � V )

and p0 = r0. If, for n � N, un and pn are obtained, then

un+1 := un + cnpn �

where cn is the smallest positive root of equation hF (un +cpn )�b� pniH 2
0 (Ω) =

= 0, further, rn+1 � V is the solution of the problemZ
Ω

�2rn+1 : �2v = �
Z
Ω

(A(x ��2un+1) : �2v � gv ) (v � V );(9)

finally,

pn+1 := rn+1 + bnpn

with bn = ��n��n where

�n =
Z
Ω

�A

�Θ
(x ��2un+1) �2 pn : �2rn+1 �

�n =
Z
Ω

�A

�Θ
(x ��2un+1) �2 pn : �2pn �

The above algorithm is based on [2]. We note that this can be simplified
by suitable modifications using an approximate calculation of cn � bn [3].

The convergence results are formulated using the following notations: for
any n � N let


n := hF �(un)�1rn � rni1�2
H 2

0 (Ω)
�

d := B
M 3

�
3 + M

2m

�
, �n :=

p
MB

2m2 
n , �n := 4mM
(M+m)2

�n
1+�n

+ d
n , q := M�m
M+m ,

qn := (q2 + �n)1�2, Rn :=
p
M

m(1�qn )
n .

Theorem �� Let the assumptions �i���v� hold for problem ���� Denote by

u� � V the unique weak solution�

Then for arbitrary u0 � V � the above constructed CG sequence satis�es

the following convergence results�
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��� Let N0 � N be such that RN0
�R and �N0

�1 � q2� Then

kun � u�k
H 2

0 (Ω) � RN0

 qN0


 qN0+1 � � � qn�1 (n �N0) �

�Note that limqn = q��

�	� Let N0 be as in ���� Then for any k �N0 there exists Nk � N such that


n+k �
�
�4

�p
M �p

mp
M +

p
m

�2k

+ n

�
A 
n (n �Nk )(10)

where lim n = 0� �Note that 
n is equivalent to kF (un ) � bk
H 2

0 (Ω) and

kun � u�k
H 2

0 (Ω)��

Remark �� The proof will use the following facts:

(i) For matrix valued functions H�K � L2(Ω�RN�N ) the integral of (3)
is an inner product, hence the Cauchy–Schwartz inequality implies that

Z
Ω

H : K

 � k jH j
F
kL2(Ω) k jK jFkL2(Ω) �

(ii) We have from (4) �����A�Θ
(x �Θ)

����
F

�M�(11)

where �����A�Θ
(x �Θ)

����
F

:= sup
jRjF=jT jF=1

�A�Θ
(x �Θ)(R� T )

 �
Proof of Theorem �� The assumptions (a)–(d) of Theorem 1 have to be

checked.

First, the Lagrange inequality yields that

kA(x �Θ)�A(x � 0)k
F
� sup

Ξ�RN�N

�����A�Θ
(x �Ξ)

����
F

jΘj
F
�

hence

kA(x �Θ)k
F
� kA(x � 0)k

F
+ M jΘj

F
(x � Ω� Θ � RN�N )�(12)
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For any u � V let F (u) � V be defined by

hF (u)� vi
H 2

0 (Ω) :=
Z
Ω

A(x ��2u) : �2v (v � V )�

Here the existence of F (u) is ensured by the Riesz theorem since Remark 3,
(8), and (12) yieldhF (u)� vi

H 2
0 (Ω)

 � ���A(x ��2u)

F

���
L2(Ω)

kvk
H 2

0 (Ω) �

�
�
kjA(x � 0)j

F
kL2(Ω) + M kuk

H 2
0 (Ω)

�
kvk

H 2
0 (Ω) �

That is, F :V � V is a well-defined operator.

Further, we present that F is twice Gâteaux differenciable. For any u �
� V let S (u) � L(V ) be defined by

hS (u)v� wi
H 2

0 (Ω) :=
Z
Ω

�A

�Θ
(x ��2u)(�2v ��2w ) (v � w � V )

The existence of S (u) is provided again by the Riesz theorem since, us-
ing (11),hS (u)v� wi

H 2
0 (Ω)

 �
����
�����A�Θ

(x ��2u)

����
F

�2v

F

�2w

F

����
L2(Ω)

�

�M kvk
H 2

0 (Ω) kwkH 2
0 (Ω) �

We verify that F � = S in Gâteaux sense:����1
t

(F (u + tv )� F (u))� S (u)v

����
H 2

0 (Ω)
=(13)

= sup
kwk

H 2
0

(Ω)
=1



1
t

(F (u + tv )� F (u))� S (u)v� w

�
H 2

0 (Ω)
=

= sup
kwk

H 2
0

=1

Z
Ω

�
A(x ��2u+t�2v )�A(x ��2u)

t
� �A

�Θ
(x ��2u)�2v

�
:�2w =

= sup
kwk

H 2
0

=1

Z
Ω

�
�A

�Θ
(x ��2u + �(x � t)�2v )��A

�Θ
(x ��2u)

�
(�2v ��2w ) � 0
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as 0 � �(x � t) � t � 0, using the Lebesgue theorem. Namely, we can check

the conditions of this theorem as follows: �A
�Θ is a continuous mapping and

�2u��2v � L2(Ω) are fixed, hence implies that the integrand tends to 0 a.e.
as 0 � �(x � t) � t � 0, further, (11) implies that

2M
�2v


F

�2w

F

is a major function of the integrand which belongs to L1(Ω):Z
Ω

2M
�2v


F

�2w

F

� 2M kvk
H 2

0 (Ω) kwkH 2
0 (Ω) ���

In the next step we prove the existence of the second derivative. First we

recall that V � W 2��(Ω) � H 2
0 (Ω) is a finite dimensional subspace, hence

the following holds:

�c(V ) �0: kukW 2�� :=
����2u


F

���
L�(Ω)

� c(V )
����2u


F

���
L2(Ω)

=

= c(V ) kuk
H 2

0 (Ω) (u � V )�(14)

For any u � V let P(u) � L(V�L(V ))) � L(2)(V
2� V ) defined by

hP(u)(v � w )� z i
H 2

0 (Ω) :=
Z
Ω

�2A

�Θ2
(x ��2u)(�2v ��2w��2z ) (v � w� z � V )�

Using again the Riesz theorem, we can see that P(u) exists, since assumption
(v) and (14) yieldhP(u)(v � w )� z i

H 2
0 (Ω)

 �
Z
Ω

K
�2v


F

�2w

F

�2z

F

�

K kvkW 2�� kwk
H 2

0 (Ω) kzkH 2
0 (Ω) � Kc(V ) kvk

H 2
0 (Ω) kwkH 2

0 (Ω) kzkH 2
0 (Ω) �(15)

We show that F �� = P in Gâteaux sense:����1
t

(F �(u + tv )� F �(u))� P(u)v )

����
L(V )

=

= sup
kwk

H 2
0

(Ω)
=kzk

H 2
0

(Ω)
=1



1
t

(F �(u + tv )w � F �(u)w )� P(u)(v � w )� z

�
H 2

0 (Ω)
=
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=
Z
Ω

�
�A
�Θ (x ��2u+t�2v )��A

�Θ (x ��2u)

t
��

2A

�Θ2 (x ��2u)�2v

�
(�2w��2z )=

=
Z
Ω

�
�2A

�Θ2
(x ��2u+�(x � t)�2 v )��

2A

�Θ2
(x ��2u)

�
(�2v ��2w��2z ) � 0

as 0 � �(x � t) � t � 0, using the Lebesgue theorem. Now we check the con-

ditions of this theorem: �2A
�Θ2 is a continuous mapping and �2u��2v ��2z �

� L2(Ω) are fixed, hence the integrand tends to 0 a.e. as 0 � �(x � t) � t � 0,
further, assumption (v) implies that

2K
�2v


F

�2w

F

�2z

F

is a major function of the integrand which belongs to L1(Ω), since by (15),Z
Ω

2K
�2v


F

�2w

F

�2z

F

� 2Kc(V ) kvk
H 2

0 (Ω) kwkH 2
0 (Ω) kzkH 2

0 (Ω) �

The demonstration of the bihemicontinuity of F � is much similar:��(F �(u + tv + sw ) � F �(u))h
��
H 2

0 (Ω) =

= sup
kzk

H 2
0

(Ω)
=1

�
(F �(u + tv + sw ) � F �(u))h� z

�
H 2

0 (Ω) =

=
Z
Ω

�
�A

�Θ
(x ��2u + t �2 v + s �2 w ) � �A

�Θ
(x ��2u)

�
(�2h��2z ) � 0

as s� t �� 0 for the same reason as in (13).

The symmetry follows directly:�
F �(u)v� w

�
H 2

0 (Ω) =
Z
Ω

�A

�Θ
(x ��2u)(�2v ��2w ) =

=
NX

i �k �r�s=1

Z
Ω

�Aik (x �Θ)
�Θrs

�i�k v �r�sw =

=
NX

i �k �r�s=1

Z
Ω

�Ars (x �Θ)
�Θik

�r�sw �i�kv =
�
v � F �(u)w

�
H 2

0 (Ω) �
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It is easy to verify the spectral conditions using (4):

m khk2
H 2

0 (Ω)
=
Z
Ω

m
�2h

2
F

�
Z
Ω

�A

�Θ
(x ��2u)(�2h��2h) =

=
�
F �(u)h� h

�
H 2

0 (Ω) �
Z
Ω

M
�2h

2
F

= M khk2
H 2

0 (Ω)
�

F �� is bounded since, using (15):��F ��(u)
��
F

= sup
kvk

H 2
0

(Ω)
=kwk

H 2
0

(Ω)
=kzk

H 2
0

(Ω)
=1
j �F ��(u)(v � w )� z

�
H 2

0 (Ω) j �

� sup
kvk

H 2
0

(Ω)
=kwk

H 2
0

(Ω)
=kzk

H 2
0

(Ω)
=1
Kc(V ) kvk

H 2
0 (Ω) kwkH 2

0 (Ω) kzkH 2
0 (Ω) =

= Kc(V ) (u � V )�

Since F has a symmmetric bihemicontinuous Gâteaux derivative, F also
has a potential Ψ, therefore

	(u) = Ψ(u) � hu� bi (u � V )

is the potential mentioned in assumption (d) since

	�(u) = Ψ�(u) � b = F (u) � b�

Note that in this way 	 � C 2(V ), therefore

	(u) = 	(0) +
�
	�(0)� u

�
+

1
2

�
	��(0)u� u

� 	
	 	(0) +

�
m

2
kuk

H 2
0 (Ω) �

��	�(0)
��� kuk

H 2
0 (Ω) �

Hence

lim
kuk

H 2
0

(Ω)
��

	(u) = ��

Therefore the level sets of 	 are bounded, i.e for any u0 � V they are
contained in some ball, which is suitable to satisfy the required assumptions
(c) and (d) of Theorem 1.

Remark �� The same construction of the CGM can be carried out and
the same convergence result as in Theorem 2 holds if problem (1) is consid-
ered with the boundary conditions (6) mentioned in Remark 1. In this case
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we simply choose the finite-dimensional subspace V in H 1
0 (Ω) �W 2��(Ω)

instead of H 2
0 (Ω) �W 2��(Ω).

Remark �� (Numerical aspects.) The iteration involves a precondition-
ing matrix obtained as the discretized biharmonic operator, that is, a discrete
biharmonic problem (9) has to be solved stepwise. This is not costly since
efficient fast solvers are available for the biharmonic problem [1, 5, 13]. (For
this reason biharmonic preconditioning operators have also been used in other
iterative methods [10, 11].) On the other hand, the operator preconditioning
implies that the convergence factor of our method is mesh independent: as

shown by (10), the factor (
p
M � p

m)�(
p
M +

p
m) only depends on the

bounds of the coefficient in (2).
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Let E denote a non-empty, closed set in C and let S(E ) denote the set of
all those (bounded, linear) normal operators X (on a fixed, separable Hilbert
space H ) each of whose spectrum �(X ) � E . A spectral approximant from
S(E ) of some operator A, with respect to some norm jjj � jjj, is an operator,
say, X0 in S(E ) that minimizes the quantity jjjA�X jjj as X varies in S(E ),
subject to jjjA�X jjj��, so that for all such X

jjjA�X0jjj � jjjA�X jjj�

The subject of spectral approximants was initiated by Halmos in [6].
Halmos’ work involves the concept of retraction. A (distance-minimizing)
retraction for the non-empty, closed set E is a map F : C � E such that

j� � F (�)j � j� � �j

for all � in E where � � C . Each non-empty, closed set E has a Borel
measurable retraction and if E is convex there is a unique retraction; see [6]
for more about retractions.

Halmos’ main result [6, Theorem] says that if A normal and F is a Borel
measurable retraction for the non-empty, closed set E then F (A) � S(E ) and

(H) jjA� F (A)jj � jjA�X jj

for all X in S(E ).

Bouldin [4] extended Halmos’ work to the context of the von Neumann–
Schatten classes Cp and norms jj � jjp (For background on Cp and jj � jjp see,
for instance, [9, Chapter 2]). Bouldin’s variant [4, Theorem 2] of (H) goes
as follows: let E , F and A be as in the previous paragraph; then for all X
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in S(E ) such that A � X � Cp, provided that 2 � p ��, it follows that
A� F (A) � Cp and
(B) jjA� F (A)jjp � jjA�X jjp �

Bouldin’s result does does not necessarily hold for the 1 � p�2 case,
as Bhattia showed by a very simple counter-example [3, p. 35]. In [3,
Theorem 1] Bhattia extended (B) to the 1 � p �2 case for convex E . In
Theorem 1(b) we give a slightly more direct proof of Bhattia’s inequality for
jj � jjp (although Bhattia’s proof applies to a wider class of unitarily invariant
norms).

More significant is the corresponding result, Theorem 1(a), for balanced

sets (A set E in C is balanced if z � E 	 ei� z � E for all � ). As an
immediate consequence, viz. Corollary 3, of Theorem 1(a) we extend the
result [8, Theorem 5.11(b)] on normal, partially isometric approximation of
positive operators from 2 � p �� to 1 � p �� ([8] invokes Bouldin’s
2 � p�� inequality (B)). The work of [8] is itself an extension of [1] which
is relevant to quantum chemistry: see [2], [5].

Theorem �� Let A be normal� F be a Borel measurable retraction for the

non�empty� closed set E and let X vary such that X � S(E ) and A � X �
� Cp for 1 � p��� Then�

�a� if E is balanced it follows that A� F (A) � Cp and

jjA� F (A)jjp � jjA�X jjp ;

�b� if E is assumed convex� rather than balanced� the same conclusion as in

�a� holds�

Proof� (a) The proof is set up as in Bouldin [4, pp. 280–281]. Let f�ig,
where 1 � i � l (� �), be a maximal, orthonormal set of eigenvectors
of A corresponding to the (countable set of) isolated eigenvalues f�ig not
contained in E (where the �i are in decreasing order of magnitude and
repeated according to (finite) multiplicity). From [4, p. 281] it follows that,
for 1 � p��,

(1) jjA� F (A)jjpp =
lX

i=1

j�i � F (�i )j
p�

Let � = j�jei� . Since F maps C onto the balanced set E then F (�) =

= jF (�)jei� ; and since F is a retraction on R+ onto jE j
def
= fjf j: f � Eg then

F (j�j) = jF (�)j. Thus, for all � in C

ja � F (a)j = j j�j � jF (�)j j = j j�j � F (j�j) j � j j�j � j�j j
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for all j�j in jE j. Since A is normal then j�i j = si (A) (the i th singular value
of A) for 1 � i � l . Hence,

j�i � F (�i )j � j si (A) � j�jj�

Since �(X ) � E it follows that the point spectrum �p(X ) � E and hence, as
X is normal, each sj (X ) � jE j. Hence, the j�j occurring above may vary over
all the singular values sj (X ) for 1 � j � � (the sj (X ) being in decreasing
order and repeated according to multiplicity). Hence, in particular,

j�i � F (�i )j � jsi (A) � si (X )j

for 1 � i � l � �. Therefore, from (1),

(2) jjA� F (A)jjpp �
lX

i=1

jsi (A) � si (X )jp�

From [10, (1.2.2)] it follows that if
P�

j=1 sj (A � X )p (= jjA � X jj
p
p) ��

then
P�

j=1 jsj (A)� sj (X )jp �
P�

j=1 sj (A�X )p. Therefore, from (2),

jjA� F (A)jjpp � jjA�X jj
p
p �

(b) Let f�ig and f�ig, where 1 � i � l � �, be as in (a). Then, for
1 � p��,

jjA� F (A)jjpp =
lX

i=1

j�i � F (�i )j
p

�

lX
i=1

j�i � hX�i 	 �i ij
p

=
lX

i=1

jh(A�X )�i 	 �i ij
p

� jjA�X jj
p
p 	

where the last inequality above follows from [9, Lemma 2.3.4] and the first
inequality follows from the convexity of E : for, with W denoting numerical
range [7, Problem 216],

hX�i 	 �i i �W (X ) � W (X ) = conv �(X ) � convE = E

whence j�i � F (�i )j � j�i � hX�i 	 �i ij for 1 � i � l .
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The next two results concern approximation of a positive operator (An
operator A is positive, denotedA 
 0, if hAf 	 f i 
 0 for all f in H and strictly
positive if hAf 	 f i
0 for all non-zero f in H ). Corollary 2 below recaptures
very simply a result of Aitken, Erdos and Goldstein [1, Corollary 3.6].

Corollary �� Let A be positive and X vary over those unitary operators

such that A�X � Cp for 1 � p ��� Then A� I � Cp and

(1) jjA� I jjp � jjA�X jjp if 1 � p �� �

Proof� Let E = fz : jz j = 1g. If a normal operator has its spectrum in E
then it is unitary and conversely. Let F be given by

F (z ) =

� z
jz j

if z �= 0

1 if z = 0 �

Then F is a retraction onto E and, as A 
 0, it follows that F (A) = I . Since
E is balanced the inclusion A � I � Cp and the inequality (1) follow from
Theorem 1(a).

Corollary �� Let A be positive and X vary over those normal partial

isometries such that A�X � Cp for 1 � p ��� Then�

�a� the map X � jjA�X jjp has a global minimizer�

�b� for 1�p��� there exists a basis f�ng of H consisting of eigenvectors

of A� and� with E 1
2

denoting the projection onto Sf�n :A�n = �n�n and

�n 

1
2g�

(1) jjA� E 1
2
jjp � jjA�X jjp

with equality occurring in (1) if� and for strictly positive A such that 1
2 ��

�p(A) only if� X = E 1
2
�

Proof� (a) Let E = f0g � fz : jz j = 1g. From [8, Theorem 5.10] it
follows that X � S(E ) if and only if X is a normal partial isometry. Since
E is balanced the existence of a global minimizer of X � jjA � X jjp is
immediate from Theorem 1(a).

(b) This follows from (a) and from [8, Theorem 5.6] (The restriction
that p 
1 is required since [8, Theorem 5.6] depends on the local theory
developed in [8] which is valid only for 1 �p��).
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1. Introduction

The well known Banach’s fixed point theorem (also named contraction
mapping principle) is one of the most useful results in fixed point theory. In
a metric space setting it can be briefly stated as follows.

