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2002
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1. Introduction

It is well-known that multilinear operators have close connections with
many problems of analysis such as the Cauchy integral on Lipschitz curves,
and the compensated compactness in partial differential equations; see [15, 4]
and [16]. It is their applicability and usability that prompt many authors to
look into their boundedness in various spaces; see [5, 8, 9, 11, 10, 14, 17, 18]
and [19].

In this paper, we consider multilinear operators over certain Vilenkin
groups G . As applications, we obtain the factorization of Hardy spaces
and the boundedness of the commutators generated by BMO functions and
the Calderón–Zygmund operators or the fractional integral operators over G .
Before stating our results, we establish some notation.

Throughout this paper, G denotes a bounded locally compact Vilenkin
group, that is, G is a locally compact Abelian group containing a strictly
decreasing sequence of compact open subgroups fGng�n=�� such that

�a�
�S

n=��
Gn = G and

�T
n=��

Gn = f0g.

�b� supforder(Gn�Gn+1) : n � Zg � B ��.

Examples of such groups are described in ([7], x4.1.2). An additional
example is the additive group of a local field; see [24].

* Dachun Yang was partially supported by the NNSF and the SEDF of China.



2019. május 4. –22:54

6 T. S. QUEK, D. YANG

We choose Haar measures dx on G so that jG0j = 1, where jAj denotes

the Haar measure of a measurable subset A of G . Let jGn j � (mn)�1 for
each n � Z. Since 2mn � mn+1 � Bmn for each n � Z, it follows that

�X
n=k

(mn )�� � c(mk )��(1�1)

and
kX

n=��

(mn)� � c(mk )�(1�2)

for any � �0, k � Z, where c is a constant independent of k . Throughout
this paper, c will always denote a constant which is independent of the main
parameters, but may vary from line to line. We now define the function

d : G � G � R by d(x � y) = 0 if x � y = 0 and d(x � y) = (mn)�1 if
x � y � Gn nGn+1, then d defines a metric on G �G and the topology on G
induced by this metric is the same as the original topology on G . For x � G ,

we set jx j = d(x � 0). Then jx j = (mn)�1 if and only if x � Gn nGn+1. We now
briefly recall the definitions of the spaces S(G) of test functions and S�(G)
of distributions; for more details, see [24]. A function Φ : G � C belongs to
S(G) if there exist integers k , l , depending on Φ, so that supp Φ 	 Gk and Φ
is constant on the cosets of some subgroup Gl of G . A sequence fΦng

�
1 of

functions in S(G) converges to Φ � S(G) if there exist integers k , l so that
every Φn and Φ have supports in Gk and are constant on the cosets of Gl in
G and if lim

n��
Φn (x ) = Φ(n) uniformly on G . The space of all continuous

functionals on S(G) is denoted by S�(G).

Definition ���� Let T be a linear operator mapping all continuous func-
tions on G into measurable functions on G . We say that T is a Calderón–
Zygmund operator if

(i) T can be extended to a bounded linear operator on L2(G);

(ii) There is a kernel K (x ) such that

Tf (x ) =
Z

supp f

K (x � y)f (y)dy

for all continuous functions f with compact supports and for all x �� supp f .
Here K satisfies

(ii)1 jK (x )j � cjx j�1 if x�0;
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(ii)2 jK (y)�K (x )j � cjx � y j�jx j2 if jx � y j � jx j�2.

The smallest constant satisfying (ii)1, and (ii)2 is called the Calderón–
Zygmund constant of T . We denote it by cT .

We first consider bilinear operator of the form

B(f � g)(x ) =
NX
�=1

(T 1
� f )(x )(T 2

� g)(x )� x � G�

where N � N , T 1
� and T 2

� are Calderón–Zygmund operators on G . In

what follows, we will denote the kernels of T 1
� and T 2

� , respectively, by K 1
�

and K 2
� .

The following results on the boundedness of Calderón–Zygmund opera-
tors on G can be found in [21] and [22]. We remark that the authors have
shown in [21] that (i) of Definition 1.1 can be replaced by five other equivalent
conditions.

Lemma ���� Let T be a Calder�on�Zygmund operator on G � Then�

(i) ([21]) If 1 �p��� then T is bounded on LP (G)�

(ii) ([22]) If 1�2 �p � 1� then T is bounded on H P (G)�

Moreover� the operator norm of T in both (i) and (ii) depends only on B �

p and cT �

Let 1�r = 1�p + 1�q , and p, q �r 
 1. Then by Hölder’s inequality and
the above lemma, we have

kB(f � g)kLr (G) �

NX
�=1

k(T 2
� f )(T 2

� g)kLr (G) �

NX
�=1

kT 2
� f kLp (G)kT

2
� gkLq (G) �

� ckf kH p (G)kgkLp (G)�

Thus B continuously maps H P (G) �H q(G) into Lr (G).

It is well-known that H p(G) = Lp(G) if p �1; see [12]. The main
purpose of this paper is to show that if

(1�3)
Z
G

B(f � g)(x )dx = 0

for all f , g � L2(G) with compact supports, then we even have B bounded
from H p(G)�H q (G) into H r (G) for r � 1.
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Here are our main theorems.

Theorem ���� Let p� q �1 and 1�r = 1�p+1�q � Assume that B satis�es

(1�3)� Then� if 1�2 �r � 1� B can be extended to a bounded linear operator

from Lp(G) � Lq (G) into H r (G)�

Theorem ���� Let 1�2 �p � 1� q �1� and 1�r = 1�p + 1�q � Assume

that B satis�es (1�3)� Then� if 1�2 �r � 1� B can be extended to a bounded

linear operator from H p(G)� Lq (G) into H r (G)�

For 1�2 �r � 1 our theorems generalize Theorem 3 in [6]. We
remark that our proofs of Theorems 1.1 and 1.2 also work for general k -linear
operators of the same type. We acknowledge that some basic ideas on the
proofs of our theorems are from [9].

We now give a brief outline of this paper. The proofs of Theorems 1.1
and 1.2 are given in next section. In Section 3, we generalize Theorems 1.1
and 1.2 to bilinear operators generated by the fractional integral operators
and the Calderón–Zygmund operators; see Theorems 3.1, 3.2 and 3.3. The
last section is devoted to some applications of our results. We obtain in
Theorem 4.1 certain factorization of Hardy spaces. Theorem 1.1 enables
us to prove in Corollary 4.1 the boundedness of commutators formed by
the the Calderón–Zygmund operators and the BMO(G) function. We end
this section with Corollary 4.2 which characterises BMO(G) functions by
means of commutators generated by the fractional integral operators and the
BMO(G) function. Our results are Rn -analogues of those in [1]; however,
the proofs are totally different: see also [3] for the analogues on the simple
martingales of the results in [1].

2. Proofs of Theorems 1.1 and 1.2

For � � (0� 1) and f � S(G), we define the fractional integral operator
I� of order � by

I� (f )(x ) = c�

Z
G

f (y)

jx � y j1��
dy�

where c� is a constant depending only on � .

The proofs of our theorems depend on the following two lemmas. Our
first lemma is in Corollary 2 of ([13], p. 470).
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Lemma ���� Let 0 �� �1� Then I� is bounded from Lp(G) into Lq (G)
if 1�q = 1�p � � �

We also need the following Kolmogorov’s inequality; see [23].

Lemma ���� Assume that there is a constant c(g) such that for each 	�0�

jfx � G : jg(x )j�	gj � c(g)�	�

Then for any coset I of G having �nite measure and any 
 � (0� 1)� we haveZ
I

jg(x )j�dx �
1

1� 

jI j1�� [c(g)]� �

We now give the proof of Theorem 1.1.

Proof of Theorem ���� Let Δn = jGn j�1�Gn . For f � S�(G), we define

Mf (x ) = sup
n�Z

j(Δn � f )(x )j�

Let f � Lp(G) and g � Lq (G). By the results in [18], we need to show that

M (B(f � g)) � Lr (G)�

where

M (B(f � g)) = sup
n�Z

������
Z
G

Δn (x � y)B(f � g)(y)dy

������ �
Write

B(f � g)(y) = B(�Gn (x � �)f (�)� �Gn (x � �)g(�))(y)+

+B(f � (1� �Gn (x � �))g(�)) + B((1� �Gn (x � �))f (�)� g)�

�B((1� �Gn (x � �))f (�)� (1� �Gn (x � �))g(�))�

Consider B(f � (1� �Gn (x � �))g(�)) first. We have

sup
n�Z

������
Z
G

Δn(x � y)B(f � (1� �Gn (x � �))g(�))(y)dy

������ �

� c
NX
�=1

sup
n�Z

Z
G

Δn (x � y)jT 1
� f (y)jjY 2

� ((1� �Gn (x � �))g(�))(y)�

�T 2
� ((1� �Gn (x � �))g(�))(x )jdy+
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+c
NX
�=1

sup
n�Z

Z
G

Δn (x � y)jT 2
� f (y)jjT 2

� ((1� �Gn (x � �))g(�))(x )jdy�

For simplicity, we write �1
Gn

(y) = 1 � �Gn (x � y).

By (1.2), we have

sup
n�Z

jT 2
� (�1

Gn �x g(y)� T 2
� (�1

Gn �xg)(x )j =(2�1)

= sup
n�Z

������
Z
G

�
K 2
� (y � z ) �K 2

� (x � z )
�
�1
Gn �z (z )g(z )dz

������ �
� c sup

n�Z

Z
jx�z j��Gn

jx � y j

jx � z j2
�1
Gn �x (z )g(z )jdz �

� c
n�1X
l=��

m�1
n �Gl nGl+1

1

jx � z j2
j�1
Gn �x (z )g(z )jdz �

� cHL(g)(x )m�1
n

n�1X
l=��

ml � cHL(g)(x )�

where HL is the Hardy–Littlewood maximal operator on G .

Therefore,

sup
n�Z

���fGΔn (x � y)B(f � �1
Gn �xg)(y)dy

��� �
� cHL(g)(x )

NX
�=1

Z
G

Δn (x � y)jT 1
� f (y)jdy+

+c
NX
�=1

HL(T 2
� f )(x ) sup

n�Z
jT 2
� (�1

Gn �xg)(x )j �

� c
NX
�=1

HL(T 1
� f )(x )HL(g)(x ) + c

NX
�=1

HL(T 1
� f )(x ) sup

n�Z
jT 2
� (�1

Gn �xg)(x )j�
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Obviously,

T 2
� (�1

Gn �xg)(x ) =
Z
G

K 2
� (x � y)(1� �Gn (x � y))g(y)dy = (K 2

��n � g)(x )�

where K 2
��n(z ) = K 2

� (z )(1 � �Gn (z )). It is easy to see that K 2
��n(z ) satisfies

(ii)1, and (ii)2 of Definition 1.1 with the same Calderón–Zygmund constant

as K 2
� for each n � Z. It now follows from this that�

�Z
G

sup
n�Z

��Δn(x � y)B(f � �Gn �xg)(y)dy
��r dx

�
A

1�r

�

� c
NX
�=1

kHL(T 2
� f )kLp(G)

�
kHL(g)kLq (G) + sup

n�Z
kK 2

��n � gkLq (G)

	
�

� c
NX
�=1

kT 1
� f kLp(G)kgkLq (G) � ckf kLp(G)kgkLq (G)�

which is a desirable estimate.

The estimate for B((1� �Gn (x � �))f (�)� g) is similar and is omitted. For
the last term B((1� �Gn (x � �))f (�), (1� �Gn (x � �))g(�)), we write

B(�1
Gn �x f � �

1
Gn �x g)(y) =

=
NX
�=1

h
T 2
� (�Gn �x f )(y)� T 1

� (�1
Gn �x f )(x )

i
�
h
T 2
� (�Gn �xg)(y)� T 2

� (�1
Gn �xg)(x )

i
+

+
NX
�=1

T 1
� (�1

Gn �x f (y)T 2
� (�Gn �x g)(x ) +

NX
�=1

T 2
� (�1

Gn �x f )(x )T 2
� (�1

Gn �x (g)(y)�

�
NX
�=1

T 1
� (�1

Gn �x f )(x )T 2
� (�1

Gn �x g)(x ) � A1 + A2 + A3 + A4�

By (2.1), we have

A1 � cHL(f )(x )HL(g)(x )

for all x � y � Gn . Now Hölder’s inequality gives the desired estimate for
A1. It is easy to see that A2, A3 and A4 can be estimated as in the case for

B(f � �1
Gn �x

g).
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We now turn to estimate B(�Gn (x � �)f (�)� �Gn (x � �)g(�))(y). We have

sup
n�Z

������
Z
G

Δn(x � y)B(�Gn (x � �)f (�)� �Gn (x � �)g(�))(y)dy

������ =

= sup
n�Z

������
Z
G

(Δn(x � y)� Δn (x ))B(�Gn (x � �)f (�)� �Gn (x � �)g(�))(y)dy

������ =

= sup
n�Z

������
Z
G

NX
�=1

�Gn (x � z )f (z )f(T 1
� )�



Δn (x � �)T 2

� (�Gn (x � �)g(�))(�)
�
(z )gdz

������ �
where (T 1

� )� is the adjoint of T 1
� .

Since 1�p + 1�q = 1�r �2, we can choose 1 �p1 �p and 1 �q1 �q
such that 1�p1 + 1�q1 = 1 + 
 for some 0 �
 �1. Let 1�p1 + 1�p�1 = 1. Then

1p�1 = 1�q1 � 
 . We first show������
NX
�=1

(T 1
� )�

h
Δn(x � �)T 2

� (�Gn (x � �)g(�))(�)
i������

L
p�1(G)

�

� cm1+�
n k�Gn (x � �)g(�)kLq1(G)�

In fact, (1.3) implies that

0
Z
G

NX
�=1

T 1
� f (y)T 2

� (�Gn (x � �)g)(y)dy =

=
NX
�=1

Z
G

f (y)(T 1
� )�

h
T 2
� (�Gn (x � �)g)

i
(y)dy�

It follows from the usual density argument that

NX
�=1

(T 1
� )�

h
T 2
� (�Gn (x � �)g)

i
(y) = 0 a.e. on G�

Consequently, we have������
NX
�=1

(T 1
� )�

h
Δn(x � �)T 2

� (�Gn (x � �)g)
i

(z )

������ =
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=

������
NX
�=1

Z
G

K̄ 1
� (z � y)[Δn(x � y) � Δn (x � z )]T 2

� (�Gn (x � �)g)(y)dy

������ �

� c
NX
�=1

Z
G

1
jz � y j

jΔn (x � y)� Δn (x � z )j jT 2
� (�Gn (x � �)g)(y)jdy�

Note that if x � y �� Gn or x � z �� Gn , then

jy � z j = max(jx � y j� jx � z j) �m�1
n �

Thus, jΔn (x � y) � Δn(x � z )j�m1+�
n jz � y j� . Therefore,������

NX
�=1

(T 1
� )�

h
Δn (x � �)T 2

� (�Gn (x � �)g)
i

(z )

������ �

� cm1+�
n

NX
�=1

Z
G

jT 2
� (�Gn (x � �)g)(y)j

jz � y j1��
dy =

= cm1+�
n

NX
�=1

I�
�
jT 2
� (�Gn (x � �)g)j

�
(z )�

where I� is the fractional integral of order 
 . By Lemma 2.1 and Lemma 1.1,
we have������

NX
�=1

(T 1
� )�[Δn(x � �)T 2

� (�Gn (x � �)g)]

������
L
p�1(G)

�

� cm1+�
n

NX
�=1

���I� �jT 2
� (�Gn (x � �)g)j

����
L
p�
1(G)

�

� cm1+�
n

NX
�=1

kT 2
� (�Gn (x � �)g)kLq1(G) � cm1+�

n k�Gn (x � �)gkLq1(G)�

Thus,

sup
n�Z

������
Z
G

Δn(x � y)B(�Gn (x � �)f � �Gn (x � �)g)(y)dy

������ �
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� ck�Gn (x � �)f kLp1(G)m
1+�
n k�Gn (x � �)gkLq1 (G) �

� cm
1+��1�p1�1�q1
n [HL(jf jp1(x )]1�p1[HL(jg jq1)(x )]1�q1 �

� c[HL(jf jp1)(x )]1�p1[HL(jg jq1)(x )]1�q1�

Therefore, by the boundedness of HL, we have������sup
n�Z

������
Z
G

Δn (x � y)B(�Gn (x � �)f � �Gn (x � �)g)(y)dy

������
������
Lr (G)

�

� ck[HL(jf jp1)]1�p1[HL(jg jq1)]1�q1kLr (G) �

� ck[HL(jf jp1)]1�p1kLp (G)k[HL(jg jq1)]1�q1kLq (G) �

� ckf kLp (G)kgkLq (G)�

This finishes the proof of Theorem 1.1.

We now turn to the proof of Theorem 1.2.

Proof of Theorem ���� Fix 1�2 �p � 1 and f � H p(G). By the results
in [18], we know that f =

P
I
	I aI , where

P
I
j	I j

p �� and aI is a (p��)

atom supported by a coset I . That is,

(i) supp a 	 I ;

(ii) kakL�(G) � jI j�1�p;

(iii)
R
G
a(x )dx = 0,

Let

E (x ) = sup
n�Z

������
Z
G

Δn(x � y)
NX
�=1

(T 1
� f )(y)(T 2

� g)(y)dy

������ �
where g � L2(G) has a compact support. We shall show that

�
�Z
G

E (x )rdx

�
A

1�r

� ckf kH p (G)kgkLp (G)�
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Suppose I = �I + Gni . Let I � = �I + GnI�3. Fix l � (1� q). Notice that

E (x ) �
X
I ��x

j	I j sup
n�Z

������
Z
G

Δn(x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

������+

+
X
I � ��x

j	I sup
n�Z

������
Z
G

Δn (x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

������ �
� E1(x ) + E2(x )�

We estimate E1(x ) first. Let 1�l + 1�l � = 1. Then,Z
G

E1(x )rdx �

�

NX
�=1

Z
G

�
�X
I ��x

j	I j sup
n�Z

Z
G

sup
n�Z

Z
G

Δn (x � y)j(T 1
� aI )(y)j j(T 2

� g)(y)jdy

�
A
r

dy�

� c
NX
�=1

Z
G


�
�

X
I ��x

j	I j
h
HL(jT 1

� aI j
l �)(x )

i1�l �

)pdx

��
�
r�p

�

�


�
�
Z
G

h
HL(jT 2

� g j
l )(x )

iq�l
dx

��
�
r�q

�

� ckgkrLq

NX
�=1


�
�
X
I

j	I j
p
Z
I �

h
HL(jT 1

� aI j
l �)(x )

ip�l �
dx

��
�
r�p

�

By Lemma 2.2, we have

Z
I �

h
HL(jT 1

� aI j
l �)(x )

ip�l �
dx � cjI j1�p�l

�

�
�Z
G

jT 1
� aI (x )jl

�
dx

�
A
p�l �

�

� cjI �j1�p�l
�

�
�Z
G

jaI (x )jl
�
dx

�
A
p�l �

� c�
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where c is a constant independent of I . Therefore,

Z
G

E1(x )rdx � ckgkrLq (G)

�X
I

j	I j
p

�r�p

�

Thus, Z
G

E1(x )rdx � ckf krH p (G)kgk
r
Lq (G)�

which is a desirable estimate for E1(x ).

Next, we estimate E2(x ). We have

E2(x ) �
X
I � ��x

j	I j sup
n:�I +Gn ��x

������
Z
G

Δn (x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

������+

+
X
I � ��x

j	I + sup
n:�I +Gn�x

������
Z
G

Δn (x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

������ �
� E21(x ) + E22(x )�

Let Ĩ = �I + GnI�1. We further decompose E21(x ) into

E21(x ) � E1
21(x ) + E2

21(x )�

where

E1
21(x ) =

X
I � ��x

j	I j sup
n:�I +Gn ��x

�������
Z
Ĩ

Δn (x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

�������
and

E2
21(x ) =

X
I � ��x

j	I j sup
n:�I +Gn ��x

�������
Z

GnĨ

Δn (x � y)
NX
�=1

(T 1
� aI )(y)(T 2

� g)(y)dy

������� �

We claim that E21(x ) = 0. In fact, for x �� I � and Δn (x � y)�0, we have

jy � xI j = max(jx � y j� jx � xI j) = jx � xI j�m�1
nI�3 because x � xI �� Gnl�3.