Theorem B� Let (X� d) be a complete metric space and T : X �� X a

strict contraction� i�e�� a map satisfying

(1�1) d(Tx � Ty) � a d(x � y) � for all x � y � X�

where 0 �a �1 is constant� Then T has a unique �xed point in X �

Theorem B, together with its direct generalizations and local variants, has
many applications in solving nonlinear functional equations, but suffers from
one drawback - the contractive condition (1.1) forces that T be continuous
throughout X . In order to remove this drawback, in 1968 Kannan [9] obtained
a fixed point theorem for mappings T that need not be continuous.

Theorem K� Let (X� d) be a complete metric space and T : X �� X a

mapping for which there exists a �
�
0� 1

2

�
such that

(1�2) d(Tx � Ty) � a
�
d(x � Tx ) + d(y� Ty)

�
� for all x � y � X�

Then T has a unique �xed point in X �

Example �� Let X = R be the set of real numbers with the usual metric
and T : R �� R, given by Tx = 0, if x � (��� 2] and Tx = �1

2 , if
x � (2��).
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Then T satisfies (1.2) with a = 1
5 , T is not continuous and FT = f0g.

Following Kannan’s theorem, a lot of papers were devoted to obtaining
fixed point theorems for various classes of contractive type conditions that
do not require the continuity of T , see for example Rus [13]. In this con-
text, a very interesting theorem which extends both Banach’s and Kannan’s
fixed point theorems, alongside many other similar results of this kind, was
obtained in 1972 by Zamfirescu [14].

Theorem Z� Let (X� d) be a complete metric space and T : X �� X
a mapping for which there exist the real numbers �� � and � satisfying 0 �
�� �1� 0 �� �1�2 and 0 �� �1�2 such that� for each x � y � X � at least

one of the following is true��
z1
�

d(Tx � Ty) � � d(x � y);
�
z2
�

d(Tx � Ty) � �
�
d(x � Tx ) + d(y� Ty)

�
;

�
z3
�

d(Tx � Ty) � �
�
d(x � Ty) + d(y� Tx )

�
�

Then T has a unique �xed point in X �

One of the most general contraction conditions obtained in this way, for
which the Picard iteration still converge to the unique fixed point, was given
by Ciric [7] in 1974.

Theorem C� Let (X� d) be a complete metric space and T : X �� X a

mapping that satis�es

(1�3)
d(Tx � Ty) � h �maxfd(x � y)� d(x � Tx )� d(y� Ty)� d(x � Ty)� d(y� Tx )g �

for all x � y � X and some constant 0 �h �1�
Then T has a unique �xed point in X �

Remark� It is easy to see that if T is an operator that satisfies the
assumptions in any of the Theorems B, K and Z, then T also satisfies the
assumptions of Theorem C.

The set 0T (x ) = fx � Tx � T 2x � � � �g is called the orbit of T relative to x .
It is shown in [15] that condition (1.3) does in fact assure that the orbits of T
are bounded.

There exist many extensions and generalizations of these results. One
of them was given in [1], for the class of the so called generalized 	-
contractions, as a unifying fixed point theorem of many results of the same
kind.
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A mapping T : X �� X is said to be a generalized 	�contraction

if there exists a function 	 : R5
+ �� R+ (called comparison function and

satisfying certain appropriate conditions) such that for all x � y � X

(1�4) d(Tx � Ty) � 	
�
d(x � y)� d(x � Tx )� d(y� Ty)� d(x � Ty)� d(y� Tx )

�
�

Example �� The functions

1) 	1(t) = �t1, for all t =
�
t1� t2� t3� t4� t5

�
� R5

+ (0 � � �1);

2) 	2(t) = a(t2 + t3), for all t =
�
t1� t2� t3� t4� t5

�
� R5

+ � 0 � a �1
2 ;

3) 	3(t) � f�t1� �(t2 + t3)� �(t4 + t5)g, for all t =
�
t1� t2� t3� t4� t5

�
�

� R5
+ , 0 � � �1; 0 � � �1

2 ; 0 � � �1
2 ;

4) 	4(t) = h �maxft1� t2� t3� t4� t5g, for all t =
�
t1� t2� t3� t4� t5

�
�

� R5
+ , 0 �h �1

are all comparison functions. (Recall that a map satisfying (1.4) with
	 � 	4 is usually called quasi contraction).

In a slightly corriged version, see Berinde [2], the main result in [1] can
be briefly restated as follows.

Theorem G� Let (X� d) be a complete metric space and T : X �� X a

generalized 	�contraction with 	 such that 
 (t) = 	(t � t � t � t � t) is a continuous

comparison function and h(t) = t � 
 (t) is an increasing bijection� Then

�i� T has a unique �xed point p in X 	

�ii� The Picard iteration fxng
�

n=0� given by xn+1 = Txn � n � 0 and

x0 � X � converges to p	

�iii� d(xn � p) � 
n
�
h�1(d(x0� x1))

�
� n � 1 �

It is the main purpose of the present paper to extend Theorem G, and
hence all fixed point theorems contained by it as particular cases, to a common
fixed point theorem.

2. A common fixed point theorem

The important result given by Theorem C has been also extended in many
directions: to nonself mappings, Ciric ([8], Theorem 2.1) by using Rothe’s
boundary condition, to generalized orbitally complete metric spaces with
the metric satisfying a quadrilateral inequality instead of the usual triangle
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inequality, see Lahiri and Das [10], as well as to a common fixed point for
nonself mappings, see Rakocevic [11] and Berinde [4], and also to orbitally
complete metric spaces, see Ciric [6].

In this section we state and prove a general common fixed point theorem
for self operators satisfying a generalized condition of quasi-contractive type.

To this end we need some appropriate notions and results related to
mappings with contracting orbital diameters.

Remarks�

1) A mapping satisfying a contractive condition of the form (1.4) is
generally not continuous throughout X . However, as shown by Rhoades
([12], Theorem 2), a contractive mapping satisfying (1.3) is continuous at the

�xed point. The argument is easily extendable to mappings satisfying (1.4)
with 	 an appropriate comparison function.

2) One of the first authors who considered conditions of the form (1.4)
with 	(t) � 	(t1), t = (t1� t2� t3� t4� t5) � R5

+ , was Browder [5].
A scalar function 	 : R+ �� R+ involved in such a fixed point theorem
is also called comparison function and is supposed to satisfy at least the
following two conditions:

(i�) 	 is monotonically increasing, i.e., t1 �t2 	 	(t1) � 	(t2);

(i i�) The sequence f	n(t)g�n=0 converges to zero for each t � R+ , where

	n stands for the n th iterate of 	 .

A prototype for the scalar comparison functions is 	(t) = a � t , t � R+,
with 0 � a �1.
Considering 	1(t) = t

1+t , t � R+ and 	2(t) = 1
2 t , if 0 � t �1 and

	2(t) = t � 1
3 , if t � 1, it is easy to check that comparison functions need not

be neither linear, nor continuous.

To prove our main result we shall use the following Lemma.

Lemma �� Let 	 : R+ �� R+ satisfy (i�) and (i i�) and suppose

(2�1) t � 	(t) �

for a certain t � R+ � Then t = 0�

Proof� Assume the contrary, i.e., there exists t �0 such that (2.1) is
satisfied. Then, by (i�) we inductively get

t � 	n(t) � n � 1
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and so, in view of (i i�), this implies

0 � t � lim
n��

	n(t) = 0 �

a contradiction.

The main result of this paper is given by the next theorem.

Theorem �� Let (X� d) be a complete metric space and S � T : X �� X
two mappings with bounded orbits� Suppose T is continuous and

(2�2) d(Sx � Sy) � 	
�
M (x � y)

�
� for all x � y � X�

where

(2�3)
M (x � y) = max fd(Tx � Ty)� d(Tx � Sx )� d(Ty� Sy)� d(Tx � Sy)� d(Ty� Sx )g �

with 	 : R+ �� R+ a continuous scalar comparison function� Suppose

(2�4) S (X ) 
 T (X )

and also suppose T and S are weakly commutative� i�e��

(2�5) d(TSx � STx ) � d(Tx � Sx ) � for every x � X �

Then T and S have a unique common �xed point�

Proof� Let x0 � X be arbitrary. Then by (2.4) Sx0 � T (X ), which
shows that there exists x1 � X such that

Tx1 = Sx0 �

Consider now Sx1. Since Sx1 � T (X ), there exists x2 � X such that

Tx2 = Sx1 �

By induction, we construct a sequence fxng�n=0 of points in X such that

Txn+1 = Sxn � n = 0� 1� 2� � � � �

We shall prove that fTxng�n=1 is a Cauchy sequence.

To this end, consider

B(n� k ) = fTxj � Sxj : n � j � n + kg ; b(n� k ) = diam
�
B(n� k )

�
;

B(n) = fTxj � Sxj : n � jg ; b(n) = diam
�
B(n)

�
�

It easy to see that b(n� k ) � b(n) as k �� and that fb(n)g�n=0 is a decreasing
sequence of positive terms, hence

b = lim
n��

b(n)
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does exist.

To prove that fTxng�n=0 is a Cauchy sequence we must show that b = 0.

We claim that

(2�6) b(n� k ) � 	
�
b(n � 2� k � 2)

�
� n� k � 2 �

and discuss the following three cases.

Case �� b(n� k ) = d(Txi � Sxj ) with n � i , j � n + k :
Then Txi = Sxi�1 and, by (2.2), we get

b(n� k ) = d(Sxi�1� Sxj ) � 	
�
M (xi�1� xj )

�
� 	

�
b(n � 2� k + 2)

�
�

since 	 is monotonically increasing. The remaining cases:

Case �� b(n� k ) = d(Sxi � Sxj ) with n � i , j � n + k
and

Case �� b(n� k ) = d(Txi � Txj ) with n � i , j � n + k
can be easily reduced to Case 1.

Therefore (2.6) is true. Now, if we let k � � in (2.6) and use the
continuity of 	 we obtain

(2�7) b(n) � 	
�
b(n � 2)

�
� n � 1 �

By (i i�) and continuity of 	 , letting n �� in (2.7) we get

b � 	(b)

which by Lemma 1 implies b = 0.

This shows that both fTxng�n=1 and fSxng�n=0 are Cauchy sequences.
Since (X� d) is a complete metric space, we conclude that

lim
n��

Txn = p � X �

and hence lim
n��

Sxn = p, too.

Since T is continuous, we obtain

lim
n��

T (Sxn) = T
�

lim
n��

Sxn
�

= Tp

which, in view of the weak commutativity condition (2.4), yields

d(STxn � Tp) � d(STxn � TSxn) + d(TSxn � Tp) �

� d(Txn � Sxn) + d(TSxn � Tp) �� 0, as n �� �(2�8)

This shows that

(2�9) lim
n��

(ST )(xn) = Tp �
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and therefore, by (2.8) and (2.9), we have

M (Txn � p) = max fd(TTxn � Tp)� d(TTxn � Sp)� d(Tp� Sp)� d(TTxn � Sp)�

d(Tp� Sxn)g �� max fd(Tp� Tp)� d(Tp� Sp)� d(Tp� Sp)� d(Tp� Sp)�

d(Tp� Sp)g = d(Tp� Sp)� as n �� �

So by (2.3)

d(STxn � Sp) � 	
�
M (Txn � p)

�
�

which by letting n �� , yields

d(Tp� Sp) � 	
�
d(Tp� Sp)

�

and which by Lemma 1 implies d(Tp� Sp) = 0, i.e.,

(2�10) Tp = Sp �

To show that Sp is a common fixed point of S and T it suffices to show that
Sp is a fixed point of S . Indeed, by (2.10) and (2.5) it results that

(2�11) TSp = STp = SSp�

Now, by (2.2), (2.10) and (2.11), we have

d(SSp� Sp) � 	
�
M (Sp� p)

�
= 	

�
d(SSp� Sp)

�
�

which again by Lemma 1 implies SSp = Sp. From (2.11) it results that Sp
is a fixed point of T , too. The uniqueness follows by (2.2).

Remarks�

1) For T = 1X , the identity map, by Theorem 1 we obtain a fixed point
theorem similar to Theorem G;

2) For 	(t) = h � t , t � R+ , 0 �h �1, from Theorem 1 we obtain a
common fixed point theorem that contains Ciric’s fixed point theorem as a
particular case;

3) Note that if we denote for all x � y � X ,

D(x � y) =
�
d(x � y)� d(x � Sx )� d(y� Sy)� d(x � Sy)� d(y� Sx )

�
�

then

	i
�
D(x � y)

�
� 	

�
M (x � y)

�
�

for all functions 	1� 	2 and 	3 in Example 2.

This shows that, in the particular case T = 1X , Theorem 1 provides
extensions of Banach’s, Kannan’s, Zamfirescu’s and Ciric’s fixed point theo-
rems.
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Theorem �� Let (X� d) be a complete metric space and T : X �� X a

generalized 	�contraction� i�e�� a mapping satisfying

d(Tx � Ty) � 	
�
C (x � y)

�
� for all x � y � X �

where 	 : R+ �� R+ is a continuous comparison function and

C (x � y) = maxfd(x � y)� d(x � Tx )� d(y� Ty)� d(x � Ty)� d(y� Tx )g�

If T has bounded orbits� then it has a unique �xed point�

Proof� Take T = 1X and S := T in Theorem 1.

The continuity of T in Theorem 1 can be weakened to obtain a more
general result, similar to Theorem 3 in Rakocevic [11] and Berinde [4]. Ac-
tually all the results given in Rakocevic [11] can be similarly adapted for self
mappings, but we restrict to the result corresponding to Theorem 3 in [11].

Theorem �� Let (X� d) be a complete metric space and S� T : X � X
two mappings with bounded orbits� Suppose that Tm is continuous for some

�xed positive integer m � that S and T satisfy (2�2)� (2�4) and are commutative�

that is�

TSx = STx � for each x � K �

Then S and T have a unique common �xed point in K �

Proof� Let fxng be constructed as in the proof of Theorem 1.
Hence

lim
n��

Sxn = lim
n��

Txn = p � X�

For each n � 1�

d
�
TmSxn � ST

m�1p
�

= d
�
STmxn � ST

m�1p
�
�

� 	
�
M

�
Tmxn � T

m�1p
��

=

= 	
�

max
n
d
�
TmTxn � T

mp
�
� d

�
TmTxn � T

mSxn
�
� d

�
Tmp� STm�1p

�
�

�
TmTxn � ST

m�1p
�
� d

�
Tmp� TmSxn

�o�
�

Then by the continuity of Tm and letting n �� we get

d
�
Tmp� STm�1p

�
� 	

�
d
�
Tmp� STm�1p

��
�

which by Lemma 1 shows that Tmp = STm�1p.
In order to prove that Tmp is a fixed point of S , i.e.,

STmp = Tmp�
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in view of Tmp = STm�1p, it suffices to show that

(2�12) STmp = STm�1p�

Since

M
�
Tmp� Tm�1p

�
= max

n
d
�
Tm+1p� Tmp

�
� d
�
Tm+1p� STmp

�
�

d
�
Tmp� STm�1p

�
� d
�
Tm+1p� STm�1p

�
� d
�
Tmp� STmp

�o
�

in view of Tmp = STm�1p and Tm+1p = T
�
STm�1p

�
= STmp,

we obtain
M (Tmp� Tm�1p) =

max
n
d
�
STmp� STm�1p

�
� 0� 0� d

�
STmp� STm�1p

�
� d
�
STmp� STm�1p

�o
�

Now by (2.3) we have

d
�
STmp� STm�1p

�
� 	

�
d
�
Tmp� Tm�1p

��
= 	

�
d
�
STmp� STm�1p

��

which by Lemma 1 gives

d
�
STmp� STm�1p

�
= 0�

This proves (2.12) and hence Tmp is a fixed point of S . Now

TTmp = Tm+1p = STmp = Tmp�

which shows that Tmp is a fixed point of T as well.

The uniqueness follows similarly, by the contraction condition (2.2).

Remarks�

1) Note that the results for nonself mappings in Rakocevic [11] and
Berinde [4] are proven in a Banach space setting, while the results in this
paper are obtained in the general setting of a complete metric space.

If we impose additional conditions on the comparison function 	 , it is
possible to obtain an error estimate for the method of successive approxima-
tions, like in Theorem G.

2) It is known, see Lemma 4.3.1 in [13] that if T is a generalized strict
	-contraction, i.e., T satisfies (1.4), with

t � 	(t � t � t � t � t)��� as t ���

then T has bounded orbits.

It is however an open question whether or not two mappings S and T sat-
isfying (2.2) or the mapping T in Theorem 2, with 	 an arbitrary comparison
function, have bounded orbits.
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1. Preliminaries

The Gurtin–MacCamy system, introduced in [5] and its generalizations,
including vital rates depending on a finite number of weighted population
size functions has been studied by many authors with different methods in
different aspects [7], [1], [8], [9], [4]. It describes the dynamics of a single
species population living in a closed territory, that is migration is excluded.
The only way to leave the population is by death and the newborns of the
individuals living in the population form the only after-growth. Thus, if these
quantities are balanced the population can survive at a constant level. The
measure of the balance is the so called inherent net reproduction number, the
expected number of newborns for an individual in his lifetime.

The investigations of the stability of these constant level populations,
i.e. stationary age-distributions, by linearization [3] lead to some results
containing simple conditions for the net reproduction number [2].

In the present note we are going to investigate the asymptotic behaviour
of solutions of the following (linear non-autonomus) model

p�t (a� t) + p�a(a� t) = ��(a� t)p(a� t)� 0 � a �m ��� t � 0

p(0� t) =

mZ

0

�(a� t)p(a� t)da� t �0�(1�1)

with the initial condition p(a� 0) =: p0(a), which satisfies p0(0) =
mR
0
�(a� 0) �

p0(a)da . Here p(a� t) denotes the density of members of age a at time t � 0.
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This means that the quantity of members between age a and age a + da is
p(a� t)da for small da . We assume finite life span denoted by m .

We believe that this linear but non-autonomous system is more useful
modelling some population dynamical phenomena for example in the case of
time periodic vital rate functions.

The dynamics of the system depends on the vital rates �(a� t)� �(a� t) for
which we make the following general assumptions

�t � [0��)��a � [0� m] 0 � �(a� t) � k ��� �(a� t) � 0�(1�2)

�t � [0��)

mZ

0

�(a� t)da = �� �t � [0��)� a � [0� m) �(a� t) ���(1�3)

Later we are to make other conditions on the vital rates.
Integrating along the characteristics the model (1.1) can be reduced to a

pair of integral equations that corresponds to the cases t � a and a �t . Since
we are investigating here the asymptotic behaviour we consider only the case
t �m � a .

The ODE system of characteristics is

(1�4)
da

d�
=
dt

d�
= 1�

dp

d�
= ��(a� t)p(a� t)�

From (1.4) we have the following formula for p(a� t)

(1�5) p(a� t) = 	(t � a)e
�

aR

0
�(s�t)ds

�

where 	 is an arbitrary C 1 function which has to satisfy the following equa-
tion

(1�6) p(0� t) =

mZ

0

�(x � t)p(x � t)dx = 	(t)�

and from (1.6) we obtain

(1�7) p(a� t) = e
�

aR

0
�(s�t)ds mZ

0

�(x � t � a)p(x � t � a)dx �

thus

(1�8) p(a� t) = p(0� t � a)
(a� t)� wi th 
(a� t) = e
�

aR

0
�(s�t)ds

�
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Here 
(a� t) denotes the probability for an individual to survive the age a at
time t .

Finally recall the net reproduction function

(1�9) R(t) =

mZ

0

�(a� t)e
�

aR

0
�(s�t)ds

=

mZ

0

�(a� t)
(a� t)da�

which is the expected number of newborns of an individual at time t .

2. Extinction

In [6] Iannelli et al. studied the global boundedness of solutions of a gen-
eralized Gurtin–MacCamy system, where the vital rates depend on a weighted

size of the population S (t) =
mR
0
�(a)p(a� t)da . Under some natural condition

they proved boundedness for the total population quantity P(t) =
mR
0
p(a� t)da .

They investigated two cases, first if the fertility function �(a� S (t)) is
bounded by a non-increasing function �(S ) for which l imS���(S ) = 0
holds.

Then they proved boundedness under conditions mainly for the mortality,
namely �(a� S ) � C�(a), �(a� S ) � �0(a) +  (S ), where � is the weight
function, C a positive constant and  is a non-decreasing function of the
weighted population size S , l imS�� (S ) = �.

In this section we are going to apply some of the idea of their proof for the
non-autonomous system. That is first we show that under similar conditions
for the fertility function the population goes to extinction. Then we consider
the connection between the mortality and the fertility functions and establish
a result in which a condition for the net reproduction number function R(t) is
given.

Consider the following assumptions on the fertility function �(a� t)

(2�1) �(a� t) � �(t)� � t � 0� �T � m : �(T ) �
1

2m
�

where �(t) is a positive non-increasing function of t � [0��).

Theorem �� Let the conditions ����� be satis�ed� For each non�negative

initial age distribution p(�� 0) � L1 we have
mR
0
p(a� t)da = P(t) 	 0 if t 	��
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Proof� From (1.7) we have

p(a� t) = p(0� t � a)
(a� t)�

where 
(a� t) � 1 for all a � [0� m], t � [m��).
For the density of newborns at time t we have

(2�2) p(0� t) =

mZ

0

�(a� t)p(a� t)da � �(t)P(t)�

That is we have

(2�3)

mZ

0

p(a� t)da = P(t) �

mZ

0

p(0� t � a)da �

mZ

0

�(t � a)P(t � a)da�

Now let In := [(n � 1)m� nm]� (n = 2� 3� � � �) and Pn = maxt�InP(t).
Then for t � In+1 and a � [0� m] we have (t � a) � In 
 In+1 thus, from

(2.3) we obtain

Pn+1 � maxfPn � Pn+1g � m � �((n � 1)m)�

Let n� be sufficiently great to have (n� � 1)m � T . Then we have

(2�4) Pn�+1 �
maxfPn� � Pn�+1g

2
�

Then it follows that for n � n� we have Pn+1 �
Pn
2 .

That is we have
mZ

0

p(a� t)da = P(t) 	 0� i f t 	��

As we have mentioned the net reproduction rate R(t) is a key parameter
to decide stability of stationary solutions of the autonomous model.

Now suppose that there exists a non-negative �(�) function and some
constant ��0 such that

(2�5) �(a� t) � �(t)� �(t � a) � (1 + �)�(a� t)� a � [0� m]� t �m�

Moreover suppose

(2�6) � T � 0 s�t � R(T ) �
1

1 + �
f or � ���

and R(t) is non-increasing.



2019. május 4. –22:36

ON THE ASYMPTOTIC BEHAVIOUR OF THE NON-AUTONOMOUS GURTIN–MACCAMY EQUATION 115

Theorem �� With the conditions ���	�
����� for each non�negative initial

age distribution p(a� 0) � L1�
mR
0
p(a� t)da = P(t) 	 0 if t 	��

Proof� We have again

p(a� t) = p(0� t � a)
(a� t)� t � [m��)

and in the same way as in the proof of Th.1 we obtain

P(t) �

mZ

0

�(t � a)P(t � a)
(a� t)da

From the conditions in (2.5) we obtain

(2�7) P(t) �

mZ

0

(1 + �)�(a� t)
(a� t)P(t � a)da�

and with the same In := [(n�1)m� nm]� (n = 2� 3� � � �) and Pn := maxt�InP(t),
if t � In+1� a � [0� m]� (t � a) � In 
 In+1 thus we obtain

(2�8) Pn+1 � maxfPn � Pn+1g(1 + �)

mZ

0

�(a� t)
(a� t)da�

and because
mR
0
�(a� t)
(a� t)da = R(t) � 1

1+� for t � T , for sufficiently large

n� we have for n � n�

(2�9) Pn�+1 �
1 + �
1 + �

maxfPn� � Pn�+1g�

from where follows that Pn+1 � Pn
1+�
1+� �Pn , for n � n�.

That is P(t) 	 0 if t 	�.

Remarks� The conditions in Th.2 for the fertility function is quite tech-
nical and the condition for R(t) is the essential one. Roughly speaking it
means that if there exists some finite T � 0 such that R(t) is bounded by
some 1

1+� � 1 for t � T then the population goes to extinction. In other
words if the expected number of newborns at time t is less than 1 for t � T
then the total population quantity tends to zero, of course.
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3. Sharper upper bound

In the previous section we determined conditions for the vital rates which
guarantees the extinction of the population. One may expect that if there exists
some finite T such that for t � T the inherent net reproduction number R(t) is
lower than 1 in other words the number of per capita offspring is below 1 then
the total population quantity decreases and the population goes to extinction.

In this section we are going to formulate some sharper “upper bound”
for the total population quantity, which is also in close relation with the net
reproduction rate R as we will see.

Integrating both sides of the equation in (1.1) from 0 to m we have

Ṗ (t) = �

mZ

0

�(a� t)p(a� t)da �

mZ

0

p�a (a� t)da = p(0� t)�

mZ

0

�(a� t)p(a� t)da =

=

mZ

0

�(a� t)p(a� t)da �

mZ

0

�(a� t)p(a� t)da�(3�1)

The solution of the ODE (3.1) obtained easily

(3�3) P(t) =

tZ

0

mZ

0

(p(a� s)�(a� s)� p(a� s)�(a� s))dads + P(0)�

and we have

(3�4) lim
t��

P(t) =

�Z

0

mZ

0

(p(a� s)�(a� s)� p(a� s)�(a� s))dads + P(0)�

Thus the question is when does the function

(3�5) F (s) =

mZ

0

(p(a� s)�(a� s)� p(a� s)�(a� s))da

belong to L1
[0��).

From (1.4) we have p(a� s) = p(0� s�a)
(a� s) for s � a , that is we have

(3�6) F (s) =

mZ

0

p(0� s � a)(�(a� s)
(a� s)� �(a� s)
(a� s))da

for s � m , and clearly
mR
0
F (s)ds �� holds.
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If the density of newborns p(0� t) is finite for every t then there exists a

function C (s) which is also bounded, such that p(0� s � a) �C (s)p(0� s) for

every a � [0� m].

That is we have

(3�7) F (s) � p(0� s)C (s)j

mZ

0

�(a� s)
(a� s)da �

mZ

0

�(a� s)
(a� s)daj�

Now observe that
mR
0
�(a� s)
(a� s)da = R(s) by definition and

mR
0
�(a� s) �


(a� s)da = 1 because �(a� s)
(a� s)da is the probability for an individual to

survive the age a and then die in [a� a + da].

That is we have

(3�8) lim
t��

P(t) �

�Z

0

p(0� s)C (s)jR(s)� 1jds + P(0)�

Note that if the net reproduction number R(s) �M is bounded by some

M �� for every s , then the density of newborns p(0� s) and the function
C (s) is bounded for every s , too. So if for example (R(s) � 1) � 1

s1+� for

some � �0, then the improper integral in (2.7) is convergent.

Example� Consider the following special vital rate functions with max-

imal life span m = 100

�(a� t) = b(a)f (t) =
a4

C
(100� a)21�11�a(1 +

1

t2 + 1
)� �(a) =

1
100� a

�

with C =
100R
0
a4(100� a)21�11�a
(a)da � 0� 4045064485 � 1010.
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Fig� �� b(a) = a4

C (100� a)21�11�a
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0.08

0.1
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a

Fig� �� �(a) = 1
100�a

It is easy to show that these functions satisfy the conditions (1.2)–(1.3).

With 
(a) = 1� a
100



2019. május 4. –22:36

ON THE ASYMPTOTIC BEHAVIOUR OF THE NON-AUTONOMOUS GURTIN–MACCAMY EQUATION 119

0
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a

Fig� �� 
(a) = 1 � a
100

we arrive at

R(t) =

100Z

0

a4

C
(100� a)21�11�a(1 +

1

t2 + 1
)(1�

a

100
)da = 1 +

1

1 + t2

Thus R(t) � 1 for t � 0 and R(t) 	 1 in a sufficient order.
From (3.8)

(3�9) lim
t��

P(t) �

�Z

0

p(0� s)C (s)

1 + s2 ds + P(0)�

that is for any given initial age distribution p0(a) which satisfies the compat-
ibility condition

p0(0) =

100Z

0

2p0(a)
a4

C
(100� a)21�11�ada

the solution p(a� t) 	 p�(a) if t 	� with some non-trivial age distribution
p�(a) in the following L1 norm:

(3�10) jjp(�� t)jj :=

mZ

0

jp(a� t)jda�
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Remarks� The example above is a very special one but shows the es-
sential role of the net reproduction function R(t). Thus the general problem
namely the formulation of necessary or sufficient conditions for the conver-
gence to a non-trivial age distribution seems to be still open. As the probably
much more interesting case of time periodic vital rates on which we are
working.
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1. Introduction

In 1970, Levine [18] introduced the notion of T 1
2

spaces which properly

lie between T1-spaces and T0-spaces. Dunham [12] obtained the following

characterization of T 1
2

-spaces: a topological space (X� �) is T 1
2

if and only if

each singleton of X is open or closed. Moreover, Arenas et al. [4] showed

that a topological space (X� �) is T 1
2

if and only if every subset of X is

�-closed. In 1987, semi-T 1
2

spaces are introduced by Bhattacharyya and

Lahiri [6]. Sundaram et al. [28] showed that a topological space (X� �) is

semi-T 1
2

if and only if each singleton of X is semi-open or semi-closed.

Recently, Caldas et al. ([7], [8], [9]) have defined and investigated the

notions of (�� � )-closed, (�� �)-closed and (�� �)-closed sets in topological

spaces. The characterization of Arenas et al. [4] motivated us to obtain

unified characterizations of certain weak separation axioms containing T 1
2

and

semi-T 1
2

.

In this paper, we introduce the notions called m-structures which are

weaker than topological structures. Using the m-structures, we investigate

a unified theory of weak separation axioms containing T 1
2

-spaces and semi-

T1
2

-spaces.
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2. Preliminaries

In what follows (X� �) and (Y� 	) (or X and Y ) denote topological spaces.
Let A be a subset X . We denote the interior and the closure of a set A by
Int(A) and Cl(A), respectively. A point x � X is called a � -cluster point
of A if A � Cl (U )
� for every open set U of X containing x . The set of
all � -cluster points of A is called the � -closure of A, denoted by Cl� (A).
A subset A is called � -closed [29] if A = Cl� (A). The complement of a
� -closed set is said to be � -open. We denote the collection of all � -open sets
of (X� �) by �� .

A point x � X is called the �-cluster point of A if A � I nt(Cl (U ))
�
for every open set U of X containing x . The set of all �-cluster points of
A is called the �-closure of A, denoted by Cl� (A). A subset A is called
�-closed [29] if A = Cl� (A). The complement of a �-closed set is said
to be �-open. We denote the collection of all �-open sets by �� . The set
fx � X j x � U � I nt(Cl (U )) � Ag for some open set U of X is called
the �-interior of A and is denoted by I nt� (A).

Definition �� Let (X� �) be a topological space. A subset A of X is said
to be
(1) semi-open [17] if A � Cl (I nt(A)),
(2) preopen [23] if A � I nt(Cl (A)),
(3) �-open [25] if A � I nt(Cl (I nt(A))),
(4) �-open [1] or semi-preopen [3] if A � Cl (I nt(Cl (A))).

The family of all semi-open (resp. preopen, �-open, �-open, semi-
preopen) sets in X is denoted by SO(X ) (resp. PO(X ), �(X ), �(X ),
SPO(X )).

Definition �� The complement of a semi-open (resp. preopen, �-open,
�-open, semi-preopen) set is said to be semi-closed [10] (resp. preclosed [23],
�-closed [24], �-closed [1], semi-preclosed [3]).

Definition �� The intersection of all semi-closed (resp. preclosed, �-
closed, �-closed) sets of X containing A is called the semi-closure [10] (resp.
preclosure [13], �-closure [24], �-closure [2] or semi-preclosure [3]) of A and
is denoted by sC l (A) (resp. pC l (A), �C l (A), �C l (A) or spC l (A)).

Definition �� The union of all semi-open (resp. preopen, �-open, �-
open) sets of X contained in A is called the semi-interior (resp. preinterior,
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�-interior, �-interior or semi-preinterior) of A and is denoted by sI nt(A)
(resp. pI nt(A), �I nt(A), �I nt(A) or spI nt(A)).

Definition �� A subset A of a topological space (X� �) is said to be
(1) g-closed [18] if Cl (A) � U whenever A � U and U is open in (X� �),
(2) semi g-closed [6] if sC l (A) � U whenever A � U and U is semi-open
in (X� �).

Definition �� A topological space (X� �) is said to be
(1) T 1

2
-space [18] if every g-closed set is closed in (X� �),

(2) semi-T 1
2

space [6] if every semi g-closed set is semi-closed in (X� �).

Lemma ��� 	Dunham 
���� Sundaram et al� 
���� Let (X� �) be a

topological space� Then

��� (X� �) is T 1
2
if and only if every singleton of X is open or closed�

��� (X� �) is semi�T 1
2

if and only if every singleton of X is semi�open or

semi�closed�

Definition �� A subset A of a topological space (X� �) is called
(1) a �-set [4] if A = �fU j A � U�U � �g,
(2) a semi-�-set [11] if A = �fU j A � U�U � SO(X� �)g.

Definition � A subset A of a topological space (X� �) is said to be
(1) �-closed [4] if A = T � C , where T is a �-set and C is closed,
(2) semi-�-closed [11] if A = T � C , where T is a semi-�-set and C is
semi-closed.

3. m-spaces

Definition �� A subfamily m of the power set P(X ) of a nonempty set
X is called an m-structure on X if m satisfies the following:
(1) � � m and X � m ,
(2) ���� � A� � m whenever A� � m for each � � �.

We call the pair (X�m) an m-space. Each member of m is said to be
m-open and the complement of an m-open set is said to be m-closed.
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Remark ���� It should be noted that condition (2) in Definition 9 of
m-structure is called property (B) by Maki in [22]. In this paper, we always
assume the property (B) on m-structures.

Remark ���� Let (X� �) be a topological space. Then the families �� ,
�� , � , SO(X� �), PO(X� �), �(X ), �(X ) are all m-structures on X . It is
well-known that �� , �� , �(X ) are topologies for X .

Definition ��� Let X be a nonempty set and m an m-structure on X .
For a subset A of X , the m-closure of A and the m-interior of A are defined
in [22] as follows:
(1) mX -Cl (A) = �fF j A � F�X nF � mg,
(2) mX -I nt(A) = �fU j U � A�U � mg.

In this paper, we denote mX -Cl (A) (resp. mX -I nt(A)) by Clm (A) (resp.
I ntm (A)).

Remark ���� Let (X� �) be a topological space and A a subset of X . If
m = � (resp. SO(X ), PO(X ), �(X ), �(X ), �� , ��), then we have
(1) Clm (A) = Cl (A) (resp. sC l (A), pC l (A), �C l (A), �C l (A), Cl� (A),
Cl� (A)),
(2) I ntm (A) = I nt(A) (resp. sI nt(A), pI nt(A), �I nt(A), �I nt(A), I nt� (A),
I nt� (A)).

Lemma ��� 	Maki 
����� Let m be an m�structure on a nonempty set X �

For subsets A and B of X � the following properties hold	

��� Clm (X nA) = X nI ntm (A) and I ntm (X nA) = X nClm (A)�
��� Clm (�) = �� Clm (X ) = X � I ntm (�) = � and I ntm (X ) = X �

�
� If A � B � then Clm (A) � Clm (B) and I ntm (A) � I ntm (B)�
��� A � Clm (A) and I ntm (A) � A�

��� Clm (Clm(A)) = Clm (A) and I ntm (I ntm (A)) = I ntm (A)�

Lemma ��� 	Popa and Noiri 
����� Let m be an m�structure on a non�

empty set X � Then x � Clm (A) if and only if U � A
� for every U � m
containing x �

Lemma ���� Let m be an m�structure on a nonempty set X � Then for a

subset A of X the following properties hold	

��� A � m if and only if A = I ntm (A)�
��� A is m�closed if and only if A = Clm (A)�
�
� Clm (A) is m�closed and I ntm (A) is m�open�
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Proof� This is an immediate consequence of Lemma 3.4 and Lemma
3.5.

Definition ��� Let A be a subset of an m-space (X�m).
(1) A subset �m (A) is defined as follows: �m (A) = �fO � m j A � Og.
(2) The subset A is called a �m -set if A = �m (A).
(3) The subset A is said to be (��m)-closed if A = T � C , where T is a
�m -set and C is a m-closed set.

Remark ���� Let (X� �) be a topological space. If we set m = � (resp.
SO(X ), �� , �� , �(X )), then the (��m)-closed set is a �-closed (resp. semi-�-
closed, (�� � )-closed [8], (�� �)-closed [9], (�� �)-closed [14]) set.

4. m-T0 spaces

Definition ��� An m-space (X�m) is said to be
(1) m-T0 if for x , y � X such that x
y there exists an m-open set U of X
containing x but not y or an m-open set V of X containing y but not x ,
(2) m-T1 if for distinct points x , y � X , there exist an m-open set containing
x but not y and an m-open set containing y but not x ,
(3) m-T2 if for x , y � X such that x
y there exist disjoint m-open sets U
and V of X such that x � U and y � V .