Thus, y �� Ĩ . Consequently, fy : Δn (x � y)�0g
 Ĩ = Φ, that is, E1
21(x ) = 0.
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To estimate E2
21(x ), we let y � G n Ĩ . We have

j(T 1
� aI )(y)j =

������
Z
I

K 1
� (y � z )aI (z )dz

������ =(2�2)

=

������
Z
I

(K 1
� (y � z ) �K 1

� (y � xI ))aI (z )dz

������ �

� c

Z
I

jz � xI j

jy � xI j2
jaI (z )jdz � c

jI j2�1�p

jy � xI j

2

�

Note that if Δn (x � y)�0, then jy � xI j = max(jx � xI j� jx � y j) = jx � xI j.
Therefore, we have

E2
21(x ) � c

NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn ��x

�
B� Z
GnĨ

Δn (x � y)j(T 1
� aI )(y)jl

�
dy

�
CA

1�l �

�

�

�
�Z
G

Δn (x � y)j(T 2
� g)(y)jldy

�
A

1�l

�

� c
NX
�=1

X
I � ��x

j	I j
jI j2�1�p

jx � xI j2

h
HL(jT 2

� g j
l )(x )

i1�l
�

It follows that

Z
G

(E2
21(x ))rdx � c

NX
�=1

Z
G

�
�X
I � ��x

j	I j
jI j2�1�p

jx � xI j2

�
A
r h
HL(jT 2

� g j
l )(x )

ir�l
dx �

� c
NX
�=1


�
�
Z
G

�
�X
I � ��x

j	I j
jI j2�1�p

jx � xI j2

�
A
p

dx

��
�
r�p

�

�


�
�
Z
G

h
HL(jT 2

� g)jl )(x )
iq�l

dx

��
�
r�q

�
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� ckgkrLq (G)


���
���
X
I

j	I j
p

Z
x�xI ��GnI�3

jI j2p�1

jx � xI j
2p dx

����
���
r�p

=

= ckgkrLq (G)


��
��

nI�4X
l=��

Z
GlnGl+1

jI j2p�2

jx � xI j2p
dx

���
��
r�p

=

= ckgkrLq (G)


�
�
X
I

j	I j
p

�
� nI�4X
l=��

m
2p�1
l

�
A jI j2p�1

��
�
r�p

�

� ckgkrLq (G)

�X
I

j	I j
p

�r�p

�

where the last inequality follows from (1.2) and 2p � 1 �0. Thus,Z
G

[E2
21(x )]rdx � ckf krH p (G)kgk

r
Lq (G)�

Next, we discuss E22(x ). Let s � (0� 1). It follows from (1.3) that

E22(x ) =

=
X
I � ��x

j	I j sup
n:�I +Gn�x

������
Z
G

(Δn(x � y)�Δn(x � xI ))
NX
�=1

(T 1
� aI )(y)(T 2

� (g)(y)dy)

�������

� c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

Z
G

m1+s
n jy � xI j

s j(T 1
� aI )(y)(T 2

� g)(y)jdy =

= c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

m1+s
n

Z
Ĩ

jy � xI j
s j(T 1

� aI )(y)(T 2
� g)(y)jdy+

+ c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

m1+s
n

Z
GnĨ

jy � xI j
s j(T 1

� aI )(y)(T 2
� g)(y)jdy �

� E1
22(x ) + E2

22(x )�
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We note that in E1
22(x ), we have jx � y j = max(jy� xI j� jx � xI j) = jx � xI j�

�m�1
n because y � Ĩ and x �� �I +GnI�3. Therefore, by Hölder’s inequality,

we have

E1
22(x )�c

NX
�=1

X
I � ��x

j	I j sup
n:�I +GN �x

Z
Ĩ

�
m
s+1�l �
n jy � xI j

s jj(T 1
� aI )(y)j

�
�(2�3)

� fm
1�l
n j(T 2

� g)(y)jgdy �

� c
NX
�=1

X
I � ��x

j	I j
jI �j

jx � xI js+1�l �

�
�Z
G

j(T 1
� a)(y)jl

�
dy

�
A

1�l �

�

� sup
n:�I +Gn�x

�
BB�

Z
jy�x j	m�1

n

mn j(T
2
� g)(y)jldy

�
CCA

1�l

�

� c
NX
�=1

X
I � ��x

j	I j
jI js�1�p+1�l �

jx � xI j
s+1�l �

h
HL(jT 2

� g j
l )(x )

i1�l
�

Since r �1�2, we can choose s � (0� 1) such that (s + 1�l �)p �1. It is now
easy to see that Z

G

[E1
22(x )]rdx � ckf krHp(G)kgk

r
Lq (G)�

Finally, we come to the estimate of E2
22(x ). Using (2.2), we easily obtain

E2
22(x ) �

� c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

m1+s
n

Z
GnĨ

jy � xI j
s jI j2�1�p

jy � xI j2
j(T 2

� g)(y)jdy �

� c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

m1+s
n

Z
y�GnĨ

y�x+Gn�1

jI j2�1�p

jy � xI j2�s
j(T 2

� g)(y)jdy+
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+ c
NX
�=1

X
I � ��x

j	I j sup
n:�I +Gn�x

m1+s
n

Z
y�GnĨ

y ��x+Gn�1

jI j2�1�p

jy � xI j
2�s j(T

2
� g)(y)dy �

� F1(x ) + F2(x )�

For F1(x ), we first have

m1+s
n

Z
y�GnĨ

y�x+Gn�1

jI j2�1�p

jy � xI j2�s
j(T 2

� g)(y)dy �

� m
s+1�l �
n jI j2�1�p

�
B� Z
GnĨ

1

jy � xI j(2�s)l �
dy

�
CA

1�l �

�

�
B�mn

Z
x+Gn�1

j(T 2
� g)(y)jldy

�
CA

1�l

�

� c
jI j2�1�p+1�l �

jx � xI j
s+1�l �

h
HL(jT 2

� g j
l )(x )

i1�l
�

Then, by a computation similar to (2.3), we obtain an estimate of F1(x ) similar

to that of E1
22(x ). For F2(x ), note that jy�xI j = max(jy�x j� jx�xI j) �jy�x j.

By Hölder’s inequality, we have

jI j2�1�pm1+s
n

�
B� Z
GnĨ

dy

jy � xI j2�s

�
CA

1�l � �
B�mn

Z
y ��x+Gn�1

j(T 2
� g)(y)jl

jy � x j2�s
dy

�
CA

1�l

�

� c
jI j1�1�p+1�l+s�l �]

jx � xI j1+1�l+s�l �

h
HL(jT 2

� g j
l )(x )

i1�l
�

Note that (1 + 1�l + s�l �)p = ((2� s)�l + s + 1�l �)p �(s + 1�l �)p �2. From
this, we easily deduce a desirable estimate for F2(x ).

This finishes the proof of Theorem 1.2.
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3. Some generalizations

In this section, I� denote the standard fractional integral operator if
0 �� �1 and the Calderón–Zygmund operators if � = 0. For x � G , let

(3�1) B�(f � g)(x ) =
NX
�=1

c� I��
1

(f )(x )I
�
�
2

(g)(x )�

where c� ’s are constants, � = ��1 +��2 and 0 � �
�
1 , ��2 �1 for y � f1� � � � � N g

and N � N .

Theorem 1.1 and Theorem 1.2 have the following generalizations whose
proofs are omitted as they involve only arguments similar to those of Theorem
1.1 and Theorem 1.2; see also [17].

Theorem ���� Let p� q �1� 1�r = 1�p+1�q�� � � = ��1 +��2 � 0 �
 � 1�

0 � �
�
1 �1�p and 0 ��

�
2 �1�q for � = 1� � � � � N � Assume that

(3�2)
Z
G

B�(f � g)(x )dx = 0

for all f � g � L2(G) with compact supports� Then� for � + 
 � 1 and

1�(1 + 
) �r � 1� B� can be extended to a bounded linear operator from

Lp(G)� Lq (G) into H r (G)�

Theorem ���� Let 0 �p � 1� q �1� 1�r = 1�p + 1�q �� � � = ��1 +��2 �

1�2 �r � 1 and 0 � �
�
2 �1�q for � = 1� � � � � N � Assume that B� (f � g)

satis�es (3�2)� Then B� can be extended to a bounded linear operator from

H p(G) � Lq (G) into H r (G)� if 0 � � �1�q or 1�2 �p � 1�

Our next theorem is more interesting.

Theorem ���� Let 0 �p� q � 1� 1�r = 1�p + 1�q � � � � = �
�
1 + ��2

and 0 �� �1� Assume that B�(f � g) satis�es (3�2)� Then� for 1�2 �r � 1�
B� can be extended to a bounded linear operator from H p(G)�H q (G) into
H r (G)�

Proof� We consider the case �
�
1 , ��2 �0 only. The other cases are

similar. Let f � H p(G) and g � H q (G). By the results in [18], we can write



2019. május 4. –22:54

22 T. S. QUEK, D. YANG

f =
P
I
	I aI and g =

P
J
�J bJ , where 	I , �J �0, aI ’s are (p��)-atoms and

bJ ’s are (q��)-atoms. Define

S� (aI � bJ )(x ) = sup
n�Z

������
Z
G

Δn(x � y)B�(aI � bJ )(y)dy

������ �
Then

M (B�(f � g))(x ) �
X
I �J

	I �JS� (aI � bJ )(x ) =

=
X
I �J

I��x �J��x

� � � +
X
I �J

I��x �J���x

� � � +
X
I �J

I���x �J��x

� � � +
X
I �J

I���x �J���x

�

� A1 + A2 + A3 + A4�

where I �, J � have the same meanings as in Section 2.

We first estimate A1(x ). Let 1�r�1 = 1�p � �
�
1 and 1�r�2 = 1�q � �

�
2 .

Since 0 �� �1 implies 1�(1 � �
�
2 ) �1���1 , we can choose l� satisfying

1�(1���2 ) �l� �1���1 . Let 1�l �� +1�l� = 1, 1�r�1 �1�p = ���1 = 1�l ���1�p�1
and 1�r�2 � 1�q = ��

�
2 = 1�l� � 1�q�1 . It is easy to see that p�1 , q�1 �1 and

l �� �r
�
1 , l� �r

�
2 . From Hölder’s inequality, we deduce

S� (aI � bJ )(x ) � c sup
n�Z

NX
�=1

������
Z
G

Δn (x � y)I
�
�
1
aI (y)I

�
�
2
bJ (y)dy

������ �

� c sup
n�Z

NX
�=1

�
�Z
G

Δn(x � y)jI
�
�
1
aI (y)jl

�
�dy

�
A

1�l ��

�

�

�
�Z
G

Δn (x � y)jI
�
�
2
bJ (y)jl�dy

�
A

1�l�

�

� c
NX
�=1

[HL(jI
�
�
1
aI j

l �� )(x )]1�l �� [HL(jI
�
�
2
bJ j

l� )(x )]1�l� �
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Therefore, by Hölder’s inequality and Minkowski’s inequality, we have

Z
G

[A1(x )]rdx � c
NX
�=1

Z
G


���
���

X
I �J

I��J��x

	I �J [HL(jI
�
�
1
aI j

l �� )(x )]1�l ���

� [HL(jI
�
�
2
bJ j

l� )(x )]1�l�

����
��� dx �

� c
NX
�=1

Z
G


�
�

X
I :I ��x

	I [HL(jI
�
�
1
aI j

l �� )(x )]1�l ��

��
�
r

�

�


�
�

X
J :J��x

�J [HL(jI
�
�
2
bJ j

l� (x )]1�l�

��
�
r

dx �

� c
NX
�=1

�
��Z
G


�
�

X
I :I ��x

	I [HL(jI
�
�
1
aI j

l �� )(x )]1�l ��

��
�
r
�
1

dx

�
��
r�r

�
1

�

�

�
��Z
G


�
�

X
J :J��x

�j [HL(jI
�
�
2
aI j

l �� )(x )]r
�
1 �l�

��
�
r
�
2

dx

�
��
r�r

�
2

�

� c
NX
�=1

�
��X

I

j	I j
p


�
�
Z
I �

[HL(jI
�
�
1
aI j

l �� )(x )]r
�
1 �l

�
� dx

��
�
p�r

�
1
�
��
r�p

�

�

�
��X

J

j�J j
q


�
�
Z
J�

[HL(jI
�
�
2
bJ j

l� )(x )]r
�
2 �l�dx

��
�
q�r

�
2
�
��
r�q

�

By Lemma 2.1, we haveZ
I �

[HL(jI
�
�
1
aI j

l �� )(x )]r
�
1 �l

�
�dx �(3�3)
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� cjI �j1�r
�
1 �l