Remark ���� Let (X� �) be a topological space. Let us put m = � ,
SO(X ), PO(X ), �� , �� , �(X ), �(X ), then we obtain the following table. In
the table, each notion is defined in the literature shown in the square brackets.

m � �� �� �(X ) SO(X ) PO(X ) �(X )

m-T2 T2
� -T2
[5]

�-T2
[16]

�-T2
[20]

semi-T2
[19]

pre-T2
[26]

�-T2
[27]

m-T1 T1
� -T1
[15]

�-T1
[16]

�-T1
[9]

semi-T1
[19]

pre-T1
[26]

�-T1
[27]

m-T0 T0
� -T2
[7]

�-T0
[16]

�-T0
[9]

semi-T0
[19]

pre-T0
[26]

�-T0
[27]

Lemma ���� For an m�space (X�m)� the following properties hold	

��� Every m�T2 m�space is m�T1 and every m�T1 m�space is m�T0�

��� (X�m) is m�T1 if and only if for each x � X � the singleton fxg is

m�closed�

Proof� The proof is obvious.
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Theorem ���� For an m�space (X�m)� the following properties are equiv�

alent	

��� (X�m) is m�T0

��� For each pair of distinct points x and y of X � there exists a subset A of

X such that x � A� y �� A and A is m�open or m�closed

�
� For each x � X � the singleton fxg is (��m)�closed�

Proof� (1) � (2): Let x
y . In case which there exists an m-open set U
of X such that x � U and y �� U , we put A = U . In case which there exists
an m-open set V of X such that x �� V and y � V , we put A = X nV . Then
A is the desired set.
(2) � (3): Let x � X . By (2), for each point y
x there exists a subset
Ay of X such that x � Ay , y �� Ay and Ay is m-open or m-closed. Let
T = �fAy j y � X nfxg� Ay is m-openg and C = �fAy j y � X nfxg� Ay

is m-closedg. Then we obtain that T is a �m -set, C is an m-closed set and
fxg = T � C . Therefore, fxg is (��m)-closed.
(3) � (1): Let x and y be distinct points of X . By (3), fxg = T � C , where
T is a �m-set and C is m-closed. If C does not contain y , then X nC is an
m-open set containing y but not x . If C contains y , then y �� T . Since T
is a �m-set, there exists an m-open set U containing x such that y �� U .
Therefore, (X�m) is m-T0.

5. m-T 1
2

spaces

Definition ��� An m-space (X�m) is said to be m-T 1
2

if every singleton

of X is m-open or m-closed.

Remark ���� Let (X� �) be a topological space. Let m = � (resp. SO(X ))
then m-T 1

2
= T 1

2
(resp. semi-T 1

2
). By setting m = �� , �� or �(X ), we can

define � -T 1
2

, �-T 1
2

or �-T 1
2

and obtain the characterizations by the following

result.

Theorem ���� Let (X�m) be an m�space� Then the following properties

are equivalent	

��� Every subset of X is (��m)�closed
��� (X�m) is m�T 1

2
�
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Proof� (1) � (2): Let x � X and let us suppose that fxg is not m-open.
We prove that the singleton fxg is m-closed. Let A = X nfxg. Since fxg is
not m-open, the subset A is not m-closed. By assumption, the subset A is
(��m)-closed. Thus the subset A is a �m -set. Since A = X nfxg and the set
X is the only m-open set of the m-space (X�m) such that A � X , we have
that A is m-open. Hence fxg is m-closed and therefore the m-space (X�m)
is an m-T 1

2
space.

(2) � (1): Let A be any subset of the m-space (X�m). We prove that the
subset A is (��m)-closed, that is A = T � C , where T is a �m -set and C
is m-closed. Let S = fx j x � X nA and fxg is m-openg. Then, the
set C = �fX nfxg j x � Sg is m-closed and A � C . Also, for the subset
T = �fX nfxg j x � X n(A � S )g of X we have: A � T and �m (T ) = T ,
that is T is a �m -set. Also, it is clear that T � C � A. Thus A = T � C and
therefore the subset A is (��m)-closed.

Theorem ���� For an m�space (X�m)� the following properties hold	

��� (X�m) is m�T1� then it is m�T1
2
�

��� (X�m) is m�T 1
2
� then it is m�T0�

Proof� (1) The proof is obvious from Lemma 4.2.
(2) Let x and y be two distinct elements of X . Since the m-space (X�m) is
m-T 1

2
, we have that fxg is m-open or m-closed. Suppose that fxg is m-open.

Then the singleton fxg is an m-open set such that x � fxg and y �� fxg.
Also, if fxg is m-closed, then X nfxg is m-open such that y � X nfxg and
x �� X nfxg. Thus, in the above two cases, there exists an m-open set U of
X such that x � U and y �� U or x �� U and y � U . Thus the m-space
(X�m) is m-T0.

By Theorem 5.3, we observe that the class of m-T 1
2

spaces is placed

between the classes of m-T0 and m-T1 spaces.

Definition ��� An m-space (X�m) is said to be
(1) m-R0 if every m-open set contains the m-closure of each of its singletons,
(2) m-R1 if for x , y in X with Clm (fxg)
Clm(fyg), there exist disjoint
m-open sets U and V such that Clm (fxg) � U and Clm (fyg) � V .

Theorem ���� For an m�R0 m�space (X�m)� the following properties are

equivalent	

��� (X� �) is m�T0
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��� (X� �) is m�T 1
2


�
� (X� �) is m�T1�

Proof� It suffices to prove only (1) � (3): Let x
y and since (X�m)
is m-T0, we may assume that x � U � X nfyg for some U � m . Then
x � X nClm (fyg) and X nClm (fyg) is m-open. Since (X�m) is m-R0, we
have Clm (fxg) � X nClm (fyg) � X nfyg and hence y �� Clm (fxg). There
exists V � m such that y � V � X nfxg and (X�m) is an m-T1 space.

Theorem ���� Let (X�m) be an m�space� Then (X�m) is m�T 1
2

and

m�R1 if and only if it is m�T2�

Proof� Necessity. Let x and y be two distinct points of X . Since (X�m)
is m-T 1

2
, we consider the following cases:

Case 1. fxg and fyg are m-closed: It follows from assumptions that there
exist disjoint m-open sets U and V such that fxg = Clm (fxg) � U and
fyg = Clm (fyg) � V .
Case 2. fxg is m-closed and fyg is m-open: Let U = fyg. If z �� U , then
since y �� Clm (fzg), Clm (fyg)
Clm(fzg). Since (X�m) is an m-R1 space,
there exists an m-open set V such that Clm (fzg) � V and y �� V , which
implies z �� Clm (fyg). Thus Clm (fyg) � U = fyg and so fyg is m-closed.
Hence this case reduces to Case 1.
Case 3. fxg is m-open and fyg is m-closed: Also this is reduced to Case 1.
Case 4. fxg and fyg are m-open: Then m-open sets fxg, fyg are required.
Therefore, (X�m) is m-T2.
Sufficiency. We recall that every m-T2 m-space is m-T1 and every m-T1
m-space is m-T 1

2
. Let x and y be points such that Clm (fxg)
Clm(fyg).

Then, since (X�m) is m-T2, there exist disjoint m-open sets U and V such
that Clm (fxg) = fxg � U and Clm (fyg) = fyg � V . Therefore (X�m) is
m-R1.

6. m-T 1
4

spaces

Definition ��� An m-space (X�m) is said to be m-T 1
4

if for every finite

subset F of X and x �� F there exists a set Fx such that (1) F � Fx , (2) Fx
is either m-open or m-closed, and (3) Fx � fxg = �.
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Theorem ���� Every m�T 1
2
m�space (X�m) is m�T 1

4
�

Proof� Let (X�m) be an m-T 1
2
m-space. We prove that the space (X�m)

is m-T 1
4

. Let F be a finite subset of X and x �� F . Since the m-space (X�m) is

m-T 1
2

, we have that the singleton fxg is m-open or m-closed. Let us suppose

that fxg is m-open. Setting Fx = X nfxg we have Fx is m-closed, F � Fx
and F � fxg = �. Similarly if fxg is m-closed, then we have Fx is m-open,
F � Fx and F � fxg = �. Thus the m-space (X�m) is m-T 1

4
.

Theorem ���� Every m�T 1
4
m�space (X�m) is m�T0�

Proof� This follows immediately from Theorem 4.3.

Theorem ���� For an m�space (X�m) the following properties are equiv�

alent	

��� Every �nite subset of X is (��m)�closed
��� (X�m) is m�T 1

4
�

Proof� (1) � (2): Let F be a finite subset of X and x �� F . Since F
is (��m)-closed, we have that F = T � C , where T is a �m -set and C is
an m-closed subset of X . If x �� C , then by setting Fx = C we have: (1)
F � Fx , (2) x �� Fx and (3) Fx is m-closed. Also, if x � C , then x �� T and
so for some m-open set U of X such that F � U we have: (1) F � U , (2)
x �� U and (3) U is m-open. Clearly, in the second case Fx = U . Thus the
space (X�m) is m-T 1

4
.

(2) � (1): Let F be a finite subset of the space X . We prove that the
subset F is (��m)-closed, that is F = T � C , where T is a �m -set and C is
m-closed. Since the m-space (X�m) is m-T 1

4
, for every point x �� F there

exists a subset Fx of X such that (1) F � Fx , (2) Fx � fxg = � and (3) Fx is
either m-open or m-closed. We set T = �fFx j x �� F and Fx is m-openg
and C = �fFx j x �� F and Fx is m-closedg. For the subsets T and C we
have (1) C is m-closed, (2) T is a �m -set and (3) F � T � C . Finally, we
prove that T �C � F . Indeed, let x � T �C and x �� F . Then, there exists an
m-open or m-closed subset Fx of X such that F � Fx and Fx � fxg = �. Let
us suppose that Fx is m-open, then x �� T which is a contradiction. Similarly
if Fx is m-closed, then x �� C which is also a contradiction. Thus x � F and
therefore T � C � F .
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open set and � -closure operator, Atas Sem� Bras� Anal� 56 (2002), 657–664.
[8] M� Caldas� D� N� Georgiou� S� Jafari and T� Noiri� On (�� � )-closed sets

(submitted).
[9] M� Caldas� D� N� Georgiou and S� Jafari� Study of (�� �)-closed sets and the

related notions in topological spaces (submitted).
[10] S� G� Crossley and S� K� Hildbrand� Semi-closure, Texas J� Sci� 22 (1971),

99–112.
[11] J� Dontchev andH�Maki� On sg-closed sets and semi-�-closed sets, Questions

Answers Gen� Topology 15 (1997), 259–266.
[12] W� Dunham� T1

2
-spaces, Kyungpook Math� J� 17 (1977), 161–169.

[13] S� N� El�Deeb� I� A� Hasanein� A� S� Mashhour and T� Noiri� On p-regular
spaces, Bull� Math� Soc� Sci� Math� R� S� Roumanie 27(75) (1983), 311–315.

[14] D� N� Georgiou� S� Jafari and T� Noiri� Properties of (�� �)-closed sets in
topological spaces, Bolletino della unione matematica italiana (article in
press).

[15] S� Jafari� Some properties of quasi � -continuous functions, Far East J� Math�

Sci� 6(5) (1998), 689–696.
[16] R� C� Jain� The role of regularly open sets in general topological spaces,

Ph.D. Thesis, Meerut Univ. Inst. Advance Stud. Meerut, India 1980.
[17] N� Levine� Semi-open sets and semi-continuity in topological spaces, Amer�

Math� Monthly 70 (1963), 36–41.
[18] N� Levine� Generalized closed sets in topology, Rend� Circ� Mat� Palermo ���

19 (1970), 89–96.
[19] S�N�Maheshwari andR� Prasad� Some new separation axioms, Ann� Soc� Sci�

Bruxelles 89 (1975), 395–402.
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1. Introduction

Felix Klein, German mathematician, established a new aspect for clas-
sification of geometries in his famous inaugural address at the University
of Erlangen in 1872. He describes a geometry from that point of view
which geometric properties remain invariant while applying its certain pos-
sible transformations. These are the invariants of the geometry concerned.
Such invariant is, e. g., the distance in the usual Euclidean geometry, the
angle in its similarity- or in its circle-geometry, the cross ratio of any four
collinear points in the projective geometry. Felix Klein gave a new direction
of research that is referred to as Erlanger Program. An example for this aspect
is reflection geometry. I shall discuss one of its problems without the claim
of completeness.

Geometric transformations, as bijective mappings of a space onto itself,
form a group with the successive application (composition) as the product
operation. In the plane the reflection in a line, in the space the reflection in
a plane has a prominent role in the outline and systematization of congru-
ence transformations (isometries). Reflection geometry attempts to describe
the geometries of a wide range on the basis of these transformations, with
reference to the classical work of Bachmann [1] and the paper of Ahrens [2].
A possible, simplified discussion in plane and in space is given in the works
of E. Molnár [3] and [4]. These papers called my attention to the topic and
to these investigations.

Line-reflections afford possibility to systematize congruence transforma-
tions in plane. During this we replace two reflections in arbitrary two lines
with reflections in other two lines, one of them going through any given point.
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In space we can make such replacement for plane-reflections. The fundamen-
tal theorems on three reflections (due to Hjelmslev, see Theorem 1 and The-
orem 2) present the possibility and the method, moreover, state uniqueness
of construction. For convenience of the Reader this paper includes the proof
of Theorem 2, where we can observe the effective and nice applications of
axioms.

We can define line-reflection in space as well. The question arises
whether the analogous unique construction of Theorem 1 is possible in space
or not. The main theorem, Theorem 5, states that such construction exists. In
the proof I show that the construction is not always unique in space.

In this paper a survey of primitive concepts, axioms and theorems will
be given as well. To prove Theorem 5 mainly the Axiom 3, Axiom 4 and
Theorem 4 are needed. But I give the proof of Theorem 3 and Theorem 4
too, because they offer the concrete construction of Theorem 5.

2. Primitive concepts and notations

Points: A�B� C� � � �

Lines: a� b� c� � � �

Planes: �� �� �� � � �

In the following � denotes the reflection in the plane � as well, the same
holds for points and lines, respectively.

The point P is incident with the line e: P I e.

The point P and the line e are incident with the plane �: P I � , e I � .

� denotes the equality of points, lines and planes.

= denotes the equality of transformations.

Product � of reflections in the planes �� �� �� � � � (successive application in
this order): ��� � � � =: �.

The transformation � maps the point P , the line e, and the plane � to their

images: P� , e� , ��, respectively.

The inverse of transformation �: ��1.

� is involutive, if � = ��1�1 with the identity 1.
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��1	�: 	 transformed (conjugated) by transformation �.

If � is involutive, then ��1	� = �	�.

Especially 
�1�
 =: �� is the plane-reflection in the 
-image of � .

� � � : The plane � is perpendicular to plane � , if �� � � and � �� � .

a � � : The line a is perpendicular to plane � , if a� � a and a � I � .

Line-reflection: If � � � and g I �� � , then the transformation �� = �� is
called line-reflection g . The transformation g = �� is involutive, because

�� = ��� = � �� �� = �� = (��)�1�

Point-reflection: If P I a� � and a � � , then the transformation �a = a�
is called point-reflection P . The transformation P = �a is involutive,
because

a� = �a� = a �� �a = a� = (�a)�1�

We can discuss axioms and theorems on the basis of the same principle
in Euclidean and hyperbolic geometry. The primitive concepts, axioms and
theorems in elliptic geometry(where a quadrupel of pair-wise perpendicular
planes exists) are defined analogously, but some questions need different, in
general simpler discussions. Therefore, in this note I do not consider elliptic
geometry.

3. Axioms and theorems

As Axiom ��, consider all the usual incidence and orthogonality state-
ments in plane and in space, respectively. Then the reflection in a line of the
plane, and the reflection in a plane of the space can be introduced [1]–[4] as
usual. To these concepts refer the following axioms, in addition.

3.1. Axioms of tree line-reflections in plane

Axiom �� If a� b� c I P � then there exists a line d� such that abc = d and

the consequence is d I P �

Axiom �� If a� b� c � g � then there exists a line d� such that abc = d and

the consequence is d � g �
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3.2. Axioms of tree plane-reflections in space

Axiom �� If �� �� � I g � then there exists a plane � � such that ��� = �

and this implies � I g �

Axiom �� If g � �� �� � � then there exists a plane � � such that ��� = �

and this implies g � � �

Of course, by Axiom 3 and Axiom 4 we can prove Axiom 1 and Axiom 2 in
space by using the definition of line-reflection.

3.3. Theorems

Theorem � �The Fundamental Theorem in Plane	� Let a and b be

two distinct lines in the plane and let X be a point not incident with both

lines� Then there exists just one line g � such that g I X and agb = h is a

line�re�ection�

The consequence of the theorem is that there exists a unique line h1 as

well� such that ab = gh1� where h1 = bhb = hb�

Theorem � �The Fundamental Theorem in Space	� Let � and � be

two distinct planes and let X be a point not incident with both planes� Then

there exists exactly one plane 
 � such that 
 I X and �
� = 	 is a re�ection�

The consequence of this theorem is that there exists a unique plane 	1 as

well� such that �� = 
	1� where 	1 = �	� = 	� �

Proof� (See Figure 1. and 2.)

Let us draw a perpendicular line a from X to the plane � . Let the
intersection point of a and � be denoted by A. We similarly get the line
b and the point B . Let g be the line connecting A and B . Let � � be the plane,
such that X I � � and � � � g . The plane � is determined by X� a� b I �. Let
� � and � � be planes, such that a I � �, � � � �, b I � �, � � � �. X I � �� � �,
therefore � � and � � meet in line m . � � is incident with m as well. By Axiom 3
there exists a plane 
 , such that � �� �� � = 
 and 
 I m , 
 � �, thus 
� = �
 .
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Figure ��

Hence:

a� �b = (�� �)� �(� ��) = �(� �� �� �)� = �
� = 
�

Therefore:

(1) a
b = � ��

According to the definition of point-reflection:

A = a� = �a �� � = aA = Aa �

B = b� = �b �� � = bB = Bb �

Using these relations:

�
� = (Aa)
(bB) = A(a
b)B �

By (1):

(2) �
� = A� �B �

We produce the point-reflections A and B in another way:

� �� � g � � �� I A� A = g� �� ; � �� � g � � �� I B � B = � ��g �
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Figure ��

By Axiom 4 there exists a plane 	 � g , such that

� ��� �� �� = 	 �

By (2):

�
� = A� �B = (g� ��)� �(� ��g) = g(� ��� �� ��)g = g	g = 	 �

So we have proved our theorem.

We get the consequence of Theorem 2 by the following:

	 = �
� � �	 = 
� � � = 
�	 � �� = 
�	� = 
	� �

Uniqueness of 
 (and 	1) follows by an indirect way [1], [2], [4], not detailed

here.

Theorem �� If Φ = ��� is a product of tree plane�re�ections and X is

an arbitrary point in the space� then there exist planes � 
� 	 � such that X I 
and � 
 � 	 and Φ = 	
 �
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Figure ��

If  and 	 meet in line g � and 
 and 	 meet in line h � then Φ = h = g
 �

Proof� (See the notations of Figure 4.)

Figure ��

By Theorem 2 there exist planes � � and � �, such that X I � � and �� =
= � �� �. Applying again Theorem 2 there exist � �� and � �, such that X I � �� and
� �� = � ��� �. Let x be the common line of � � and � ��. We take the plane � ���,
such that x I � ��� and � ��� � � �. (If x � � � then we can take an arbitrary plane
� ��� incident with x .) By Axiom 3 there exists the plane  , such that  I x
and � �� �� = � ���. Assume that � ��� and � � meet in the line h , and let 	 be the
plane, such that 	 I h and 	 �  . (If h �  than we can take an arbitrary
plane 	 incident with h .) Now we use again Axiom 3, there exists a plane

 , such that � ���� � = 
	 and 
 I h . By the assumption � ��� � � � we have

 � 	 . Hence 
	 = 	
 .
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Therefore

��� = � �� �� = � �� ��� � = � ���� � = 
	 = 	
 �

	 and 
 meet in the line h ,  and 	 meet in the line g ,  , 
 � 	 . We can
use the definition of the line-reflection:

��� = (	 )
 = g


��� = (	
) = h �

We can choose planes � ��� and 	 in some cases not uniquely (see above).
Then the construction of the theorem is not necessarily unique.