�
�

�
�Z
G

j
�
�
1
aI (x )jl

�
�dx

�
�
r
�
1 �l

�
�

�

� cjI j1�r
�
1 �l

�
� kaI k

r
�
1

L
p
�
1 (G)

� c�

where c is independent of I . Similarly, we haveZ
J�

[HL(jI
�
�
2
bJ j

l� )(x )]r
�
2 �l�dx � c�

Thus,

Z
G

[A1(x )]rdx � c

�X
I

j	I j
p

�r�p �X
J

j�J j
q

�r�q

�

Therefore, Z
G

[A1(x )]rdx � ckf krH p (G)kgk
r
H q (G)�

For A2(x ), let J = �J + GnJ . Then we have

S� (aI � bJ )(x ) � sup
n:�J+Gn ��x

������
Z
G

Δx (x � y)B�(aI � bJ )(y)dy

������+

+ sup
n:�J+Gn�x

������
Z
G

Δn (x � y)B�(aI � bJ )(y)dy

������ � D1(x ) + D2(x )�

We consider D1(x ) first. We have

D1(x ) � sup
n:�J+Gn ��x

�������
Z
J̃

Δn (x � y)B�(aI � bJ )(y)dy

�������+

+ sup
n:�J+Gn ��x

�������
Z

GnJ̃

Δn (x � y)B�(aI � bJ )(y)dy

������� � D11(x ) + D12(x )�
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Similar to the proof of E1
21(x ), we can show that D11(x ) = 0. For D12(x ),

we first note that for y � G n J̃ ,

I
�
�
2
bJ (y) = c

Z
J

bJ (x )

jy � z j1��
�
2

dz =(3�4)

= c
Z
J

�
1

jy � z j1��2�
�

1

jy � xJ j
1���

2

�
bJ (z )dz = 0�

since jy � z j = max(jy � xJ j� jxJ � z j) = jy � xJ j. Thus, D12(x ) = 0. Therefore
D1(x ) = 0.

For D2(x ), we let s �0 and use (3.2) to obtain

D2(x ) = sup
n:�J+Gn�x

������
Z
G

Δn(x � y)B�(aI � bJ )(y)dy

������ �

� c sup
n:�J+Gn�x

NX
�=1

Z
G

jΔn (x � y)� Δn (x � xJ )j jI
�
�
1
aI (y)j jI

�
�
2
bJ (y)jdy �

� c
NX
�=1

sup
n:�J+Gn�x

Z
G

m1+s
n jy � xJ j

s jI
�
�
1
aI (y)j jI

�
�
2
bJ (y)jdy �

� c
NX
�=1

sup
n:�J+Gn�x

Z
y ��x+Gn�2

� � � + c
NX
�=1

sup
n:�J+Gn�x

Z
y ��x+Gn�2

� � � � D21(x ) + D22(x )�

For D21(x ), we note that y �� x + Gn2 and x � xJ + Gn imply jy � xJ j =

= jy � x j; thus x �� J � further implies that y �� J̃ . Consequently we deduce
from (3.4) that D21(x ) = 0.

Now, we estimate D22(x ). We further decompose D22(x ) into

D22(x ) � c
NX
�=1

sup
n:�J+Gn�x

Z
J̃	(x+Gn�2)

m1+s
n jy � xJ j

s jI
�
�
1
aI (y)j jI

�
�
2
bJ (y)jdy+

+ c
NX
�=1

sup
n:�J+Gn�x

Z
(GnJ̃ )	(x+Gn�2)

m1+s
n jy � xJ j

s jI
�
�
1
aI (y)j jI

�
�
2
bJ (y)jdy �

� D1
22(x ) + D2

22(x )�
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Similar to the estimate for D12(x ), we can easily show that D2
22(x ) = 0.

So, we only need to estimate D �
22(x ). Since y � J̃ and x �� J �, we have

mn � c�[y � x j = c�max(jy � xJ j� jx � xJ j) = c�jx � xJ j�

From this and Lemma 2.1, we obtain

D1
22(x ) � c

NX
�=1

jx � xJ j
�1�l��2

�
B�sup

n
mn

Z
x+Gn�2

jI
�
�
1
aI (y)jl

�
�dy

�
CA

1�l ��

�

�

�
B�Z
J̃

jy � xJ j
l� s jI�2�bJ (y)jl�dy

�
CA

1�l�

�

� c
NX
�=1

jJ js jx � xJ j
�1�l��s

 
HL(jI

�
�
1
aI j

l �� )(x )

!1�l ��
kI
�
�
2
bJ kLl� (G)

�

� c
NX
�=1

jJ js jx � xJ j
�1�l��skbJ k

L
q
�
1 (G)

 
HL(jI

�
�
1
aI j

l �� )(x )

!1�l ��
�

� c
NX
�=1

jJ js+1�l��1�r�2 jx � xJ j
�1�l��2

 
HL(jI

�
�
1
aI j

l �� )(x )

!1�l ��
�

Note that 1�r�1 + 1�r�2 = 1�r and

NX
�=1

Z
x ��J�

jJ j(s+1�l��1�r�2 jx � xJ j
�(s+1�l� )r�2 dx � c�

if s �1�r�1 � 1�l �� . Therefore,

kD1
22kLr (G) � ckf kH p (G)kgkH q (G)�

So far, we have obtained a desirable estimate for A2(x ).

The estimate for A3 is similar to that for A2. If s �1�r�2 � 1�l� , we can
obtain the desired conclusion for A3 just as we did for A2.

Finally, we estimate A4. Denote

fn � Z : xI + Gn �� x � cJ + Gn �� xg�
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fn � Z : xI + Gn �� x � cJ + Gn � xg�

fn � Z : xI + Gn � x � cJ + Gn �� xg�

fn � Z : xI + Gn � x � cJ + Gn � xg�
respectively, by �1, �2, �3, and �4. Then we have

sup
n�Z

������
Z
G

Δn(x � y)B�(aI � bJ )(y)dy

������ �
� sup


1

j� � �j + sup

2

j� � �j + sup

3

j� � �j + sup

4

j� � �j �

� H1(x ) + H2(x ) + H3(x ) + H4(x )�
We first estimate H1(x ). By (3.4), we have

H1(x ) � sup

1

�������
Z
Ĩ	J̃

Δn (x � y)
NX
�=1

c� I��
1
aI (y)I

�
�
2
bJ (y)dy

������� �
Note that H (x )�0 only when x �y � Gn . Thus, mn � 1�jx �y j = 1�jx �xI j

and similarly mn � 1�jx � xJ j since y � Ĩ 
 J̃ and x �� I � 
 J �. When
jJ j � jI j, noting that Δn (x � xJ ) � 0 and by Lemma 2.1, we have

H1(x ) � sup

1

�������
Z
Ĩ	J̃

(Δn (x � y)� Δn (x � xJ ))
NX
�=1

c� I��
1
aI (y)I

�
�
2
bJ (y)dy

������� �

� c
NX
�=1

sup

1

Z
Ĩ	J̃

m2+s
n jy � xJ j

s+1jI
�
�
1
aI (y))j jI

�
�
2
bJ (y)jdy �

� c
NX
�=1

sup

1

Z
Ĩ	J̃

jI js1+1m
1�l ��+s1+1
n jI

�
�
1
aI (y)jjJ js2+1m

1�l�+s2+1
n jI

�
�
2
bJ (y)jdy �

� c
NX
�=1

jx � xJ j
�1�l ���s1�1

�
B�Z
Ĩ

jI jl
�
� (x1+1)jI

�
�
1
aI (y)jl

�
�dy

�
CA

1�l ��

�

� jx � xJ j
�1�l ���s2�1

�
B�Z
J̃

jJ jl� (s2+1)jI
�
�
2
bJ (y)jl�dy

�
CA

1�l�

�
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� c
NX
�=1

jI j1�l
�
��1�r�1 +s1+1jx � xI j

�1�l ���s1�1�

� jJ j1�l��1�r�2 +s2+1jx � xJ j
�1�l��s2�1�

where l� and l �� are as before and s = s1 + s2 + 1, s1 �1�r�1 � 1�l �� � 1, and

s2 �1�r�2 � 1�l� � 1. From this, we easily obtain a desirable estimate for
H1(x ).

If jJ j 
 jI j, using Δn (x�xI ) instead of Δn(x �xJ ) in the above estimate,
we can obtain the same estimate for H1(x ); and therefore, we have finished
the estimate for H1(x ).

Now, we estimate H4(x ). First we suppose that jJ j � jI j. By (3.2) and
(3.4), we obtain

H4(x ) � c
NX
�=1

sup

4

������
Z
G

(Δn (x � y) � Δn (x � xJ ))I
�
�
1
aI (y)I

�
�
2
bJ (y)dy

������ �

� c
NX
�=1

sup

4

Z
G

m2+s
n jy � xJ j

s+1jI
�
�
1
aI (y)I

�
�
2
bJ (y)jdy �

� c
NX
�=1

sup

4

Z
Ĩ	J̃

m2+s
n jy � xJ j

s+1jI
�
�
1
aI (y)I

�
�
2
bJ (y)jdy �

c
NX
�=1

jI js1+1jx � xI j
�1�l ���s1�1

�
�Z
G

jI
�
�
1
aI (y)jl

�
�dy

�
A

1�l ��

�

� jJ js2+1jx � xJ j
�1�l��s2�1

�
�Z
G

jI
�
�
2
bJ (y)jl�dy

�
A

1�l�

�

� c
NX
�=1

jI j1�l
�
��1�r1�+s1+1jx � xI j

�1�l ���s1�1�

� jJ j1�l��1�r�2 +s2+1jx � xJ j
�1�l��s2�1�

which is the desired estimate.
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When jI j �jJ j, the same estimates follow by symmetry. This finish the
estimate for H4(x ).

Since the estimate for H2(x ) and H3(x ) are similar, we only estimate
H2(x ). By (3.2) and (3.4), we have

H2(x ) � c
NX
�=1

sup

2

������
Z
G

(Δn(x � y)� Δn (x � xJ ))I
�
�
1
aI (y)I

�
�
2
bJ (y)dy

������ �

� c
NX
�=1

sup

)2

Z
G

m2+s
n jy � xJ j

s+1jI
�
�
1
aI (y)I

�
�
2
bJ (y)jdy �

� c
NX
�=1

sup

2

Z
Ĩ	J̃

m2+s
n jy � xJ j

s+1jI
�
�
1
aI (y)I

�
�
2
bJ (y)jdy�

We claim that if jJ j � jI j, then every I appearing in the last term satisfies

m�1
n 
 jI j; otherwise we would have

jx � xJ j = max(jx � xI j� jxI � xJ j) = jx � xI j 
 m�1
nI�3 �m�1

nI
= jI j�m�1

n �

which contradicts the fact x � xI + Gn . Thus, letting x1 � Ĩ 
 J̃ , we have

jx�xI j � max(jx�xJ j� jxJ�xI j) � max(jx�xJ j� jxJ�x1j� jx1�xI j) � Bm�1
n �

If jI j � jJ j, then x � xJ + Gn and x �� J � imply that jJ j � m�1
n �8. Thus,

jx � xI j � max(jx � xJ j� jxJ � xI j) � Bm�1
n .

Therefore, in both cases, we have

H2(x ) � c
NX
�=1

Z
Ĩ	J̃

�
jy � xJ j

s1+1jx � xI j
�1�l ���s1�1jI

�
�
1
aI (y)j

�
�

�

�
jy � xJ j

s2+1jx � xJ j
�1�l��s2�1jI

�
�
2
bJ (y)j

�
dy �

� c
NX
�=1

jx � xI j
�1�l ���s1�1

�
�� Z
Ĩ	J̃

(jy � xJ j
s1+1jI

�
�
2
aI (y)j)l

�
�

�
��

1�l ��

�
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� jx � xJ j
�1�l��s2�1

�
�� Z
Ĩ	J̃

(jy � xJ j
s2+1jI

�
�
2
bJ (y)j)l�dy

�
��

1�l�

�

� c
NX
�=1

jI j1�l
�
��1�r�1 +s1+1jx � xI j

�1�l ���s2�1�

� jJ j1�l��1�r�2 +s2+1jx � xJ j
�1�l��s2�1�

which is what we want.

This finishes the proof of Theorem 3.3.

4. Some applications

The following factorization of Hardy spaces is motivated by [6, 14]; see
also [3].

Theorem ���� Let 0 �p� q � 1 and let 1�2 �r � 1 be such that

1�r = 1�p + 1�q � � for some 0 �� �1� Then for f � H r (G)� there exist

sequences fgig � H
p(G) and fhig � H

q (G) such that

f =
�X
i=1

(hi I�gi � gi I�hi )

and

kf kH r (G) � inf

�
�X
i=1

kgikH p (G)khikH q (G) : f =
�X
i=1

(hi I�gi � gi I�hi )

�

Proof� It suffices to prove the result for f being an r -atom whose support

is contained in x0 +Gk for some x0 � G and k � Z. Then kf kL�(G) � cm
1�r
k .

Given N � N , choose y0 and y1 in G such that jy0 � x0j �Nm�1
k and

jy1 � x0j�Nm�1
k�1. Define the function h on G by h(x ) = N 1��(�y0+Gk

�

� �y1+Gk
). Then we have

jI� (h)(x )j = c�

������
Z
G

h(z )

jx0 � z j1��
dz

������ =
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= c�N
1��

�������
Z

y0+Gk

1

jx0 � z j1��
dz �

Z
y1+Gk

1

jx0 � z j1��
dz

������� 
 cm��k �

where c is a constant depending only on � . Define the function g on G by
g(x ) = �f (x )�I�h(x0). Routine calculations show that

khkH q (G) � cN 1��m
�1�q
k

and

kgkH p (G) � cm
1�r+��1�p
k �

Consequently we have

khkH q (G)kgkH p (G) � cN 1�� �

Following the argument given in ([14], p.443) we have
kf � (hI�g � gI�h)kH r (G) �

� c

����� f (I�h(x0) � I�h)
I�h(x0)

����
H r (G)

+ khI�gkH r (G)

	
�

�


�
�
cN�2+1�r � if 1�2 �r �1,

cN�1 logN� if r = 1.

The result now follows by noting that both N�2+1�r and N�1 logN tend to
zero as N tends to infinity. Using the atomic decomposition of H r (G), the
factorization is complete. The norm equivalence follows from Theorem 3.3.

Theorem 1.1 can be used to reobtain the following boundedness result of
commutators on Vilenkin groups; see [6] and [21].

Corollary ���� Let b � BMO(G) and T be a Calder�on�Zygmund

operator as in Section 1� Then the operator

[b� T ](f ) = bT (f ) � T (bf )

is bounded on Lp(G) for any p � (1��)� and

k[b� T ](f )kLp(G) �ckf kLp(G)kbkBM 0(G)�

where c is independent of b and f �

Proof� Let 1�q + 1�q = 1. Obviously, for any f � Lp(G) and g �
� Lq (G), g(Tf ) � f (T �g) satisfies (1.3). By Theroem 1.1, we know that
g(Tf ) � f (T �g) � H1(G). Moreover,

kg(Tf )� f (T �g)kH 1(G) � ckf kLp(G)kgkLq (G)�
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Using the duality between H 1(G) and BMO(G) on the Vilenkin group (see
[2]), we obtain������

Z
G

[b� T ](f )(x )g(x )dx

������ =

������
Z
G

b(x )[g(x )(Tf )(x )� f (x )(T �g)(x )]dx

������ �
� kbkBMO(G)kg(Tf ) � f (T �g)kH 1(G) �

� ckbkBMO(G)kf kLp(G)kgkLq (G)�

From this, it follows that

k[b� T ](f )kLp(G) � ckf k)Lp(G)kbkBMO(G)�

This finishes the proof of Corollary 4.1.

A consequence of Theorem 4.1 and Theorem 3.1 is the following char-
acterization of BMO(G); see [14, 2, 1]. We leave the details of its proof to
the readers.

Corollary ���� Let � � (0� 1) and let 1�q = 1�p�� � where 1�p�1���
Then b � BMO(G) if and only if the commutator [b� I�] is bounded from

Lp(G) into Lq (G)� Moreover� we have k[b� I� ]kLp(G)�Lq (G) � kbkBMO(G)�
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UNIFORM CONVERGENT DISCRETE PROCESSES ON THE
ROOTS OF FOUR KINDS OF CHEBYSHEV POLYNOMIALS
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1. Introduction

On an interval I � R one of the most natural discrete approximating
tools is the Lagrange interpolation. However, as it was proved by G. Faber
in 1914, there is no point system for which the corresponding sequence of
Lagrange interpolatory polynomials would converge uniformly for all contin-
uous functions. Then, it is natural to ask how to construct such processes
which are uniformly convergent in suitable spaces of continuous functions.

One possibility of achieving this aim is to loosen the strict condition on
degree of the interpolating polynomials, thus introducing free parameters to
be suitable determined for the uniform convergence (see [14, Ch. II.], [3],
[24], [19]). The success of a construction like this strongly depends on the
matrix of nodes.

Another possibility to obtain uniformly convergent discrete processes is
to replace the Lagrange interpolatory polynomials with suitable summations
(see [1], [7], [5], [22], [21], [16], [17]).

In this paper we shall construct a wide class of discrete processes using
summation and we shall investigate the uniform convergence of sequences of
such operators in a suitable Banach space of continuous functions. Several
interpolatory properties will also be investigated.

Many authors studied also the summability of different Fourier series
(see e.g. [2], [4], [13], [9], [10], [11], [20], [26]–[29], [30] and the references
therein.)

Research supported by the Hungarian National Scientific Research Foundation (OTKA)

under Grant Ns. T032719, T32872 and T37299.
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2. A general construction of discrete processes

Let I � R be a bounded or unbounded interval and fix the natural
numbers m and N . Consider a point system

XN := fxN�N �xN�1�N �� � ��x1�N g�
a discrete measure (or nonnegative weights)

�N :=
�
�N�N � �N�1�N � � � � � �1�N

�
(�k �N := �N fxk �N g)

and a basis in Pm (the linear space of algebraic polynomials with real coeffi-
cients of degree not greater than m):

Pm := fp0� p1� � � � � pmg �
We investigate summation processes generated by a function Θ as defined

below. Let us denote by Φ the set of summation functions Θ : [0�+�) � R

satisfying the following requirements:

(i) supp Θ � [0� 1],

(ii) lim
t�0+

Θ(t) = Θ(0) := 1 and lim
t�1�

Θ(t) = Θ(1) := 0

(iii) the limits

Θ(t0 � 0) := lim
t�t0�0

Θ(t)

exist and finite in every t0 � (0�+�),

(iv) for all t � R the function value Θ(t) lies in the closed interval determined
by Θ(t � 0) and Θ(t + 0).

The condition (iii) ensures that every Θ � Φ is Riemann integrable on
[0� 1] (see [16, p. 161]). Therefore Θ is continuous except at most countable
points of [0� 1].

If f : I � R is an arbitrary function then let
(2�1)

(SΘ
m�N f )(x ) := SΘ

m�N (f � XN � �N � Pm � x ) :=
mX
l=0

Θ

�
l

m

�
cl �N (f )pl (x ) (x � I )�

where

(2�2) cl �N (f ) := cl �N (f � XN � �N � Pm ) :=
NX
k=1

f (xk �N )pl (xk �N )�k �N �
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Using two arbitrary index sequences (mn � n � N := f1� 2� � � �g) and (Nn � n �
� N) we have a sequence of polynomials

(2�3)
�
SΘ
mn �Nn f � n � N

�
for all f : I � R.

The following problem will be investigated: Choose the parameters

XNn � �Nn � Pmn such that the sequence (2�3) tend uniformly to f in a suit�

able subspace of continuous functions for a fairly wide class of summation

functions Θ�

That special case when XN is the roots of Jacobi polynomial p(���)
N , �N

is the corresponding Cotes numbers and the basis is the Jacobi basis were
investigated in [18].

In this paper we assume that I = [�1� 1] and we shall choose the above
parameters in other ways. Namely we shall construct point systems XN using
the roots of the four kinds of Chebyshev polynomials supplemented with some
endpoints of [�1� 1]. The convergence will be considered in the Banach space
(C [�1� 1]� k � k�), where C [�1� 1] denotes the linear space of continuous
functions defined on [�1� 1] and

kf k� := max
x�[�1�1]

jf (x )j (f � C [�1� 1])�

3. Processes on the roots of four kinds of Chebyshev polynomials

Fix N � N and consider a point system XN � [�1� 1]. The index of the

point x � XN is 1 if x � (�1� 1) and is 1�2 if x � f�1� 1g. The index of the

point system XN is the sum of the indices of its points. It will be denoted by
IXN =: IN . It is clear that IN = N�N � 1�2 or N � 1 for any XN .

Let us define the measure �N by

(3�1) �k �N :=

���	
��


1
2IN

� if xk �N � f�1� 1g
1
IN

� if xk �N � (�1� 1)
(k = 1� 2� � � � � N� N � N)�

We will choose the basis in the following way

Pm := fT0�
p

2T1�
p

2T2� � � � �
p

2Tmg � Pm �

where Tl (x ) := cos(l arccos x ) (l � N0 := f0� 1� 2� � � �g) are the Chebyshev
polynomials of the first kind.
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For every m�N � N the point system XN uniquely determines the
parameters (XN � �N � Pm ) of the sequence (2�3). Therefore in the sequel if we
speak about an XN �system then we think for the above defined parameters
(XN � �N � Pm ).

We shall consider the following four XN -systems.

Case �� The system TN �

TN :=

�
xk �N := cos

2k � 1
2N

�

���� k = 1� 2� � � � � N



�

IN = ITN = N � �k �N = 1
N �k = 1� �� � � � � N ��

Remark� TN are the roots of TN (the Chebyshev polynomial of the first
kind).