Theorem �� If Φ = ���� is a product of four plane�re�ections and X
is an arbitrary point in the space� then there exist lines g and h � such that

Φ = gh and X I g �

Proof� (See the notations of Figure 5.)

Figure 
�

By Theorem 2 there exist planes � � and � �, such that X I � � and �� =
= � �� �. Let us apply again Theorem 2, moreover, there exist � �� and � � with
X I � �� and � �� = � ��� �, and there exist � �� and � � with X I � �� and � �� =
= � ��� �. By Theorem 3 we can take planes � 
� 	 , such that � �� ��� �� = 	
 .
Now (see Figure 5) � �� � ��� � �� I X imply X I � 
� 	 and � 
 � 	 . Hence
� �� ��� �� = 	
 .

(See Figure 6.) Then  and 
 meet in a common line, say f , f I X and
f � 	 . There exists the plane � , such that � I f and � � � �. (If f � � � then
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we can take an arbitrary plane incident with f .) � and � � meet in line h . By
Axiom 3 there exists a plane � , such that 
� = � and � I f . Then � � 	 .
� and 	 meet in line g .

Figure ��

Therefore,
Φ = ���� = � �� ��� ��� � = 	
� � = 	 (
� )(�� �) = (	�)h = gh

and X I g .

In this proof we could see that the construction was not necessarily
unique.

4. Line-reflections in Space

The question arises whether Theorem 1 has an analogon for line-reflec-
tions in space. The main purpose of this note is to prove:

Theorem 
� Let a and b be two distinct lines in the space and let X
be an arbitrary point in the space not incident with both lines� Then there

exists a line g � such that X is incident with g and agb can be replaced with

a line�re�ection h �

Proof� If a and b has a common perpendicular line � which is always

true in Euclidean space�

(See the notations of Figure 7.)
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Figure ��

Let m be the common perpendicular line of a and b. X and m determine
a plane � . (If X I m then there exist more such planes, we take any of them.)
In this plane there exists a line g , such that X I g and g � m . The planes
� � [a�m] � � � [b�m] � � � [g�m] are determined. We take the plane �1,
such that a I �1 and m � �1. The planes �2 and �3 are similarly introduced.

By the definition of line-reflection:

a = ��1 � b = ��2 � g = ��3 �
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We would like to simplify the product agb = (��1)(��3)(��2).

�� �� � � �i (i = 1� 2� 3), because m � �i and m I �� �� � .

Hence ��i = �i� ; ��i = �i� ; ��i = �i� .

Therefore:

agb = (���)(�1�3�2) �

As �� �� � I m , so by Axiom 3 there exists a plane 
 , such that ��� = 
 and

 I m . Since m � �1� �2� �3, therefore by Axiom 4, there exists a plane 	 ,
such that �1�3�2 = 	 and m � 	 . Hence agb = 
	 .

Figure �

We have m I 
 and m � 	 , so 
 � 	 . The planes 
 and 	 meet
in the line h and 
	 = h . Hence we can replace the product agb by the
line-reflection h , where m is perpendicular to h (Figure 8). From the proof
we can see that if X is incident with the common perpendicular of a and b
then the construction is not unique.

If we do not suppose the existence of a common perpendicular line for a and

b� �see Figure �� � it is possible in hyperbolic space�

Let � be the plane of the point X and of the line a . If X is not incident
with the line a , then � is uniquely determined, otherwise we are done with
g = a , h = b. We take the plane �1 with the conditions �1 I a and �1 � � .

Then

X I � and a = ��1 = �1� �
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Planes � and �1 are similarly introduced (X I b implies g = b, h = a):

X I � and b = ��1 = �1� �

Using these notations:

ab = �1���1 �

Applying Theorem 4 for these four reflections there exist line-reflections g
and h1, such that:

�1���1 = gh1 and X I g �

Figure ��

Hence

ab = gh1(3)

gab = h1

bga = bh1b

agb = bh1b = hb1 �

Since the line-reflection is involutive, bh1b is just h1 transformed by b,

i.e., the reflection in the line h � hb1 . Hence the construction agb = h exists,
indeed.
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5. About uniqueness of the construction

The positions of the lines a and b and of the point X , respectively, may
lead to different constructions for g and h in Theorem 5.

Now I examine, what are the criteria for that.

Let us suppose that there exist two lines g1� g2 I X and lines h1� h2, such
that

(4) ag1b = bh1b and ag2b = bh2b �

Then, applying equations (3) in opposite way, we get:

ab = g1h1 = g2h2

g1g2 = h1h2 �

X is a fixed point of the transformation g1g2, so it is a fixed point of h1h2.
If X is incident with h1, then lines g1 and h1 have a common point, so they
have a common perpendicular line, too.

Now let us suppose that X is not on the line h1.

Figure ���

By X � X h1h2 we have X h1 � X h2. According to the definition of line-
reflection, h1 and h2 are incident with a plane �, such that is perpendicular

to the line x = XX h1 . The common point of the line x and the plane � is
Y . h1 and h2 meet in the point Y , too. This point Y is a fixed point of
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transformations h1h2 and g1g2. In this case XY is an invariant (pointwise
fixed) line of h1h2 and g1g2 and we have XY � g1� h1 as well. Hence the
lines g1 and h1 have a common perpendicular line, such that is incident with
the point X .

Therefore, if the construction of Theorem 5 according to (4) is not unique,
then there exist lines g1 and h1 with ab = g1h1, such that g1 and h1 have a
common perpendicular line and g1 I X .

I shall prove that if g1 and h1 have a common perpendicular line then we
can construct many appropriate lines g2 and h2 being different from g1 and
h1, with g1h1 = g2h2, g1� g2 I X .

Figure ���

The common perpendicular line of g1 and h1 is m = [X�Y ]. Let �1 be
the plane, such that �1 I g1 and �1 � m . Let �2 be the plane, such that �2 I h1
and �2 � m . Let g2 be any line different from g1, such that is incident with
point X and plane �1.

The lines g1� g2� h1 and m determine uniquely the planes �1 � [g1� m],
�2 � [g2� m], 
1 � [h1� m].
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By the definition of line-reflection:

g1 = �1�1 = �1�1

g2 = �2�1 = �1�2

h1 = 
1�2 = �2
1 �

Hence

h1g1g2 = �2
1�1�1�1�2 = �2
1�1�2 �


1� �1� �2 I m , by Axiom 3 there exists a plane 
2 I m , such that 
1�1�2 = 
2.
Whence

h1g1g2 = �2
2 �

Because of �2 � m and 
2 I m we have 
2 � �2. 
2 and �2 have a
common point Y , therefore the planes meet in the line h2. By the definition
of line-reflection:

h2 = �2
2 = 
2�2

h1g1g2 = h2

g1g2 = h1h2 �

Now applying equation (3), we get two different constructions of the product
agb = h , g I X .

What can be said about the starting lines a and b in the case above�

We have ab = g1h1 = g2h2, X I g1 �� g2, Y I h1 �� h2 and m = XY is
a common perpendicular to g1� g2� h1� h2. Let P be any point of line a . P and
m determine a plane. There exists a line a1 in this plane, such that P I a1 and
a1 � m . Since a1� g1� h1 � m , there exists a line b1 � m (according to the
previous proof, see Figure 7), such that a1g1h1 = b1 � a1b1 = g1h1. Thus
g1h1 = ab = a1b1 and P I a� a1.

If a � a1, then b � b1, thus m is also the common perpendicular to a
and b, and X is incident with their common perpendicular.

If a �� a1, since ab = a1b1 and P I a� a1, then a and b have a common
perpendicular through the point P (as we proved it for g1 and h1 before).
However, we can find by this method common perpendicular of a and b for
any point of a . This can happen only in Euclidean geometry when a and b are
parallel, i.e., they have more than one common perpendicular. In this case,
ab is an Euclidean translation and trough any point X of space we have a
line x parallel to the common perpendiculars of a and b. Then for any g with
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X I g � x there exists a unique h such that ab = gh , i.e., agb = bhb = hb,
as in Theorem 5.

Summary� In Euclidean space: the construction in Theorem 5 is unique
precisely if a and b are skew lines and X is not on their common perpendic-
ular; in hyperbolic space: either if a and b have common perpendicular line
and X is not incident with it, or if a and b do not have common perpendicular
line.

This latter case occurs in the classical Bolyai–Lobachevskien hyperbolic
space iff a and b are parallel in hyperbolic sense, i.e. they lie in a plane
without common point and without common perpendicular line [1]. Then
they determine a line bundle, with one line trough any point X of space. In
the line bundle holds Euclidean plane geometry with bundle lines as “new
points” and bundle planes as “new lines”. Our Theorem 5 means in this line
bundle: three “point-reflections” can be replaced with one “point-reflection”
as usual in the Euclidean plane.
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By a ternary ring of operators �TRO� we mean a norm-closed subspace
in some L(H�K ) (=fbounded linear operators H � Kg with complex Hilbert
spaces H�K ) which is closed under the ternary product [xyz ] := xy�z .
TRO’s were introduced by Hestenes [9, 1962] who proved that, in the finite
dimensional setting, TRO’s can be faithfully represented as direct sums of
spaces Mm�n(C ) of m � n complex matrices. In infinite dimensions, Zettle
[13, 1983] gave a characterization of TRO’s among ternary Banach algebras,
whence one could discover that Hilbert C�-modules are the same as TRO’s.
Henceforth many deep results have appeared studying TRO’s and their appli-
cations, see [3, 2001], [11, 2002] and [6, 1999], among others showing that
every TRO is isometrically isomorphic to a corner pA(1� p) of a C�-algebra
and that the ternary product is uniquely determined by the metric structure in
a TRO. As a consequence, since the bidual of a C�-algebra is a W�-algebra,
a TRO can be represented as a weak*-dense subTRO in

L
i�I piAi (1� pi ),

where (Ai )i�I is the family of M-summands of A��. The aim of this note is to
show that this description can be refined somewhat to an infinite dimensional
version of Hestenes’ theorem. Namely we have the following

Theorem ���� Every TRO is isometrically isomorphic to a weak��dense

subTRO of the natural TRO of a direct sum
L

i�I L(Hi � Ki )� In particular�

1 Supported by Ministerio de Educación y Cultura of Spain, Research Project BFM 2002-
1529.

2 Supported by Spanish–Hungarian Project TéT E-50/02 and Hungarian Research Grant
OTKA T34267.
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up to isometric isomorphisms� TRO�s with predual are ���direct sums of

L(H�K )�spaces and a re�exive TRO is a �nite ���direct sum of copies of

L(H�K ) spaces with dimK ���

Our proofs rely upon the Jordan theory of Banach spaces with symmet-
ric unit ball, the so called JB��triples. According to a result of Harris [7,
1973], TRO’s when equipped with the Jordan triple product (�) fxyzg :=
= (xy�z + zy�x )�2 are JC�-triples and hence their unit ball is necessarily
symmetric. Since the bidual of a C�-algebra is isometrically isomorphic to

a weak*-closed subalgebra in some L( bH ), the bidual of a TRO is a TRO
again. Therefore, by Friedmann–Russo’s Gelfand–Naimark type theorem for
JB�-triples [4, 1985], it follows that any TRO E is isometrically isomorphic
to a weak*-dense subTRO in the (��-direct) sum �j�JFj of the minimal
weak*-closed M-summands, the so called Cartan factors� of the bidual E��,
furthermore each Cartan factor Fj is a subTRO of E��. From the theorem
and its Jordan theoretical proof we obtain also the following characterization
of TRO’s among JB�-triples.

Corollary ���� A JB��triple E is the triple associated to a TRO if and

only if in the canonical decomposition of the bidual E�� = Eat � En � the

atomic ideal Eat consists only of Cartan factors of type 	� A TRO admits no

Jordan��representation 
JB��homomorphism� with weak��dense range into a

Cartan factor that is not of type 	�

Remark ���� From a holomorphic view point, JC*-triples (norm-closed
subspaces of some L(H ) closed under the Jordan-triple product fxyzg :=
= xy�z�2 + zy�x�2) are known as (isometric) copies of Banach spaces with
symmetric unit balls which admit only vanishing Jordan representations in
exceptional Cartan factors. It would be tempting to conjecture that TRO’s
are copies of those Banach spaces with symmetric unit ball whose Jordan
representations in Cartan factors not isomorphic to some L(H�K ) vanish.
However this is not the case. Namely the assumption of the weak*-density
of the range in Corollary 1.2 is indispensable: There is an isometric JB��

homomorphism of the TRO Mn(C ) of complex n�square matrices into the

space S2n(C ) of symmetric 2n�square matrices�
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2. Proofs

Before stating the proofs we recall some basic facts and notions involved.
We know that given a surjective linear isometry T :F1 � F2 between two
TRO’s, necessarily T [xyz ] = [(Tx )(Ty)(Tz )], (x � y� z � F1). Furthermore if
Fi 	 L(Hi � Ki ), (i � I ), are TRO’s then their ��-sum

L
i�I Fi is a TRO in

the space L
�L2

i�I Hi �
L2

i�I Ki
�

with the �2-sums
L2

i�I Hi and
L2

i�I Ki ,
and the natural pointwise operation [(xi )(yi )(zi )] := (xiyi zi ).

For later use, recall that JB�-triples can be equipped with a unique three
variable operation (x � y� z ) 
� fxyzg which is symmetric linear in x � z and
conjugate-linear in y satisfying among other axioms (for a complete list see
[4]) the Jordan identity

fabfxyzgg = ffabxgyzg � fxfbaygzg + fxyfabzgg

and the C�-axiom kfxxxgk = kxk3. An element e in a JB�-triple is called a
tripotent if 0 �= e = feeeg in which case it has norm 1 and we write Tri (E )
for their family. Tripotents with respect to the Jordan triple product in a TRO
are partial isometries. A tripotent e is said to be an atom in E if feEeg = C e
and we write At (E ) for the set of them. Recall that given e� f � Tri (E ) we
say that e governs f (written e � f ) if e � E1(f ) := fx � E : feexg = xg and
f � E1�2(e) := fx � E : feexg = x�2g. We say that e� f are collinear (written

ef ) if e � E1�2(f ) and f � E1�2(e).

In order to establish our main result we need some technical lemmas on
JB�-triples.

Lemma ���� Let F be a TRO in L(H ) and suppose e� f � Tri (F ) are such
that feef g = f �2� Then the elements x := ee�f and y := f e�e are orthogonal

tripotents in F that satisfy f = x + y �

Proof� By assumption f = 2feef g = ee�f + f e�e = x + y . Hence
x = ee�f = ee�ee�f + ee�f e�e = x + xe�e, that is xe�e = ee�y = ee�f e�e =
= 0. It follows xy� = ee�f e�ef � = 0, yx� = (xy�)� = 0. Similarly
x�y = f �ee�f e�e = 0, y�x = (x�y)� = 0. Therefore

x + y = f = f f �f = (x + y)(x + y)�(x + y) =

= xx�x + yy�y�

ee�(x + y) = ee�xx�x + e

since x = ee�x and ee�y = 0. This means that x = xx�x and y = yy�y , thus
x � y � Tri (F ). On the other hand 2fxxyg = x (x�y) + (yx�)x = x0 + 0x = 0,
that is x � y .



2019. május 4. –22:36
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Lemma ���� Let F be a TRO in L(H )� and suppose 0�e� f � At (F ) with

ef � Then for the projections p := ee�� q := f f �� P := e�e� Q := f �f we

have either p = q and PQ = QP = 0 or P = Q and pq = qp = 0�

Proof� By Lemma 2.1 and since atoms are indecomposable into sums of
non-zero orthogonal tripotents, the tripotents

x := ee�f y := f e�e X := f f �e Y := ef �f

satisfy the alternatives

1) x = f � y = 0� X = e� Y = 0� 2) x = f � y = 0� X = 0� Y = e�
3) x = 0� y = f � X = e� Y = 0� 4) x = 0� y = f � X = 0� Y = e�

The alternative 2) implies ee�f = f , f e�e = 0, f f �e = 0, ef �f = e and
f f � = f � (ee�f )� = f f �ee� = (f f �e)e� = 0e� = 0 that is f = 0, contradicting
the assumption 0�f .

3) implies ee�f = 0, f e�e = f , f f �e = e, ef �f = 0 and ee� = (f f �e)e� =
= e(ee�f )� = e0� = 0 that is e = 0, contradicting the assumption 0�e.

1) means ee�f = f , f e�e = 0, f f �e = e, ef �f = 0. Hence q = f f � =
= (ee�f )f � = (ee�)(f f �) = pq and also q = f f � = f (ee�f )� = (f f �)(ee�) =
= qp. Therefore p = ee� = (f f �e)e� = (f f �)(ee�) = (ee�)(f f �) = f f � = q . On
the other hand PQ = (e�e)(f �f ) = e�(ef �f ) = e�0 = 0, QP = (f �f )(e�e) =
= f �(f e�e) = f �0 = 0.

4) means ee�f = 0, f e�e = f , f f �e = 0, ef �f = e. Hence P = e�e =
= e�(ef �f ) = (ee�)(f �f ) = PQ and also P = e�e = (ef �f )�e = (f �f )(e�e) =
= QP . Therefore Q = f �f = (f e�e)�f = e�ef �f = PQ = P . On the other hand
qp = (f f �)(ee�) = (f f �e)e� = 0e� = 0 and pq = (ee�)(f f �) = (ee�f )f � =
= 0f � = 0.

Corollary ���� If F is a TRO in L(H ) and 0�e1� � � � � eN � At (F ) with

ejek (k�j ) then either p1 = � � � = pN and p�kp
�
j = 0 (k�j ) or p�1 = � � � = p�N

and pkpj = 0 (k�j ) for the projections pk := eke
�
k � p

�
k := e�k ek (k = 1� � � � � N )�

Proof� By Lemma 2.2 we have the alternatives: 1) p1 = p2 and p�1p
�
2 = 0

or 2) p�1 = p�2 and p1p2 = 0.

1) Suppose pj�p1. Then p�j = p�1� p1pj = pj p1 = 0 and also (since

pj�p2 = p1) p�j = p�2� p2pj = pj p2 = 0. In particular p�j = p�1 = p�2. By our

assumption 1), p�1p
�
2 = 0. But then p�1 = p�2 = p�1p

�
2 = 0 that is e�1e1 = p�1 = 0

and e1 = 0 which is impossible.

2) Similarly we can exclude p�j�p
�
1 in this case.
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Lemma ���� Let F be a TRO in L(H )� and suppose 0 �= e1� e2� e3� e4 �
� At (F )� Then the situation e3 � e4� eke� 
k �� � (k � �) �= (3� 4)� is im�

possible�

Proof� Let pk := eke
�
k , p�k := e�k ek (k = 1� � � � � 4). We have the alterna-

tives 1) p1 = p2 and p�1p
�
2 = p�2p

�
1 = 0 or 2) p�1 = p�2 and p1p2 = p2p1 = 0.

Suppose 1). Since e1e2e3e1, by Corollary 2.3 also p1 = p3. Since
e1e2e4e1, also p1 = p4. Thus 1) implies p1 = p4. However, the
relationship e1 � e4 means (as it is well-known) that 0 = p1p4 = p4p1 and
0 = p�1p

�
4 = p�4p

�
1. Therefore 1) is impossible. The case 2) can be treated

analogously.