Case �� The system U�N �

U�N :=

�
xk �N := cos

k � 1
N � 1

�

���� k = 1� 2� � � � � N



�

IN = IU�
N

= N � 1�

�k �N =

���	
��


1
2(N � 1)

� if k = 1 or N

1
N � 1

� if k = 2� � � � � N � 1�

Remark� U�N are the roots of UN�2 (the Chebyshev polynomial of the
second kind) supplemented with the endpoints �1 and 1.

Case �� The system V�N �

V�N :=

�
xk �N := cos

2k � 1
2N � 1

� j k = 1� 2� � � � � N



�

IN = IV�
N

= N � 1�2�

�k �N =

���	
��


1
2N � 1

� if k = N

2
2N � 1

� if k = 1� � � � � N � 1�

Remark� V�N are the roots of VN�1 (the Chebyshev polynomial of the
third kind) supplemented with �1.
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Case �� The system W+
N �

W+
N :=

�
xk �N := cos

2(k � 1)
2N � 1

� j k = 1� 2� � � � � N



�

IN = IW+
N

= N � 1�2�

�k �N =

��	
�


1
2N � 1

� if k = 1

2
2N � 1

� if k = 2� � � � � N �

Remark� W+
N are the roots of WN�1 (the Chebyshev polynomial of the

fourth kind) supplemented with 1.
The main goal of this paper is to give a sufficient condition with respect

to the summation function Θ which guarantees the uniform convergence of
(2�3) for the above four point systems (see Theorem 6.2). Moreover we shall
investigate the interpolatory properties of (2�3) (see Theorems 5.1 and 5.4).

In the trigonometric case (when the fundamental point system is the
equidistant one) similar results were proved in [16] and [17].

Remark� In [8], J. C. Mason investigated some common (minimality)
properties of four kinds of Chebyshev polynomials.

4. Orthogonality relationships

Let us fix a natural number N � N and consider an XN -system (see
Section 3). It is clear that the function

(4�1) hf � gi(XN ��N ) := hf � giN :=
NX
k=1

f (xk �N )g(xk �N )�k �N

(f � g � C [�1� 1])
satisfies all properties of the scalar product but

hf � f i(XN ��N ) = 0 =� f (x ) = 0 (x � [�1� 1]);

instead we have
hf � f i(XN ��N ) = 0 	� f (xk �N ) = 0 (k = 1� 2� � � � � N )

therefore it will be called semi�scalar product. Obviously

(4�2) kf k(XN ��N ) := kf kN :=
p
hf � f iN =

�
NX
k=1

f 2(xk �N )�k �N

�1�2

is a semi-norm on C [�1� 1].
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Next we shall show that the Chebyshev polynomials of the first kind
enjoy certain othogonality properties with respect to the semi scalar product
(4�1) (cf. [12, pp. 53 and 54]).

Lemma ���� If XN = TN then

hTi � Tj iN = hTi � Tj i(TN ��N ) =

+(i � j ) +
�(i � j )

2
(i � j � N0 )�

where


+(i � j ) :=

��	
�


1� if (i + j )�(2N ) is even

�1� if (i + j )�(2N ) is odd

0� otherwise

and


�(i � j ) :=

��	
�


1� if (i � j )�(2N ) is even

�1� if (i � j )�(2N ) is odd

0� otherwise�

Proof� From the identity

cos� + cos 3� + � � � + cos(2N � 1)� =
sin 2N�
2 sin�

(� � R� N � N)

we have

1
N

NX
k=1

cos(2k � 1)
l�

2N
=

sin l�

2N sin l�
2N

=

�
0� if l	2pN

(�1)p� if l = 2pN

(here p denotes an integer). Therefore the statement follows from the fact that
for every i � j � N0 the possible values of the scalar product

hTi � Tj iN =
NX
k=1

Ti (xk �N )Tj (xk �N )�k �N =
1
N

NX
k=1

Ti (xk �N )Tj (xk �N ) =

=
1

2N

NX
k=1

�
cos(2k � 1)

(i + j )�
2N

+ cos(2k � 1)
(i � j )�

2N




are 0� 1� �1� 1
2 � �1

2 .
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Lemma ���� If XN = U�N then

hTi � Tj iN = hTi � Tj i(U�
N
��N )

=

+(i � j ) +
�(i � j )

2
(i � j � N0)�

where


+(i � j ) :=

�
1� if (i + j )�(2N � 2) is integer

0� otherwise

and


�(i � j ) :=

�
1� if (i � j )�(2N � 2) is integer

0� otherwise�

Proof� It is easy to show that

NX
k=1

�k �N cos(k � 1)� =

=
1

N � 1

�
1
2

+
N�1X
k=2

cos(k � 1)� +
1
2

cos(N � 1)�

�
=

sin(N � 1)�
2(N � 1)

ctg
�

2

for all � � R and N � N . From it follows that

NX
k=1

�k �N cos(k � 1)
l�

N � 1
=

�
1� if l = 2p(N � 1)

0� otherwise

for all l � N0 . In this case the corresponding scalar product is

hTi � Tj iN =
NX
k=1

Ti (xk �N )Tj (xk �N )�k �N =

=
NX
k=1

�k �N

�
cos(k � 1)

(i + j )�
N � 1

+ cos(k � 1)
(i � j )�
N � 1



�

Thus the possible values of hTi � Tj iN are 0� 1� 1
2 from which the statement

follows.

Lemma ���� If XN = V�N then

hTi � Tj iN = hTi � Tj i(V�
N
��N ) =


+(i � j ) +
�(i � j )
2

(i � j � N0)�
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where


+(i � j ) :=

��	
�


1� if (i + j )�(2N � 1) is even

�1� if (i + j )�(2N � 1) is odd

0� otherwise

and


�(i � j ) :=

��	
�


1� if (i � j )�(2N � 1) is even

�1� if (i � j )�(2N � 1) is odd

0� otherwise�

Proof� A simple calculation shows that from the identity

cos� + cos 3� + � � � + cos(2N � 3)� =
sin 2(N � 1)�

2 sin�
(� � R� N � N)

it follows that

NX
k=1

�k �N cos(2k � 1)
l�

2N � 1
=

=
2

2N � 1

�
N�1X
k=1

cos(2k � 1)
l�

2N � 1
+

1
2

cos(2N � 1)
l�

2N � 1

�
=

=

�
(�1)p� if l = (2N � 1)p

0� otherwise

for all l � N0 . Thus for i � j � N0 the possible values of

hTi � Tj iN =
NX
k=1

Ti (xk �N )Tj (xk �N )�k �N =

=
1
2

NX
k=1

�k �N

�
cos(2k � 1)

(i + j )�
2N � 1

+ cos(2k � 1)
(i � j )�
2N � 1




are 0� 1� �1� 1
2 � �1

2 from which the statement follows.

Lemma ���� If XN = W+
N then

hTi � Tj iN = hTi � Tj i(W+
N
��N ) =


+(i � j ) +
�(i � j )
2

(i � j � N0)�
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where


+(i � j ) :=

�
1� if (i + j )�(2N � 1) is integer

0� otherwise�

and


+(i � j ) :=

�
1� if (i + j )�(2N � 1) is integer

0� otherwise�

Proof� Now we can use the identity

1
2

+
NX
k=2

cos(k � 1)� =
sin(2N � 1)�2

2 sin �
2

(� � R� N � N)

to show for all l � N
NX
k=1

�k �N cos(k � 1)
2l�

2N � 1
=

=
2

2N � 1

�
1
2

+
NX
k=2

cos(k � 1)
2l�

2N � 1

�
=

�
1� if l = (2N � 1)p

0� otherwise.

Therefore for i � j � N0 the values of

hTi � Tj iN =
NX
k=1

Ti (xk �N )Tj (xk �N )�k �N =

=
1
2

NX
k=1

�k �N

�
cos(k � 1)

2(i + j )�
2N � 1

+ cos(k � 1)
2(i � j )�
2N � 1




are 0� 1� 1
2 from which the statement follows.

From Lemmas 4.1–4.4 immediately follows that the polynomials T0, T1,
� � �, TN�1 are orthogonal with respect to the semi-scalar product (4�1), that
means, we have

Theorem ���� Let N � 2 be an integer and

XN := TN � U�N � V�N or W+
N �

Then for i � j = 0� 1� 2� � � � � N � 1 we have

(4�3) hTi � Tj i(XN ��N ) =

�
0� if i	j

kTik2
(XN ��N )� if i = j �
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where

(4�4) kTik2
(XN ��N ) =

�
1� if i = 0
1
2 � if i = 1� 2� � � � � N � 1

for XN = TN � V�N or W+
N and

(4�5) kTik2
(U�
N
��N )

=

�
1� if i = 0 or i = N � 1
1
2 � if i = 1� 2� � � � � N � 2�

The polynomials T0� T1� � � � � T2IN�1 also possess certain orthogonality
relations. Namely, we have

Theorem ���� Let N � 2 be an integer and

XN := TN � U�N � V�N or W+
N �

Then for

i � j = 0� 1� 2� � � � � 2IN � 1� i	j and i + j	2IN

we have

hTi � Tj i(XN ��N ) = 0�

Proof� The statement is a direct consequence of Theorem 4.5 and the
following “symmetry properties”:

For every j � l � Z we have

(4�6) Tj (x ) = (�1)lTj+2lN (x ) (x � TN )�
(4�7) Tj (x ) = Tj+2l (N�1)(x ) (x � U�N )�
(4�8) Tj (x ) = (�1)lTj+l (2N�1)(x ) (x � V�N )�
(4�9) Tj (x ) = Tj+l (2N�1)(x ) (x � W+

N )�

where T�j := Tj if j � N .

If xk �N = cos 2k�1
2N � =: cos 
k �N � TN then

Tj+2lN (xk �N ) = cos(j + 2lN )
2k � 1

2N
� =

= cos(j 
k �N + (2k � 1)l�) = (�1)lTj (xk �N )

which proves (4�6).
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If xk �N = cos k�1
N�1� =: cos 
k �N � U�N then

Tj+2l (N�1)(xk �N ) = cos(j + 2l (N � 1))
k � 1
N � 1

� =

= cos(j 
k �N + 2l (k � 1)�) = Tj (xk �N )

which proves (4�7).

If xk �N = cos 2k�1
2N�1� � V�N then

Tj+l (2N�1)(xk �N ) = cos (j + l (2N � 1))
2k � 1
2N � 1

� =

= cos

�
j

2k � 1
2N � 1

� + l (2k � 1)�

�
= (�1)l cos j

2k � 1
2N � 1

� = (�1)lTj (xk �N )�

which proves (4�8).

If xk �N = cos 2(k�1)
2N�1 � � W+

N then

Tj+l (2N�1)(xk �N ) = cos (j + l (2N � 1))
2(k � 1)
2N � 1

� =

= cos

�
j

2(k � 1)
2N � 1

� + 2(k � 1)l�

�
= cos j

2(k � 1)
2N � 1

� = Tj (xk �N )�

which proves (4�9).

5. Interpolatory properties

Fix a natural number N , consider an XN -system (see Section 3) and a

summation function Θ � Φ (see Section 2). The polynomials SΘ
2IN �N f (see

(2�1)) have degree �2IN (cf. (ii)). It is clear that among them there are
some which interpolate the function f at the points of XN . Next we give a
necessary and su�cient condition for the summation function Θ satisfying
this requirement.

First we write the polynomials SΘ
2IN �N f in another form. From (2�1) we

have

�
SΘ

2IN �N f
�

(x ) =
2INX
l=0

Θ

�
l

2IN

�
cl �N (f )pl (x ) =
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=
NX
k=1

f (xk �N )

�	



2INX
l=0

Θ

�
l

2IN

�
pl (xk �N )pl (x )

��
��k �N �

For k = 1� 2� � � � � N let us introduce the notation:

�Θ
k �N (x ) := �Θ

k �N (XN � �N � x ) :=
2INX
l=0

Θ

�
l

2IN

�
pl (xk �N )pl (x )�k �N �

Then

(5�1)
�
SΘ

2IN �N f
�

(x ) =
NX
k=1

f (xk �N )�Θ
k �N (x )�

Using a simple argument one can prove that the polynomials SΘ
2IN �N f (of

degree �2IN ) interpolates the function f : [�1� 1] � R at the points of XN
if and only if

(5�2) �Θ
k �N (xj�N ) = �k �j (j � k = 1� 2� � � � � N )�

Moreover, we state

Theorem ���� Let N � 2 be an integer� XN be one of the point systems

TN � U�N � V�N � W+
N � and let Θ � Φ be is a summation function� Then SΘ

2IN �N f

interpolates the function f : [�1� 1] � R at the points of XN if and only if

(5�3) Θ

�
j

2IN

�
+ Θ

�
1� j

2IN

�
= 1 (j = 0� 1� 2� � � � � 2IN )

and Θ(1�2) is arbitrary if XN = TN �

Proof� It is enough to show that

(5�4) (5�2) 	� (5�3)�

First we write the fundamental polynomials of the Lagrange interpolation
with respect to the point system XN in the basis fTl g. They will be denoted
by

�k �N (x ) := �k �N (XN � x ) (k = 1� 2� � � � � N )�

These are the uniquely determined polynomials in PN�2 for which

(5�5) �k �N (xj�N ) = �k �j (j � k = 1� 2� � � � � N )�
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Obviously there are uniquely determined real numbers al (l = 0� 1� � � � � N �1)
for which

�k �N (x ) =
N�1X
l=0

alTl (x ) (x � [�1� 1])�

Fix i = 0� 1� � � � � N � 1. Using (5�5) and (4�1) we have

h�k �N � Ti i(XN ��N ) =
NX
l=1

�k �N (xl �N )Ti (xl �N )�l �N = Ti (xk �N )�k �N �

On the other hand by (4�3) we obtain that

h�k �N � Ti i(XN ��N ) =
N�1X
l=0

al hTl � Ti i(XN ��N ) = aikTik2
(XN ��N )�

Since p0 = T0� pl =
p

2Tl (l � N) thus by (4�4) and (4�5) we get

(5�6)

�k �N (x ) =
N�1X
l=0

Tl (xk �N )Tl (x )

kTlk2
(XN ��N )

�k �N =

=
N�1X
l=0

pl (xk �N )pl (x )�k �N � 
N �k �N TN�1(xk �N )TN�1(x )�

where

(5�7) 
N :=

�
0� if XN = TN � V�N or W+

N

1� if XN = U�N .

Introduce �l := Θ
�

l
2IN

�
and consider the following transformation of

�Θ
k �N :

�Θ
k �N (x ) =

2INX
l=0

�lpl (xk �N )pl (x )�k �N =
N�1X
l=0

pl (xk �N )pl (x )�k �N +

+
N�1X
l=0

(�l � 1 + �2IN�l )pl (xk �N )pl (x )�k �N +

+

�	



2INX
l=N

�lpl (xk �N )pl (x )�
N�1X
l=0

�2IN�lpl (xk �N )pl (x )

��
��k �N =
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= �k �N (x ) +
N�1X
l=0

(�l � 1 + �2IN�l )pl (xk �N )pl (x )�k �N +

+
2INX
l=N

�l

h
pl (xk �N )pl (x )� p2IN�l (xk �N )p2IN�l (x )

i
�k �N +

+
N (1� 2�N�1)TN�1(xk �N )TN�1(x )�k �N =:

=: �k �N (x ) + Ak �N (x ) + Bk �N (x ) + Ck �N (x )�

From (4�6)–(4�9) it follows that

pl (xk �N )pl (xj�N ) = p2IN�l (xk �N )p2IN�l (xj �N )

(l = 0� 1� � � � � 2IN � xk �N � xj�N � XN = TN �U
�
N �V

�
N or W+

N )

and thus

Bk �N (xj�N ) = 0 (k � j = 1� 2� � � � � N )�

This means that

�Θ
k �N (xj�N ) = �k �j + Ak �N (xj�N ) + Ck �N (xj �N ) (j � k = 1� 2� � � � � N )�

i.e. �Θ
k �N (xj�N ) = �j�k for k � j = 1� 2� � � � � N if and only if

Ak �N (xj�N ) + Ck �N (xj�N ) = 0 (j � k = 1� 2� � � � � N )�

Therefore the polynomial Ak �N + Ck �N of degree at most (N � 1) has N
distinct roots. Consequently it is the zero polynomial. Since

pl (xk �N )	0 (l = 0� 1� � � � � N � 1� xk �N � XN )

thus �l + �2IN�l = 1 (l = 0� 1� � � � � N � 1) which proves the statement.

Our next aim to obtain Hermite–Fejér type interpolation polynomials by a
suitable summation function (see Theorem 5.4). We shall need the following
two lemmas.

Lemma ���� Let N � 2 be an integer and

XN := TN � U�N � V�N or W+
N �

Then for l = 1� 2� � � � � N � 1 we have

(5�8)
(2IN � l )pl (x )p�l (y) = �l p2IN�l (x )p�2IN�l (y)

(x � XN � y � XN � (�1� 1))�
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Proof� From (4�6)–(4�9) we obtain that

(5�9) pl (x ) =

��p2IN�l (x )� if x � TN or V�N

p2IN�l (x )� if x � U�N or W+
N .

Now we prove that

(5�10) p�l (y) =
l

2IN � l

�	


p�2IN�l

(y)� if y � TN or V�N n f�1g
�p�2IN�l (y)� if y � U�N n f�1g or W+

N n f1g.

Obviously (5�9) and (5�10) =� (5�8).

To verify (5�10) let y := cos 
j�N � XN � (�1� 1). Then

p�2IN�l
(y) =

p
2T �2IN�l (y) =

p
2 cos�[(2IN � l ) arccos y] =

=
p

2(2IN � l )
sin(2IN � l )
j�N

sin
j�N
�

(We remark that sin 
j�N	0 because 
j�N � (0� �).)

A simple calculation shows that

sin(2IN � l )
j�N =

�
sin l
j�N � if y � TN or V�N n f�1g
� sin l
j�N � if y � U�N n f�1g or W+

N n f1g.

Therefore

p�2IN�l
(y) =

p
2(2IN � l )
sin
j�N

�
sin l
j�N � if y � TN or V�N n f�1g
� sin l
j�N � if y � U�N n f�1g or W+

N n f1g
=

=
2IN � l

l

�
p�l (y)� if y � TN or V�N n f�1g
�p�l (y)� if x � U�N n f�1g or W+

N n f1g
which proves (5�10).

Lemma ���� Let N � 2 be an integer and

XN := TN � U�N � V�N or W+
N �

Then for a �xed xk �N � XN the polynomial

Rk (x ) :=
2IN�1X
l=1

blpl (xk �N )p�l (x )
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satis�es the requirements

(5�11) Rk (xj�N ) = 0 (
 xj�N � XN � (�1� 1))

if and only if

(5�12) l bl = (2IN � l )b2IN�l (l = 1� 2� � � � � N � 1)�

Proof� Let XN := TN � V�N or W+
N and consider the following

transformation of Rk :

Rk (x ) =
N�1X
l=1

blpl (xk �N )p�l (x ) +
2IN�1X
l=N

bl pl (xk �N )p�l (x ) =

=
N�1X
l=1

blpl (xk �N )p�l (x ) +
N�1X
l=1

b2IN�lp2IN�l (xk �N )p�2IN�l (x )�

(Here we used that pN (xk �N ) = 0 if xk �N � TN .) By (5�8) we get

Rk (xj�N ) =
N�1X
l=1

�
bl �

2IN � l

l
b2IN�l

�
pl (xk �N )p�l (xj�N )

for all xj�N � XN � (�1� 1). Therefore from (5�11) we obtain that the
polynomial

Ak (x ) :=
N�1X
l=1

�
bl �

2IN � l

l
b2IN�l

�
pl (xk �N )p�l (x )

of degree at most (N � 2) has at least (N � 1) distinct roots. Consequently
Ak (x ) = 0 (x � R). Since

pl (xk �N )	0 (l = 1� 2� � � � � N � 1� xk �N � XN )

thus

bl �
2IN � l

l
b2IN�l = 0 (l = 1� 2� � � � � N � 1)

which proves (5�12) in these cases.

The proof is similar if XN = U�N . In this case

p�N�1(xj�N ) = 0 (
 xj�N � U�N n f�1g)

and thus for xj�N � U�N n f�1g we have

Rk (xj�N ) =
N�2X
l=1

�
bl �

2IN � l

l
b2IN�l

�
pl (xk �N )p�l (xj�N )�
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i.e. the polynomial
N�2X
l=1

�
bl �

2IN � l

l
b2IN�l

�
pl (xk �N )p�l (x )

of degree � N �3 has at least (N �2) distinct roots. So we get (5�12) in this
case, too.

Theorem ���� Let N � 2 be an integer�

XN := TN � U�N � V�N or W+
N

and

(5�13) ΘF (t) :=

�
1� t � if 0 � t � 1
0� if t �1�

Then for every function f : [�1� 1] � R the polynomial S
ΘF
2IN �N f is the

unique element of P2IN�1 satisfying the following Hermite	Fej
er type inter�

polation conditions

(5�14)
�
S

ΘF
2IN �N f

�
(xj�N ) = f (xj�N ) (xj �N � XN )�

(5�15)
�
S

ΘF
2IN �N f

��
(xj�N ) = 0 (xj�N � XN � (�1� 1))�

Proof� By (2�1) we have

�
S

ΘF
2IN �N f

�
(x ) =

2INX
l=0

ΘF

�
l

2IN

�
cl �N (f )pl (x ) =

=
NX
k=1

f (xk �N )

�	



2INX
l=0

ΘF

�
l

2IN

�
pl (xk �N )pl (x )

��
��k �N �

Obviously the summation function ΘF satisfies (5�3) therefore conditions
(5�14) hold.

Moreover

lΘF

�
l

2IN

�
= (2IN � l )ΘF

�
2IN � l

2IN

�
(l = 1� 2� � � � � N � 1)

thus by Lemma 5.3 we have
2INX
l=0

ΘF

�
l

2IN

�
pl (xk �N )p�l (xj�N ) = 0

for all xj�N � XN � (�1� 1) which proves (5�15).
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6. Convergence

In this Section we shall show that if the Fourier transform of the summa-
tion function Θ is Lebesgue integrable on R

+ := [0�+�) then the sequence
(2�3) tends to f uniformly on [�1� 1] for all f � C [�1� 1].