We are now in the position to prove our maun result.

Proof of Theorem ���� Let E be a TRO. We know that, without loss
of generality, we may regard E�� as a weak* closed TRO in a space L( bH )

with some Hilbert space bH , moreover E is a weak* dense sub-TRO of E��

for the natural ternary product [x � y� z ] := xy�z , (x � y� z � L( bH )). From
a Jordan viewpoint, E�� is an ��-direct sum of the form E�� = E��at �
E��n where E��at = �j�JFj and fFj : j � Jg is the family of all minimal
atomic M-ideals of E�� with respect to the Jordan triple product fxyzg :=

= 1
2(xy�z + zy�x )� (x � y� z � L( bH )). Since the projection onto the atomic

ideal Pat : E�� � �j�JFj is an isometric JB�-homomorphism which is a
bijection on E , it suffices to see that each factor Fj is a Cartan factor of
type 1. Concerning Cartan factors, by the familiar classification, each Fj is
isometrically isomorphic to some of the following classical JB*-triples:

L(Hj � Kj ) [type 1],

L�(Hj ) := fx � L(Hj ) : x = �x�g [types 2,3] with a conjugation
x 
� x ,

Spin(Hj ) :=
�
Hj with fxyzg := hx � yiz + hz � yix � hx � z iy

�
[type 4],

M1�2(O ) [type 5, of 16 dimensions], here O means the Cayley algebra
of complex octonions.

H3(O ) [type 6, of 27 dimensions], the algebra of 3�3 hermitian matrices
with entries in the octonions O equipped with the standard conjugation.

Our key observation is that, in all cases if Fj is not isomorphic to some
L(Hj � Kj ) then the standard covering atomic grid of Fj (see [12]) contains a
couple of atoms e1� e2 with e1 � e2 or it contains a family fe1� e2� e3� e4g of
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atoms with e3 � e4, eke� (k ��� (k � �) �= (3� 4)). By the previous lemmas
it immediately follows that this is impossible.

The statements concerning TRO’s with predual are immediate.

For the sake of completeness, we describe the mentioned systems fe1� e2g
respectively fe1� � � � � e4g of atoms for the types 2–6.

To this aim, let H be a Hilbert space, let x 
� x be a conjugation on
H , let fhm : m � M g be a complete orthonormal system in H such that
hm = hm , (m �M ), and let e � f denote the operator x 
� hx � eif on H .

Case type 2. With e1 := h1 � h1, e2 := h1 � h2 + h2 � h1 we have
e1� e2 � At (L�+(H )) and e1 � e2.

Case type 3, dimE �3. With e1 := h1 � h2 � h2 � h1, e2 := h2 � h3 �
� h3 � h2, e3 := h1 � h3 � h3 � h1, e4 := h2 � h4 � h4 � h2 we have
e1� e2� e3� e4 � At (L(H )) and e3 � e4, eke� (k ��� (k � �) �= (3� 4)).

Case type 4, dimE �3. With ek := 2�1�2(hk + ih4), (k = 1� 2� 3) and

e4 := 2�1�2(h3 � ih3) we have e1� e2� e3� e4 � At (Spin(H )) and e3 � e4,
eke� , (k ��� (k � �) �= (3� 4)).

In the cases of types 5–6 the standard grid of the unit matrices contains 8
atoms spanning a spin factor (type 4) of 8 dimensions. So as in the previous
case, again there are atoms e1� � � � � e4 with e3 � e4, eke� (k ��� (k � �) �=
= (3� 4)).

Lemma ��� If G is a Cartan factor then the atomic part of G�� is a copy

of G �

Proof� We have G�� = G��n �
L

j�J Gj where G��n is a non-atomic

JBW*-triple and each Gj is a Cartan factor. Also there is an isometric JB*-
homomorphism U : G � G�� onto some weak*-closed JB*-subtriple of
G��. Let 	j denote the canonical projection G�� � Gj and consider the
representation Uj := 	jU of G . The kernel Kj of Uj is a weak*-closed
ideal in G . Since G is a factor, we have either Kj = f0g or Kj = G . Since

UG is weak*-dense in G��, necessarily UjG �= f0g and this excludes the
possibility of Kj = G . Thus Kj = f0g, that is, the JB*-homomorphism Uj is
injective. By a theorem of Horn–Dang–Neher on normal representations [10],
injective JB*-homomorphisms are isometries. Thus UjG is a copy of G lying
weak*-dense in the Cartan factor Gj . This is possible only if UjG = Gj and
U : G � Gj is a JB*-isomorphism. By writing 	 for the canonical projection
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G�� �
L

j�J Gj , it follows that 	U is not weak*-dense in
L

j�J Gj unless

the index set J is a singleton.

Proof of Corollary ���� Let E be a TRO, G a Cartan factor and
consider a JB*-homomorphism T : E � G . It is well-known that the
bidual operator T �� : E�� � G�� is also a JB*-homomorphism. We have
E�� = E��n �

L
i�I Ei where each term Ei is a Cartan factor and E��n is

a non-atomic JBW*-triple. By the previous lemma, we may assume that
G�� = G��at �G and, with the canonical projection 	 : G�� � G , the operator
	T �� is a JB*-homomorphism E�� � G which maps E onto a weak*-closed
subtriple of G . Since 	T �� is weak*-continuous, it follows that 	T ��E�� =
= G . The kernel K of the operator 	T �� is a weak*-closed ideal of E��. It is

well known [1, 1985] that E�� = K �K� where K� := fx � E�� : fef xg =
= 0� e� f � Kg is a weak*-closed ideal in E��. Moreover, 	T �� is an

isometry on K� because injective JB*-homomorphisms are isometric [10].

Since G = 	T ��E = 	T ��K�, the weak*-closed ideal K� must be a copy

of the Cartan factor G . Hence K� is a minimal weak*-closed ideal in E��

and so G � K� = Ei for some i � I . By the theorem, each factor Ei is of
type 1, hence so must be G .

Proof for Remark ���� Let ek� denote the n � n-matrix with 1 at
the position (k � �) and with 0 at other entries and let sk� be the symmetric
(2n) � (2n)-matrix with 1 at the positions (2k � 1� 2�) and (2�� 2k � 1) and
0 elsewhere. It is straightforward to verify that the linear extension T of the

map [ek� 
� sk� : 1 � k � � � n] satisfies the identity T (xy�z + zy�x ) =
= (Tx )(Ty)�(Tz ) + (Tz )(Ty)�(Tx ) (by checking it for n := 3 and the unit
matrices without loss of generality).
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2019. május 4. –22:36

ANNALES UNIV. SCI. BUDAPEST., 46 (2003), 157–166
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1. Introduction

In this paper I will improve on a generalization of an inequality of
Mauduit and Sárközy [6]. They introduced the following measures of pseu-
dorandomness in [5]:

For a binary sequence

EN = fe1� � � � � eN g � f�1�+1gN �
write

U (EN � t � a� b) =
tX
j=1

ea+j b

and, for D = (d1� � � � � dk ) with non-negative integers 0 � d1 �� � ��dk ,

V (EN �M�D) =
MX
n=1

en+d1
� � � � � en+dk �

Then the well�distribution measure of EN is defined as

W (EN ) = max
a�b�t

jU (EN � t � a� b)j = max
a�b�t

������
tX
j=1

ea+j b

������ �
where the maximum is taken over all a� b� t such that a � Z, b� t � N and
1 � a + b � a + tb � N , while the correlation measure of order k of EN is
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defined as

Ck (EN ) = max
M�D

jV (EN �M�D)j = max
M�D

�����
MX
n=1

en+d1
� � � en+dk

����� �
where the maximum is taken over all D = (d1� � � � � dk ) and M such that
M + dk � N .

In [6] Mauduit and Sárközy proved that for all sequences EN �f�1�+1gN
we have W (EN ) � 3

p
NC2(EN ). Later in [3] this inequality was generalized

by me to correlation measure of any even order: If 3�2 � N and EN � f�1�+

+1gN then W (EN ) � 3�N 1�1�(2�) �C2� (EN )
�1�(2�). In the present paper I

will improve on the factor 3� showing that this inequality even holds with an
absolute constant factor:

Theorem �� If � �0� N � 18���2� then for all EN � f�1�+1gN we

have

W (EN ) � (
p

2 + �)N 1�1�(2�)C2� (EN )1�(2�)�

Mauduit and Sárközy [6] also proved that their inequality is sharp by
using probabilistic arguments. In [3] I presented an explicit construction

for which the generalized inequality is sharp apart from a
p
� factor. This

construction was based on the notion of index (discrete logarithm): Denote
indn the index of n modulo p, defined as the unique integer with

g indn � n (mod p)�

and 1 � indn � p� 1, where g is a fixed primitive root modulo p. Let ind�n
be the modulo m residue of ind n:

(1) ind�n � indn (mod m)

with 1 � ind�n � m .

Construction �� Let m j p � 1 and ind�n be the function de�ned by

���� Then let the sequence Ep�1 = fe1� � � � � ep�1g be

(2) en =

�
+1 if 1 � ind�f (n) � m

2 �

�1 if m
2 �ind�f (n) � m or p j f (n)�

where f (x ) � Fp [x ] is a polynomial with the degree k �
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In Theorem 1 and 3 in [3] I gave estimates for the well-distribution
measure and correlation measures of this sequence Ep�1 if some, not too
restrictive conditions hold on the polynomial f (x ). Then

(3) W (Ep�1) � 1p
�k�+1

p1�1�(2�) �C2� (Ep�1)
�1�(2�)

follows from these theorems, where the implied constant factor is absolute.

This inspired me to consider the simplest polynomial f (x ) = x in Con-

struction 1, hoping that inequality (3) holds with a factor larger than 1p
�

.

Indeed we will study the following sequence:

Construction �� Let m j p � 1 and ind�n be the function de�ned by

���� Then let the sequence Ep�1 = fe1� � � � � ep�1g be

(4) en =

�
+1 if 1 � ind�n � m

2 �

�1 if m
2 �ind�n � m �

For this sequence we have:

Theorem �� If m is even then the sequence in Construction � satis�es

W (Ep�1) � 36p1�2 log p log(m + 1)

while for odd m we have

W (Ep�1) =
p � 1
m

+ O
�
p1�2 log p log(m + 1)

�
�

Indeed, this is Theorem 1 in [3] in the special case when k , the degree
of the polynomial is 1.

In case of the correlation measure we will give slightly better upper
bound than in Theorem 3 (in the special case k = 1) in [3]:

Theorem �� If m is even then the sequence in Construction � satis�es	

C� (Ep�1) � 9�4�p1�2 log p (logm)� �

while for odd m we have

C� (Ep�1) =
p

m�
+ O
�
5�p1�2 log p(logm)�

�
�

It follows from Theorems 2 and 3:
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Corollary �� For every � �0 there exist positive constants p0(�) and

c0(�) such that if p�p0(�) and m is an odd divisor of p � 1 with

(5) m �c0(�)
p1�(2�)

� (log p)1+1��

�so
p

m� � 5�p1�2 log p (logm)� �� then

(6) W (Ep�1) � (1� �)p1�1�(2�) �C2� (Ep�1)
�1�(2�)

�

I remark that to make sure that condition (5) holds, first we fix an odd
integer m , and after this we look for a prime number p with m j p�1 and (5).
This is possible by Dirichlet’s theorem on primes in arithmetic progressions.

So, indeed Theorem 1 is best possible apart from a constant factor. The
interesting feature of this proof is that it is explicit, we give a sequence for
which (6) holds. In the most cases there is only an existence proof for the
sharpness of an inequality between pseudorandom measures.

2. Proofs of Theorem 1 and 3

Proof of Theorem �� It follows from the definition of W (EN ) that there
exist a � Z, b� t � N with 1 � a + b�a + tb � N such that

(7) W (EN ) =
��� X

a+b�i�a+tb
i�a+b (mod b)

ei

����
For 0 � h �b let

(8) Dh
def
=
� X

a+b�i�a+tb
i�h (mod b)

ei

�2�
� 2�!

X
a+b�i1�����i2��a+tb
h�i1�����i2� (mod b)

ei1 � � � ei2� �

Using the multinomial theorem we get that Dh is a sum of products of
the form c � ej1 � � � ejr where c � 0. Thus Dh takes his maximum when all
ei ’s are +1 (or all ei ’s are -1). So:

Dh �
� X

a+b�i�a+tb
i�h (mod b)

1
�2�

� 2�!
X

a+b�i1�����i2��a+tb
h�i1�����i2� (mod b)

1

� t2� � (t � 1)(t � 2) � � � (t � 2�) � t2� � (t � 2�)2� � 4�2t2��1�
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By this, (7) and (8) we have

(W (EN ))2� �
b�1X
h=0

� X
a+b�i�a+tb
i�h (mod b)

ei

�2�

=
b�1X
h=0

�
Dh + 2�!

X
a+b�i1�����i2��a+tb
h�i1�����i2� (mod b)

ei1 � � � ei2�
�

�
b�1X
h=0

�
4�2t2��1 + 2�!

X
a+b�i1�����i2��a+tb
h�i1�����i2� (mod b)

ei1 � � � ei2�
�

= 4b�2t2��1 + 2�!
X

a+b�i1�����i2��a+tb
i1�����i2� (mod b)

ei1 � � � ei2� �

From this replacing i2 by i1 + d1, i3 by i1 + d2 and so on, finally i2� by
i1 + d2��1 we obtain

(W (EN ))2� � 4b�2t2��1 + 2�!

X
1�d1�����d2��1�(t�1)b
d1�����d2��1�0 (mod b)

a+tb�d2��1X
i1=a+b

ei1ei1+d1
� � � ei1+d2��1

�(9)

By the definition of the correlation measure we have

(10)

�����
a+tb�d2��1X

i1=a+b

ei1ei1+d1
� � � ei1+d2��1

����� � C2�EN �

By tb � a + tb � N we have 4b�2t2��1 = 4�2(tb)t2��2 � 4�2N 2��1, and
so from (9) and (10) we obtain

(W (EN ))2� � 4�2N 2��1 + 2�!
N 2��1

(2� � 1)!
C2� (EN )

= 2�

�
1 +

2�
C2� (EN )

	
N 2��1C2� (EN )�
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From this by the binomial theorem we get:

W (EN ) � (2�)1�(2�)
�

1 +
1

C2� (EN )

	
N 1�1�(2�) �C2� (EN )

�1�(2�)
�

Kohayakawa, Mauduit, Moreira and V. Rödl [4] proved that C2� (EN ) �

�
q

N
3(2�+1) holds for all EN � f�1�+1gN by this and since (2�)1�(2�) � p

2

we get:

W (EN ) �
p

2



1 +

r
3(2� + 1)

N

�
N 1�1�(2�) �C2� (EN )

�1�(2�)
�

If N � 18���2 � 6(2� + 1)��2 then this completes the proof of the theorem.

Proof of Theorem �� The proof of the theorem is very similar to the
proof of Theorem 1 in [2]. By the formula

1
m

X
�:�m=1

	j (a)	(b) =
n

1 if m j inda � indb,
0 if m � inda � indb,

we obtain

en = 2
X

1�i�m�2
i�indn (mod m)

1� 1 =
2
m

X
1�i�m�2

X
�:�m=1

	(n)	(g i )� 1�

Thus

(11) en =
2
m

�
 X

1�i�m�2

X
� �=�0:�m=1

	(n)	(g j ) +
(�1)m � 1

4

�
A �

To prove Theorem 3, consider any D = fd1� d2� � � � � d�g with non-negative
integers d1 �d2 �� � � �d� and positive integer M with M + d� � p � 1.
Then arguing as in [7, p. 382] with m in place of p� 1 from (11) we obtain:

V (EN �M�D) =
2�

m�

MX
n=1

�Y
j=1

�
BBBBB

X
1�i�m�2

X
�
j
�=�0�

�m
j

=1

	j (n + dj )	j (g
i ) +

(�1)m + 1
4

�
CCCCCA
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=
2�

m�



�X
k=0

X
1�j1�����jk��

�
(�1)m + 1

4

	��k X
�
j1
�=�0�

�m
j1

=1

� � �
X

�
jk
�=�0�

�m
jk

=1

MX
n=1

	j1(n + dj1) � � � 	jk (n + djk )
kY
t=1


 X
1��t�m�2

	ji (g
�t )

��
�(12)

Let S0 = M , V0 =
�

1
2

��
and for 1 � k � � let

(13) Sk = max
�1 �=�0������k �=�0
1�j1�����jk��

�����
MX
n=1

	1
�
n + dj1

� � � � 	k �n + djk
������

and

(14) Vk =
X

1�j1�����jk��

�
1
2

	��k X
�
j1
�=�0�

�m
j1

=1

� � �
X

�
jk
�=�0�

�m
jk

=1

kY
t=1

������
X

1��t�m�2

	ji (g
�t )

������ �

Then by the triangle-inequality, the value of (�1)m+1
4 and (12) we obtain that

if m is even then

(15) jV (EN �M�D)j � 2�

m�
S�V�

and

(16) V (EN �M�D) =
2�

m�
S0V0 + O

�
 2�

m�

�X
k=1

SkVk

�
A

Next we give an upper bound for Sk . In order to do this we will use the
following lemma:

Lemma �� Suppose that p is a prime� 	 is a non
principal character mod


ulo p of order z � f � Fp [x ] has s distinct roots in F p� and it is not a constant

multiple of a z 
th power of a polynomial over Fp � Let y be a real number

with 0 �y � p� Then for any x � R	������
X

x�n�x+y

	(f (n))

�������9sp1�2 log p�
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Poof of Lemma �� This is a trivial consequence of Lemma 1 in [1].
Indeed, there this result is deduced from Weil’s theorem, see [8].

Now let 	 be a modulo p character of order m; for simplicity we will

choose 	 as the character uniquely defined by 	(g) = e
�

1
m

�
.

Returning to the estimate of Sk , let 	u = 	�u for u = 1� 2� � � � � � , whence
by 	1 	= 	0� � � � � 	� 	= 	0, we may take

1 � 
u �m�

Thus in (13) we have�����
MX
n=1

	1(n + dj1) � � � 	k (n + djk )

����� =

�����
MX
n=1

	�1(n + dj1) � � � 	�� (n + djk )

�����
=

�����
MX
n=1

	
�

(n + dj1)�1 � � � (n + djk )�k
������ �

Since (n + dj1)�1 � � � (n + djk )�k is not a perfect m-th power, this sum can be
estimated by Lemma 1, whence

(17) Sk � 9kp1�2 log p�

By (14) we have

Vk =
X

1�j1�����jk��

�
1
2

	��k
�
BBB
X
� �=�0�
�m=1

������
[m�2]X
j=1

	j (g)

������

�
CCCA
k

�

Lemma ��

X
� �=�0�
�m=1

������
[m�2]X
j=1

	j (g)

������ �
X
� �=�0�
�m=1

2
j1� 	(g)j �2m log(m + 1)�

Proof of Lemma �� This is Lemma 3 in [2] with m in place of d and
m�2 in place of (p � 1)�2, and it can be proved in the same way.
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Using Lemma 2 we obtain
(18)

Vk �
X

1�j1�����jk��

�
1
2

	��k �
2m (log(m + 1))k

�
=

4k

2�

�
�

k

	
mk (log(m + 1))k �

By (15), (16), (17) and (18) we obtain that if m is even then

jV (EN �M�D)j � 9�4�p1�2 log p (log(m + 1))� �

and if m is odd then

V (EN �M�D) =
M

m�
+ O

�
9p1�2 log p

m�

�X
k=1

k

�
�

k

	
4kmk (log(m + 1))k

�
A

=
M

m�
+ O



9�p1�2 log p

m�
(4m log(m + 1))�

�

=
M

m�
+ O

�
5�p1�2 log p (log(m + 1))�

�
�

which completes the proof of the theorem.
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THE �1-LIMIT OF BAIRE-2 FUNCTIONS IS BAIRE-2

By

TAMÁS MÁTRAI*

�May ��� �����

1. Introduction

Almost a century ago, W. Sierpiński [6] observed that the pointwise
limit of a sequence with length �1 of continuous real functions is neces-
sarily continuous (Theorem 1 on page 133), which may seem to be quite
paradox compared to the behavior of ordinary pointwise convergence. In
the same paper, Sierpiński has also proved this class preserving property of
�1-convergence for the Baire-1 functions (Theorem 2 on page 137); and he
pointed out that by assuming the Continuum Hypothesis, every real function
can be obtained as the �1-limit of Baire-2 functions (for more details and
discussions, see [6], Section 5, page 139 and [2], specially Theorem 3 on
page 499).

In view of these facts, T. Natkaniec [5] introduced a stronger notion
of pointwise convergence. We recall the precise setting in the following
definition.

Definition �� Let (X� �) be a Polish space, (Y� d) be a separable metric
space and consider an ideal I on �1. We say that a sequence of functions
f� :X � Y (� ��1) I�converges to the function f :X � Y , in notation
f� �I f , if

f� ��1: f�(x )�f (x )g � I

for every x � X .

Similarly, we write f� �d

I
f if for every � �0 and x � X we have

f� ��1: d(f (x )� f�(x )) ��g � I 	

* This research was supported by the OTKA grant F 043620.
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In case of the ordinary �1 convergence, as used in [2] and [6], we have
I = [�1]� , that is the ideal of countable subsets of �1. However, our
motivating theorem, giving partial answer to Problem 1 in [5] on page 490,
is related to the particular case when the ideal contains the finite subsets of
�1, that is I�= [�1]�� .

Theorem �� Let (X� �) be a Polish space� (Y� d) be a separable metric

space� and consider a family f� :X � Y (� ��1) of Baire�2 functions� If

f :X � Y is such that f� �d

I�

f � then f is Baire�2�

We note here that the original question asked by T. Natkaniec refered
to I�-convergence. However, it is easy to see that I�-convergence implies
d
I�

-convergence, so the result above is formally stronger than the required.

The sufficiency of d
I�

-convergence was pointed out to the author by Petr

Holický. We also note that using more sophisticated techniques, this result
has already been generalized to every Baire-
 class (see [4]).

In the following section, we present the characterization of Σ0
3(�) sets

which is the key element of the proof of Theorem 2. The last section contains
the proof of Theorem 2.

Our reference for the basic notions in descriptive set theory is [1]; in

particular, Π0
�
(�) (Σ0

�
(�) resp.) stands for the 
th multiplicative (additive resp.)

Borel class in (X� �), starting with Π0
1(�) = closed sets, Σ0

1(�) = open sets.

2. Σ0
3(�) sets in the Borel hierarchy

Let (C� �C ) denote the Polish space 2� with its usual product topology.

To distinguish Σ0
3(�) sets from Π0

3(�) sets, we construct a Π0
3(�C ) set P � C

such that every Σ0
3(�) subset of X containing a suitable copy �(P) of P is

“much bigger” in sense of Baire category than �(P) (for the precise statement,
see Lemma 3).

First we have to construct P . The method had already been used by Lusin

to build a proper Π0
3(�C ) set and was communicated to the author by Petra

Šindelářová. Following [1], for two finite sequences s� t � ���, we write
s �t if t is a (proper) extension of s . The length of s is denoted by jsj. If
s = s1s2 	 	 	 sn and i � N , then s�i stands for the sequence s1s2 	 	 	 sn i .
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For every finite sequence s � ���, fix a nonempty perfect set Ps � C
with the following properties:

P� = C ;(1)

for t �s� Ps � Pt and Ps is nowhere dense in (Pt � �C jPt );(2)
�
i�N

Ps�i is dense in (Ps � �C jPs )	(3)

To have Ps�i � Ps (i � N), one simply has to take a countable dense
subset Ds = fd1� d2� 	 	 	g � Ps and cover successively every di with a perfect
set Ps�i which is nowhere dense in (Ps � �C jPs ). Then (1), (2) and (3) are
obviously satisfied. Once this done, let

(4) P =
��
n=0

�
s����
jsj=n

Ps 	

Now we can formulate our characterization.

Lemma �� Let (X� �) be a Polish space� A � (X� �) be a Borel set�

�� If A is Σ0
3(�)� then whenever for a continuous one�to�one map

�: (C� �C ) � (X� �)

we have �(P) � A� then there is an s � ��� for which A � �(Ps ) is of

the second category in (�(Ps)� � j�(Ps ))�

�� If A is not Σ0
3(�)� then there is a continuous one�to�one map

�: (C� �C ) � (X� �)

such that �(P) � A and A��(Ps) is meager in (�(Ps )� � j�(Ps )) for every

s � ����

The statements involving Baire category do make sense since �(Ps ), as a
continuous image of the compact set Ps , is closed in the Polish space (X� �),
so itself is Polish with the restricted topology � j�(Ps ) (see e.g. [1], Proposition
3.3.(i i) on page 13). To prove Lemma 3, we will use the following result (see
e.g. [3], page 433). In some sense, Lemma 3 is a quantitative analogue of this
result in the special 
 = 3 case.

Theorem � �A� Louveau� J� Saint Raymond	� Let 3 � 
 ��1 and

(X� �) be a Polish space� If P� � C is Π0
�
(�C ) but not Σ0

�
(�C ) and A0� A1 � X
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is any pair of disjoint Borel sets� then either A0 can be separated from A1 by

a Σ0
�
(�) set or there is a continuous one�to�one map �: (C� �C ) � (X� �) with

�(P�) � A0 and �(C n P�) � A1�

Before giving the proof of Lemma 3, we make two easy observations.

Lemma 
�

�� P � C is a Π0
3(�C ) set�

�� P � Ps is dense and meager in (Ps � �C jPs ) for every s � ��� 	

Proof� The first statement follows immediately from (4). To see that
P � (Ps0 � �C jPs0 ) is dense for every s0 � �

�� , take any nonempty closed ball

B0 � Ps0; we show that B0 �P��. We construct finite sequences si � �
��

(i � N) and a sequence of nonempty closed balls Bi � (Psi � �C jPsi ) (i � N)

such that si � sj and Bj � Bi for 0 � i � j . This proves the statement since
such a (Bi )i�N is a nested sequence of nonempty closed sets in (C� �C ), so

�
i�N

Bi � B0 � P

is nonempty.

Suppose that sk and Bk have already been found. By (3), there is an
l � N such that for sk+1 = s �k l , Bk � Psk+1��. Thus we can find a closed
ball Bk+1 � (Psk+1 � �C jPsk+1

) contained in Bk � Psk+1, which completes the

construction.

Finally, for every s � ���, P � Ps is meager in (Ps � �C jPs ) since

(5) P � Ps �

�
��
i�N

Ps�i

�
A � Ps

and by (2), the union on the right hand side of (5) is already meager in
(Ps � �C jPs ).

Proof of Lemma �� For the first statement, let A � X be Σ0
3(�),

�: (C� �C ) � (X� �) be continuous, one-to-one, and suppose that A � �(Ps )
is meager in (�(Ps)� � j�(Ps )) for every s � ���. Then

A =
�
n�N

An
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where the sets An (n � N) are Π0
2(�), and since in Polish spaces a Π0

2(�) set
is meager if and only if it is nowhere dense, An ��(Ps ) is nowhere dense in
(�(Ps )� � j�(Ps )) for every n � N and s � ��� . We define by induction finite

sequences sn � ��� (n � N) and a corresponding sequence of closed balls
Bn � (X� �) (n � N) such that

(i) jsn j = n (n � N);

(i i) sn � sm if n � m;

(i i i) Bm � Bn if n � m;

(iv ) Bn � �(Psn+1) (n � N) is nonempty and perfect;

(v ) Bn � �(Psn ) �An = � (n � N).

This completes the proof, since on one hand, by (2), (i i i) and (iv ), we
have that Bn � �(Psn+1) is a nested sequence of nonempty perfect sets, so

Q =
�
n�N

Bn � �(Psn+1) =
�
n�N

Bn � �(Psn )

is a nonempty subset of �(P), while on the other hand, by (v ), Q � A = �
since Q�An = � for every n � N, which contradicts �(P) � A.

Let s0 = � and suppose that si and Bi�1 are found for 0 � i � n
satisfying (i)–(v ); we define Bn and sn+1. Since An � �(Psn ) is nowhere
dense in (�(Psn )� � j�(Psn )), we can find a closed ball Bn � Bn�1 for which

Bn � �(Psn ) is a nonempty perfect set and Bn � �(Psn ) � An = �; thus (i i i)
and (v ) hold. By (3), we can find an i � N such that Bn � �(Ps �n i ) is also

nonempty and perfect. With sn+1 = s �n i , (i), (i i) and (iv ) are satisfied,
which completes the proof.

For the second statement, let A � X be Borel but not Σ0
3(�). By the first

part of the lemma for (X� �) = (C� �C ) and � = IdC , P is not Σ0
3(�C ) since

by Lemma 5.2, it is meager in Ps for every s � ��� . Since P is Π0
3(�C )

by Lemma 5.1, we can apply Theorem 4 for 
 = 3, P3 = P , A0 = A and
A1 = X nA.

The set A is not Σ0
3(�), so A0 cannot be separated from A1 by a Σ0

3(�)
set. Thus we have a continuous one-to-one map

�: (C� �C ) � (X� �)

such that �(C ) � A = �(P); hence �(P) � A. We show that A � �(Ps ) is
meager in (�(Ps )� � j�(Ps )) for every s � ��� .
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Take an s � ��� . Since � is a continuous one-to-one map on the
compact set Ps , it is a homeomorphism of (Ps � �C jPs ) and (�(Ps )� � j�(Ps )).
We have

A � �(Ps ) = A � (�(C ) � �(Ps )) = (A � �(C )) � �(Ps ) = �(P) � �(Ps )	

Since homeomorphism preserves category, A � �(Ps ) = �(P) � �(Ps ) is
meager in (�(Ps )� � j�(Ps )) by Lemma 5.2. The proof is complete.

3. I�-convergent functions

We will have to establish connection between function classes and sub-
level sets. For this, we will use the following classical result (see e.g. [1],
Chapter II, Theorem 24.3 on page 190).

Theorem �� Let (X� �) be a Polish space� (Y� d) be a separable metric

space� Then for every 1 � 
 � �1� a function f :X � Y is Baire�
 if and

only if f �1(U ) � X is Σ0
�+1(�) for every open set U � Y �

In the metric space (Y� d), the open ball centered at x � Y with radius
� is denoted by Bd(x � �). Now we prove Theorem 2.

Proof of Theorem �� Let f� �d

I�

f for a family f� :X � Y (� ��1)

of Baire-2 functions and suppose that f : X � Y is not Baire-2. As
the pointwise limit of the functions ff� :� ��g, f is clearly Borel, so by

Theorem 6, there is an open ball Bd(x � �) � Y such that the f �1(Bd(x � �))

is Borel but not Σ0
3(�). Set

H (�) = f �1(Bd(x � � � �))� H� (�) = f �1
� (Bd(x � � � �))

for every � ��1 and 0 �� ��. Note that by Theorem 6, H� (�) is Σ0
3(�) for

every � ��1 and 0 �� ��.

Since H (0) is not Σ0
3(�), by Lemma 3.2 there is a continuous one-to-one

map �: (C� �C ) � (X� �) such that

(a) �(P) � H (0), and

(b) H (0) � �(Ps ) is meager in (�(Ps )� � j�(Ps )) for every s � ���.

For � �0, let J1(�) denote the set of those indices � ��1 for which
H� (�) is of the second category in (�(Ps )� � j�(Ps )) for some s � ���. We

prove that �1 n J1(�) is finite for every � sufficiently small. Suppose that this
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is not true; take a positive sequence (�i )i�N with �i � 0 and a countably

infinite set J �(�i ) � �1 n J1(�i ) for every i � N . By the definition of d
I�
�

convergence,

(6) H (�i ) � H �(�i ) :=
�

��J �(�i )

H� (�i )�

so by (a), we have that

(7) �(P) � H (0) �
�
i�N

H (�i ) �
�
i�N

H �(�i )	

By (6), H �(�i ) (i � N) is Σ0
3(�), so by (7) we can apply Lemma 3.1 for A =

=
S
i�N H

�(�i ). We obtain that A is of the second category in (�(Ps )� � j�(Ps ))

for some s � ���, which contradicts to the definition of J1(�).

So there is an �0 �0 such that J1(�) is of cardinality �1 for every
� ��0. In particular, given that ��� is countable and (�(Ps)� � j�(Ps )) has

countable base for every s � ��� , there is an s � ��� and an open
set U � (�(Ps )� � j�(Ps )) such that for a countably infinite set of indices

J �� � J1(�02) we have that H� (�02)) � �(Ps ) is comeager in U in the
� j�(Ps ) topology whenever � � J ��. Hence by the Baire Category Theorem
for

H �� =
�

��J ��

H� (�02)�

H �� is also comeager in U in the � j�(Ps ) topology, so by (b) we can find a

point x0 � H
�� nH (0). Thus f� (� ��1) is not d

I�
-convergent since

J �� �
n
� ��1: d(f (x0)� f�(x0)) �

�0
2

o

is infinite; a contradiction. This completes the proof.

As we have mentioned above, Theorem 2 is true for every Baire class (see

[4]). The proof of the general theorem uses a characterization of Σ0
�
(�) sets for

every 
 ��1 involving Baire category, similarly to Lemma 3. Finally we note
that this approach makes also possible to treat the pointwise convergence of

sequences of Borel functions with length � where �1 ���2�0 is a cardinal.
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ELEMENTARY RESULTS IN CONTROL OF ONE-DIMENSIONAL
DISCRETE TIME DYNAMICAL SYSTEMS DEFINED BY A

MULTIFUNCTION

By

GERGELY KOVÁCS and BÉLA VIZVÁRI

�May ��� �����

1. Introduction

This paper is devoted to the control of one-dimensional discrete time dy-
namical systems defined by a multifunction. The fact that the relation defining
the system is an inclusion instead of an equation, reflects the uncertainties of
the system and/or that our knowledge on the system is not complete.

In many applications of dynamical systems it is important to stabilize
the system, i.e., the trajectory must be moved to and kept in a certain target
region. To achieve this objective is more difficult in the case of the type of
dynamical systems discussed in this paper than in the case of the traditional
dynamical systems because of the higher degree freedom of the system.

The basic assumptions on the multifunction based dynamical system are
as follows:

(A1) Let xt denote the state of the system at time t . The next state, i.e.,
xt+1, is an element of the set G(xt ). It is assumed, that this set is a bounded
interval for each x , i.e.,

G(x ) = [a(x )� b(x )]�

where a(x ) and b(x ) are real valued functions with a(x ) � b(x ), �x � 0.

(A2) It is assumed that a(x ) and b(x ) are linear functions, i.e.,

a(x ) = �1x + �0

and

b(x ) = �1x + �0�

i.e., the multifunction is

G(xt ) = [�1xt + �0� �1xt + �0]�
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(A3) The functions a(x ) and b(x ) are increasing, or equivalently �1 and
�1 are positive real numbers with �1 � �1.

(A4) The control is realized by an additive term. The control parameter
denoted by q can be chosen from a bounded closed interval being symmetric
to zero, i.e., a positive d exists such that

q � [�d� d]�

The control parameter can be changed in every step, too. Thus, the dynamics
of the controlled system is described by the inclusion

(1) xt+1 � G(xt ) + qt+1�

(A5) The control parameter q has a cost c(q). It is assumed that this c
function is continuous and differentiable (at x = 0 we consider side deriva-
tives), symmetric to 0 with respect to the vertical axis and strictly increasing
in the positive region. Hence if the derivative exists and c�(q) = 0, then q = 0
and if q �0 then c�(q) �0.

(A6) Our aim is to move the trajectory into a fixed interval [A�B] in k
steps from an initial state x0 with minimal control cost. The number k is a
fixed positive integer. It is assumed that

�x0 �A�B�

According to (1) xt+1 is a shifted point of G(xi ). This point of G(xt ) is
called realization. If we may choose the control parameter from the interval
[�d� d] after the realization becomes known, then the control is called a pos�

teori. Otherwise, if we must choose the parameter from the interval without
knowing the realization, then the control is called a priori.

The existence of an appropriate control of the system (A1)-(A6) has been
discussed in [2].

(A7) If the system makes k iterations, then the total cost of the control
is the sum of the costs of the controls in the individual iterations, i.e.,

kX
i=1

c(qi )�

In this paper a method is given for entering on the target interval in k

steps at minimal cost.
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2. The a priori case

The dynamics of the system is as follows. A new state x �t+1 is determined
such that

x �t+1 � [�1xt + �0� �1xt + �0] = �1xt + �0 + �t+1�

where �t+1 � [0� �1xt + �0 ��1xt ��0]. Then it is transformed by the control
into

xt+1 = x �t+1 + qt+1 = �1xt + �0 + �t+1 + qt+1�

Thus, x1 = �1x0 + �0 + �1 + q1, and in general

(2) xt = � t
1x0 + �0

t�1X
i=0

� i
1 +

tX
i=1

� t�i
1 (qi + �i )�

Our aim is to reach the [A�B] interval in exactly k steps, i.e., the relation
xk � [A�B] must hold, with a minimal cost. Three cases are investigated: (a)
it can be assumed that all values of the control parameters are non-negative or
(b) it can be assumed that the values of the control parameters are non-positive
or (c) both positive and negative values of the control parameter can occur.

2.1. Nonnegative control

It is assumed, that B is great enough that for all realization and for all q
the statement xk � B holds, i.e., for the maximal value of xk , the inequality

� t1xk�t + �0

t�1X
i=0

� i1 +
tX

i=1

� t�i
1 d � B�

holds. It means that the only constraint, which must be satisfied is xk � A.
Hence qi � 0 for all i .

The worst case is if for all i the equality �i = 0 holds, because the system
needs the highest amount of control in this case. On the other hand if this
outcome of events is disregarded the system may miss the target region. Thus,
at each iteration we must select the best possible value of the control variable,
which still works even in the worst case of the future iterations. This can be
modeled by the following nonlinear optimization problem if still t (1 � t � k )
iterations remained:

Ck�t +
kX

i=k�t+1

�k�i
1 qi � A(3)
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�k � t + 1 � i � k : 0 � qi � d(4)

min
kX

i=k�t+1

c(qi )�(5)

where the qi ’s are the decision variables according to (2) and

(6) Ck�t = � t
1xk�t + �0

t�1X
i=0

� i
1�

which is the point what the system can reach after the k -th iteration in the
worst case, i.e., when �i = 0, i = k � t + 1� � � � � k .

For all i the value of qi can be chosen nonnegative, because x must be
increased.

When the decision is made on the value of qk�t at the time k � t the
system is in a position determined by x0, and qi , �i (i = 1� � � � � k � t�1). The
sequence fqk�t+1� � � � � qkg of the control values is denoted by the vector q.
All control vectors are evaluated under the hypothesis that all remaining �i ’s
are equal to 0 unless it is stated else.

Theorem ���� If �1 �1� then there is an optimal solution q� satisfying

the inequalities q�i � q�i+1 (i = k � t + 1� � � � � k � 1)�

Proof� If q�i+1 = a , q�i = b and a �b, then the control vector q with

ql =

�
q�l if t	i� i + 1
a if l = i
b if l = i + 1

has the same cost. Assuming that the sequence of �i ’s is the same, the
state value xk obtained by control vector q is greater than the state value
x�k obtained by q�. Thus qi+1 can be decreased such that the control is still
feasible and has less total cost.

Theorem ���� If �1 �1� then there is an optimal solution q� satisfying

the inequalities q�i � q�i+1 (i = k � t + 1� � � � � k � 1)�

Proof� The proof is similar to the proof of the previous theorem.

Theorem ���� If �1 �1 and c(q) is linear or concave function on the in�

terval [0� d]� then the components of the optimal solution q� have the structure

(d� d� � � � � d� a� 0� � � � � 0)� where 0 � a � d�
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Proof� Assume that at least two components of q� are strictly between 0
and d. Then it follows from Theorem 2.1 that they are consecutive com-
ponents with the same property, i.e., there is an index i such that 0 �
�q�i+1 � q�i �d. Let 0 �
 �minfd � q�i � q

�

i+1g. Then the total cost
of control vector q with

ql =

��
�
q�l if l	i� i + 1
q�i + 
 if l = i
q�i+1 � 
 if l = i + 1

is at most as high as the total cost of the control vector q�, but the state value
of xk obtained by control vector q is greater than the state value x�k obtained
by q�. This is a contradiction.

Theorem ���� If �1 �1 and c(q) is a linear or concave function on

the interval [0� d]� then the components of the optimal solution q� have the

structure (0� 0� � � � � 0� a� d� � � � � d)� where 0 � a � d�

Proof� The proof is similar to the proof of the previous theorem.

Definition ���� A vector q is admissible if

kX
i=k�t+1

�k�i
1 qi = A� Ck�t � 1 � t � k

where Ck�t is defined in (6).

Theorem ���� If �1 �1 and c(q) = jq jn � where n �1� then the optimal

solution of the problem is the admissible vector (d� � � � � d� qs+1� � � � � qk )� where

d �qi �0 (i = s + 1� � � � � k )� qi
qi+1

= �
1

n�1
1 and

s = minfl j�p = (d� � � � � d� pl+1� � � � � pk )� 0 �pi �d� (i = l + 1� � � � � k )�

p is admissibleg�

Proof� Let �i , �i (i = k � t + 1� � � � � k ), �0 be the Lagrange multipliers of
the optimization problem (3)–(5) such that �i ’s belong the nonnegativity con-
ditions, �i ’s belong the upper bounds in (4) and �0 belongs to (3). Then the
Karush-Kuhn-Tucker necessary conditions (see [1], page 146) of optimality
for problem (3)–(5) are:

�i : �i (�qi ) = 0(7)

�i : �i (qi � d) = 0(8)
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�0

�
A� Ck�t �

tX
i=1

� t�i
1 qi

�
= 0(9)

�i : c�(qi ) � �i + �i � �0�
t�i
1 = 0(10)

The following cases may occur.

Case I� �0 = 0. Then qi = 0 for all i . If qi	0, then equation (10) implies
that �i �0. Then equation (18) is not satisfied.

Case II� �0 �0. If 0 �qi �d, then it follows that �i = �i = 0 and

c�(qi ) = �0�
t�i
1 . If qi = 0, then 0 = �i + �0�

t�i
1 and the equation �0 = 0

follows from the facts that �i is nonnegative and �1 is positive. This is a

contradiction. Finally if qi = d then c�(d) = ��i + �0�
t�i
1 .

Thus it is proven that �0 �0 and �i : qi �0.

Let Ks+2 the cost of the control belonging to the admissible vector

q = (d� � � � � d� qs+2� � � � � qk )T

and similarly Ks+1 the cost of the control belonging to the admissible vector

q� = (d� � � � � d� q �s+1� q
�

s+2� � � � � q
�

k )T �

where 0 �qi �d� i = s + 2� � � � � k and 0 �q �i �d� i = s + 1� � � � � k . It is
assumed, that both q and q are satisfying the necessary conditions (7)–(10)
within appropriate multipliers. It will be shown that Ks+2 � Ks+1 if the
control effects of q, and q� are equal, i.e., the equation

D = A� Cs+1 = d�k�s�1
1 +

k�sX
i=2

qs+i�
k�s�i
1 =

k�sX
i=1

q �s+i�
k�s�i
1 �

holds. It follows from c�(qs+i ) = �0�
k�s�i
1 for all i that

c�(qs+i )
c�(qs+j )

=
qn�1
s+i

qn�1
s+j

= � j�i
1 �

Thus,

qs+i = qk�
k�s�i

n�1
1

and similarly

q �s+i = q �k�
k�s�i

n�1
1 �
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Therefore

qk + qk�
n

n�1
1 + � � � + qk�

(k�s�2)n
n�1

1 + d�k�s�1
1 = D

and similarly

q �k + q �k�
n

n�1
1 + � � � + q �k�

(k�s�1)n
n�1

1 = D�

Thus,

qk =
D � d�k�s�1

1

1 + �
n

n�1
1 + � � � + �

(k�s�2)n
n�1

1

= (D � d�k�s�1
1 )

�
n

n�1
1 � 1

�
(k�s�1)n

n�1
1 � 1

and similarly

q �k =
�

n

n�1
1 � 1

�
(k�s)n
n�1

1 � 1

D�

Ks+2 = dn + qns+2 + � � � + qnk = dn + qnk

�
1 + �

n

n�1
1 + � � � + �

(k�s�2)n
n�1

1

	

= dn + qnk
�

(k�s�1)n
n�1

1 � 1

�
n

n�1
1 � 1

= dn + (D � �k�s�1
1 d)n

(�
n

n�1
1 � 1)n�1

(�
(k�s�1)n

n�1
1 � 1)n�1

and similarly

Ks+1 = Dn (�
n

n�1
1 � 1)n�1

(�
(k�s)n
n�1

1 � 1)n�1

�

Let r = D
d and

Sk�s�1 =
�

(k�s�1)n
n�1

1 � 1

�
n

n�1
1 � 1

�
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Then

Ms+1 :=
Ks+2 �Ks+1

dn

= 1 +


r � �k�s�1

1

�n � 1
Sk�s�1

n�1

� rn

�
B� 1

�
(k�s�1)n

n�1
1 + Sk�s�1

�
CA
n�1

�

If Ms+1 is derivated by r , then the equation

(Ms+1)� =

= n


r � �k�s�1

1

�n�1
�

1
Sk�s�1

n�1

� nrn�1

�
B� 1

�
(k�s�1)n

n�1
1 + Sk�s�1

�
CA

n�1

is obtained. The derivate is 0 only if



r � �k�s�1

1

�� 1
Sk�s�1


= r

�
B� 1

�
(k�s�1)n

n�1
1 + Sk�s�1

�
CA �

i.e.,

r� =

�k�s�1
1

�
�

(k�s�1)n
n�1

1 + Sk�s�1

�

�
(k�s�1)n

n�1
1

�

On the other hand r� is the root of Ms+1 too:

1+

�
B��k�s�1

1 Sk�s�1

�
(k�s�1)n

n�1
1

�
CA

n �
1

Sk�s�1

n�1

�

�
B��k�s�1

1 Sk�s

�
(k�s�1)n

n�1
1

�
CA

n �
1

Sk�s

n�1

=

= 1 +

�
B� �k�s�1

1

�
(k�s�1)n

n�1
1

�
CA

n

Sk�s�1 �

�
B� �k�s�1

1

�
(k�s�1)n

n�1
1

�
CA

n

Sk�s =

= 1 �



�k�s�1

1

�n
�
�

(k�s�1)n
n�1

1

�n�1 = 0�
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The value of the second derivate of Ms+1 at r� is:

n(n � 1)

�
B��k�s�1

1 Sk�s�1

�
(k�s�1)n

n�1
1

�
CA

n�2�
1

Sk�s�1

n�1

� n(n � 1)

�
B��k�s�1

1 Sk�s

�
(k�s�1)n

n�1
1

�
CA

n�2�
1

Sk�s

n�1

= n(n � 1)

�
B� �k�s�1

1

�
(k�s�1)n

n�1
1

�
CA

n�2�
1

Sk�s�1
�

1
Sk�s


�

which is positive. Hence it follows, that Ms+1 has a minimal value at r� and
Ms+1 is nonnegative, i.e., Ks+2 �Ks+1.

Theorem ���� If �1 �1 and c(q) = jq jn � where n �1� then the optimal

solution of the problem is the admissible vector (qk�t � qk�t+1� � � � � qs � d� d� � � �

� � � � d)� where d �qi �0 (i = k � t � � � � � s)� qi
qi+1

= �
1

n�1
1 and

s = maxfl j�p = (pk�t � pk�t+1� � � � � pl � d� � � � � d)� 0 �pi �d� (i = k � t � � � � � l )�

p is admissibleg�

Proof� The proof is similar to the proof of the previous theorem.

2.2. Non-positive control

It is enough to use only non-positive control values if for all realization
and for all q the statement xk � A holds, i.e., for the minimal value of xk :

� t
1xk�t + �0

t�1X
i=0

� i
1 +

tX
i=1

� t�i
1 (�d) � A

for all t = 1� � � � � k . It means that we need only xk � B , i.e., qi � 0 for all i .

The worst case is if for all i �i = �1xi�1 + �0 � �1xi�1 � �0, because
the system needs the highest amount of control in this case. On the other
hand if this outcome of events is disregarded then the system may miss the
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target region. Thus, in each iteration the best possible value of the control
variable must be selected, which still works even in the worst case. This can
be modeled by the following nonlinear optimization problem if still t out of
k , (1 � t � k ) iterations remained:

Dk�t +
kX

i=k�t+1

�k�i
1 qi � B

�i � [k � t + 1� k ] : �d � qi � 0

min
kX

i=k�t+1

c(qi )�

where the qi ’s are the decision variables and

(11) Dk�t = � t1xk�t + �0

t�1X
i=0

� i1�

For all i the value of qi can be chosen non-positive, because the state x
must be decreased.

When qk�t is selected at the time k � t the system is in a position
determined by x0, and qi , �i (i = 1� � � � � k � t � 1).

Of course, this case is very similar to the one when nonnegative control
is possible. Therefore similar sequence of statement holds.

Theorem ��	� If �1 �1� then there is an optimal solution q� satisfying

the inequalities q�i � q�i+1� (i = k � t + 1� � � � � k � 1)�

Proof� The proof is similar to the proof of the Theorem 2.1.

Theorem ��
� If �1 �1� then there is an optimal solution q� such that

the values satisfy q�i � q�i+1�

Proof� The proof is similar to the proof of the Theorem 2.1.

Theorem ���� If �1 �1 and c(q) is a linear or concave function on

the interval [�d� 0]� then the components of the optimal solution q� have the

structure (�d��d� � � � ��d� a� 0� � � � � 0)� where �d � a � 0�

Proof� The proof is similar to the proof of Theorem 2.3.
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Theorem ����� If �1 �1 and c(q) is a linear or concave function on

the interval [�d� 0]� then the components of the optimal solution q� have the

structure (0� 0� � � � � 0� a��d� � � � ��d)� where �d � a � 0�

Proof� The proof is similar to the proof of Theorem 2.3.

Definition ���� A vector q is admissible if

kX
i=k�t+1

�k�i
1 qi = B �Dk�t �

where Dk�t is given in (11).

Theorem ����� If �1 �1 and c(q) = jq jn � where n �1� then the optimal

solution of the problem is the admissible vector (�d� � � � ��d� qs+1� � � � � qk )�

where �d �qi �0 (i = s + 1� � � � � k )� qi
qi+1

= �
1

n�1
1 and

s = minfl j�p = (�d� � � � ��d� pl+1� � � � � pk )��d �pi �0� (i = l + 1� � � � � k )�

p is admissibleg�

Proof� The proof is similar to the proof of Theorem 2.5.

Theorem ����� If �1 �1 and c(q) = jq jn � where n �1� then the optimal

solution of the problem is the admissible vector (qk�t � qk�t+1� � � � � qs ��d�

�d� � � � ��d)� where �d �qi �0 (i = k � t � � � � � s)� qi
qi+1

= �
1

n�1
1 and

s = maxfl j�p = (pk�t � pk�t+1� � � � � pl ��d� � � � ��d)��d �pi �0�

(i = k � t � � � � � l )�p is admissibleg�

Proof� The proof is similar to the proof of Theorem 2.5.

2.3. Control by positive and negative values

The system can be controlled only if the state of the highest realizations
with the control parameter �d is less then B , i.e.,

� t1xk�t + �0

t�1X
i=0

� i1 +
tX

i=1

� t�i
1 (�d) � B
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and if the state of the lowest realizations with the control parameter d is more
than A, i.e.,

� t
1xk�t + �0

t�1X
i=0

� i
1 +

tX
i=1

� t�i
1 d � A�

The optimal control problem can be solved by a generalization of the
Bellman principle. In what follows it is elaborated in a backward manner.

I1. First the set Xk�1 is calculated from the above conditions. The set
contains the possible states of xk�1, for which there exists a control parameter
that all trajectories reach the target region [A�B] with this parameter.

I2. Then the possible values of the control parameters are calculated for
every point of the set Xk�1 for which all controlled trajectories reach the in-

terval [A�B]. These are non-empty intervals denoted by [d�(xk�1)� d+(xk�1)].

I3. For every point xk�1 from the set Xk�1 and for the sets [d�(xk�1)�
d+(xk�1)] the cheapest parameter from the set is chosen. It is the optimal
control parameter for the state before the last iteration. In this way a function
is determined for the last control parameter: qk (xk�1) and another for the cost
of the control: ck (xk�1).

In general:

G1. Again from the above conditions the set Xk�i is calculated. The set
contains the possible states of xk�i , for which there exists a control parameter
such that all trajectories reach the set Xk�i+1 with this parameter.

G2. Then the possible values of the control parameters are calculated
for every point of the set Xk�i for which all controlled trajectories reach the

set Xk�i+1. These are non-empty intervals denoted by [d�(xk�i )� d
+(xk�i )].

To every parameter from this set belongs a set too, the set of the possible
next states using this parameter. Every point of this possible next states set
has a cost ck�i+2(xk�i+1). The future cost of a possible parameter from

[d�(xk�i )� d
+(xk�i )] is the maximal value of the above mentioned cost of

the possible future states, denoted by Ck�i+1(xk�i � qk�i+1).

G3. For every point xk�i from the set Xk�i and for the sets

[d�(xk�i )� d
+(xk�i )] a parameter qk�i+1 is chosen for which the sum of

the cost of this parameter c(qk�i+1) and the future cost of this parameter
Ck�i+1(xk�i � qk�i+1) is minimal. It is the optimal control parameter for this
state. This way a new function is determined for the k � i + 1-th control
parameter: qk�i+1(xk�i ) and another for the cost of the control: ck�i+1(xk�i ).
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Theorem ����� If the function c is convex� then ck�i+1 is convex�

Proof� The proof is based on induction. Of course ck is convex, because
c is convex. If we assume that ck�i+2 is convex, then

Ck�i (xk�i �q) = max ck�i+2(�1xk�i + �0 + q); ck�i+2(�1xk�i + �0 + q)�

The functions ck�i+2(�1xk�i +�0 +q) and ck�i+2�1xk�i + �0 + q are convex,
because these are combination of a strictly increasing and convex and a
convex function. The maximum of two convex functions is convex, too. Thus
Ck�i+1(xk�i �q ) is convex. The sum of two convex function is convex, thus
c(q) + max ck�i+2(�1xk�i + �0 + q); c�1xk�i+�0+q is convex. The function

ck�i+1(xk�i ) = min
q�[d�(xk�i )�d

+(xk�i )]
Ck�i+1(xk�i � q)�

i.e., the epigraph of this function is the projection of the epigraph of the above
two-variables convex function. Thus the function ck�i+1 is convex.

It follows, that

ck�i+1(xk�i ) =

= min
q�[d�(xk�i )�d+(xk�i )]

max ck�i+2(�1xk�i + �0 + q)� ck�i+2(�1xk�i + �0 + q)�

Finally we get the optimal control parameter for the actual step.

3. An example for control

Let a(x ) = x and b(x ) = 1�2x + 2, A = 45, B = 60 and d = 10. Let
c(q) = q2.

I1. The set Xk�1 = [35� 56�667].

I2. If 35 � x � 55, then d�k�1 = 45 � x , and 55 � x � 56�667,

then d�k�1 = �10. Moreover if 35 � x � 40, then d+
k�1 = 10 and if

40 � x � 56�667], then d+
k�1 = 1�2x � 58.

I3. The cheapest parameters from the sets are the following:

a) qk (xk�1) = 45 � x if 35 � x � 45,

b) qk (xk�1) = 0 if 45 � x � 48�333 and

c) qk (xk�1) = 1�2x � 58 if 48�333 � x � 56�667.

Moreover

a) ck (xk�1) = (45 � x )2 if 35 � x � 45,
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b) ck (xk�1) = 0 if 45 � x � 48�333 and

c) ck (xk�1) = (1�2x � 58)2 if 48�333 � x � 56�667.

II1. The set Xk�2 = [25� 53�889]

II2. If 25 � x � 45, then d�k�2 = 35 � x , and 45 � x � 53�889,

then d�k�2 = �10. Moreover if 25 � x � 37�222, then d+
k�1 = 10 and if

37�222 � x � 53�889, then d+
k�1 = 1�2x � 56�667.

II3. The cheapest parameters from the sets are the following:

a) qk�1(xk�2) = 22�5 � 0�5x if 25 � x � 38�134,

b) qk�1(xk�2) = 45�727 � 1�109x if 38�134 � x � 45�855,

c) qk�1(xk�2) = 27�34 � 0�708x if 45�855 � x � 52�746 and

d) qk�1(xk�2 = �10 if 52�746 � x � 53�889.

4. The a posteori case

The a posteori case is similar to the a priori one, because of the worst

cases are just the same. Only the iteration number is shifted (decreased) by

one and the values of Ck�t and Dk�t are different:

Ck�t = � t�1
1 x �k�t+1 + �0

t�2X
i=0

� i
1

and

Dk�t = � t�1
1 x �k�t+1 + �0

t�2X
i=0

� i1�

where x �k�t+1 is the realization of after the state xk�t .
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Béla Vizvári
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Terjedelem: 17,16 A/4 ı́v. Példányszám: 500
Készült az EMTEX szedőprogram felhasználásával
az MSZ 5601–59 és 5602–55 szabványok szerint
Az elektronikus tipografálás Bori Tamás munkája

Nyomda: Haxel Bt.
Felelős vezető: Korándi József
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