Denote by L1(R+ ) the ususal linear space of measurable functions g : R+

+ � R for which the Lebesgue integral
R
R+ jg j is finite. The function

kgkL1(R+) :=

+�Z
0

jg(x )jdx (g � L1(R+ ))

is a norm on L1(R+) and
�
L1(R+ )� k � kL1(R+)

�
is a Banach space.

The Fourier transform of g � L1(R+ ) is defined by

ĝ(x ) :=
1

2�

+�Z
0

g(t) cos(tx )dt (x � R+ )�

In general, the Fourier transform of a function from L1(R+) does not belong

to the space L1(R+). The verification of ĝ � L1(R+) is not always easy, but
the following sufficient condition is known:

Theorem ��� ([10, p. 176]). If g : R+ � R is a continuous function

supported in [0� 1] and g � Lip � (� �1�2) on [0� 1] then ĝ � L1(R+ )�

We prove

Theorem ���� Let XN be one of the point systems TN � U�N � V�N � W+
N �

Suppose that

mn � +� (n � +�) and mn � 2INn (n � N)�

moreover Θ � Φ is a summation function� If Θ̂ � L1(R+ ) then the sequence

SΘ
mn �Nn

f (n � N) uniformly converges on [�1� 1] to f for all f � C [�1� 1]�

Proof� We shall use the Banach–Steinhaus Theorem. The polynomials

(6�1) p0 := T0� pl :=
p

2Tl (l � N)
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form a closed system for the space
�
C [�1� 1]� k � k�

�
, therefore we have to

show that

(6�2)
���SΘ

mn �Nn pj � pj

���
�
� 0 (n � +�)

for every fixed j � N0 , moreover the norms of the operators

S
Θ
mn �Nn :

�
C [�1� 1]� k � k�

�� Pmn �
�
C [�1� 1]� k � k�

�
�

S
Θ
mn �Nn f := SΘ

mn �Nn f (f � C [�1� 1])�

i.e. the sequence of real numbers

���SΘ
mn �Nn

��� := sup
0 ��f�C [�1�1]

���SΘ
mn �Nn

f
���
�

kf k� = sup
x�[�1�1]

NnX
k=1

����Θ
k �Nn (x )

��� =

= sup
x�[�1�1]

NnX
k=1

�����
mnX
l=0

Θ

�
l

mn

�
pl (xk �Nn )pl (x )

������k �Nn
is uniformly bounded; i.e. there exists c �0 independent of n such that

(6�3)
���SΘ

mn �Nn

��� � c (n � N)�

To verify (6�2), let us fix j � N0 and assume that n is so large that
minfmn � Nng�j . Then by Theorem 4.6 we have�

SΘ
mn �Nn pj

�
(x ) =

mnX
l=0

Θ

�
l

mn

�
hpj � pl iNn pl (x ) =

= Θ

�
j

mn

�
kpj k2

Nn pj (x ) + Θ

�
2IN � j

mn

�
hpj � p2INn�j

iNn p2INn�j
(x )�

Using Theorem 4.5 we obtain that

SΘ
mn �Nn pj � pj =

�
Θ

�
j

mn

�
� 1

�
pj+

+ Θ

�
1� j

mn
+

2INn � mn

mn

�
hpj � p2INn�j

iNn p2INn�j
�

Since Θ � Φ (see Section 2) and mn � 2INn (n � N) thus

Θ

�
j

mn

�
� Θ(0) = 1 (n � +�)

and
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Θ

�
1� j

mn
+

2INn � mn

mn

�
� Θ(1) = 0 (n ��)

therefore (6�2) follows from the above relations.

Next we prove (6�3). Let x =: cos
 (
 � [0� �]), xk �N =: cos 
k �N
(k = 1� 2� � � � � N ). Since p0 = T0, pl =

p
2Tl (l = 1� 2� � � �) thus for every

m�N � N we have
mX
l=0

Θ

�
l

m

�
pl (xk �N )pl (x ) = 1 + 2

mX
l=0

Θ

�
l

m

�
Tl (xk �N )Tl (x ) =

= 1 + 2
mX
l=0

Θ

�
l

m

�
cos l
k �N cos l
 =

=
1
2

+
mX
l=0

Θ

�
l

m

�
cos l (
 + 
k �N ) +

1
2

+
mX
l=0

Θ

�
l

m

�
cos l (
 � 
k �N ) =:

=: DΘ
m (
 + 
k �N ) + DΘ

m (
 � 
k �N )�

Therefore���SΘ
m�N

��� = max
��[0��]

NX
k=1

���DΘ
m (
 + 
k �N ) + DΘ

m (
 � 
k �N )
����k �N �

� max
��[0��]

NX
k=1

���DΘ
m (
 + 
k �N )

����k �N + max
��[0��]

NX
k=1

���DΘ
m (
 � 
k �N )

����k �N �
Since

max
��[0��]

NX
k=1

���DΘ
m (
 � 
k �N )

����k �N � C
�

1 + 2
m

N
�
�
kDΘ

m k1�

where

kDΘ
m k1 :=

1
2�

�Z
��

jDΘ
m (t)jdt

(see [16, (26)]) and

2 sup
n�N

kDΘ
mn k1 = kΘ̂kL1(R+)

(see [16, (27)]) thus condition Θ̂ � L1(R+ ) ensures (6�3).
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7. Applications

7.1. Lagrange interpolation� On the interval [�1� 1] one of the most
natural discrete approximating tools is the Lagrange interpolation.

Throughout this section we assume that the interpolatory point system is

(7�1) XN := TN � U�N � V�N or W+
N (N � N)

(see Section 3). Denote, as usual,

(LN f ) (x ) := LN (f � XN � x ) :=
NX
k=1

f (xk �N )�k �N (x ) (x � [�1� 1]� N � N)

the Lagrange interpolatory polynomial of degree � N �1 based on the nodes
(7�1), i.e.

�k �N (x ) := �k �N (XN � x ) (x � [�1� 1]� k = 1� 2� � � � � N� N � N)

are the fundamental polynomials of the Lagrange interpolation.

Using (5�6) and (2�2) we have

(7�2)

(LN f ) (x ) =
NX
k=1

f (xk �N )�k �N (x ) =

=
NX
k=1

f (xk �N )

�
N�1X
l=0

pl (xk �N )pl (x )� 
N
2
pN�1(xk �N )pN�1(x )

�
�k �N =

=
N�1X
l=0

cl �N (f )pl (x )� 
N
2
cN�1�N (f )pN�1(x ) =

N�1X
l=0

�l �N pl (x )�

where

(7�3) �l �N (f ) :=

�
cl �N (f )� if l = 0� 1� � � � � N � 2

cN�1�N (f )f1� 	N
2 g� if l = N � 1.

The polynomials LN f (N � N) can be obtained as special cases of (2�1).
Indeed, let

ΘL(t) :=

��	
�


1� if t � [0� 1�2)

1
2 � if t = 1

2

0� if t � (1�2�+�).
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Then �
S

ΘL
2IN �N f

�
(x ) =

2INX
l=0

ΘL

�
l

2IN

�
cl �N (f )pl (x ) =

=
NX
k=1

f (xk �N )

�
N�1X
l=0

pl (xk �N )pl (x )� 
N
2
pN�1(xk �N )pN�1(x )

�
�k �N �

i.e.

(LN f ) (x ) =
�
S

ΘL
2IN �N f

�
(x ) (x � [�1� 1]� N � N)�

It is known that (see Faber’s Theorem) that LN f (N � N) generally does
not tend uniformly in [�1� 1] to f for all f � C [�1� 1].

Using Theorems 6.1 and 6.2 one can easily construct a lot of discrete

processes which are uniformly convergent in the whole interval [�1� 1]. In
the following Parts we shall discuss only some of them. It is important to
note that the corresponding polynomials have very simple explicit forms.

7.2. Arithmetic means of Lagrange interpolation� Let

(7.4)

�
Lm�N f

�
(x ) := Lm�N (f � XN � x ) :=

mX
l=0

�l �N (f )pl (x )

(x � [�1� 1]� m = 0� 1� � � � � N � 1� N � N)
(see (7�3)) and consider the following arithmetic means of the Lagrange in-
terpolation:

(7�5) (�N f ) (x ) := �N (f � XN � x ) :=
1
N

N�1X
m=0

�
Lm�N f

�
(x )

(x � [�1� 1]� N � N)�

Theorem 	��� Let XN be one of the point systems TN � U�N � V�N � W+
N

(N � N)� Then for every f � C [�1� 1] the sequence �N f (N � N) tends to

f uniformly on the whole interval [�1� 1]�

Proof� From (7�3) and (7�4) we have

�
Lm�N f

�
(x ) =

mX
l=0

cl �N (f )pl (x ) (m = 0� 1� � � � � N � 2)

�
LN�1�N f

�
(x ) =

N�1X
l=0

cl �N (f )pl (x )� 
N
2
cN�1�N (f )pN�1(x )�
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Let us define the summation function

ΘF (t) :=

�
1� t � if t � [0� 1]

0� if t � (1�+�).

Then

(�N f )(x ) =
N�1X
l=0

�
1� l

N

�
cl �N (f )pl (x )� 
N

2N
cN�1�N (f )pN�1(x ) =

=
�
S

ΘF
N�N f

�
(x )� 
N

2N
cN�1�N (f )pN�1(x )�

Since Θ̂F � L1(R+ ) (see Theorem 6.1) thus from Theorem 6.2 we obtain that

lim
N�+�

���f � S
ΘF
N�N f

���
�

= 0

for all f � C [�1� 1] which proves the statement if XN = TN �V
�
N or W+

N
(see (5�7)).

If XN = U�N (i.e. 
N = 1) then

cN�1�N (f ) =
NX
k=1

f (xk �N )pN�1(xk �N )�k �N =

p
2

NX
k=1

f (xk �N ) cos[(k � 1)�]�k �N =
p

2
NX
k=1

(�1)k�1f (xk �N )�k �N �

From it follows that

jcN�1�N (f )j � ckf k� (N � N)�

i.e.

lim
N�+�

��� 
N
2N

cN�1�N (f )pN�1

���
�

= 0

which proves the statement for XN = U�N .

Remark� Theorem 7.1 is a discrete version of the fundamental Fejér’s
theorem about (C� 1) summability of Fourier series. In the trigonometric case
the analogue result due to J. Marcinkiewicz [7] and to S. N. Bernstein [1]. If
XN = TN then Theorem 7.1 follows from the Theorem of [21].

Conjecture� If in Theorem 7.1 XN is the roots of the orthogonal poly-
nomial UN � VN or WN then the uniform convergence is true only on the
compact intervals of (�1� 1).
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Corollary 	��� If XN = TN �U
�
N �V

�
N or W+

N � lim
n�+�

= +� and mn �
2INn (n � N) then

lim
n�+�

���SΘF
mn �Nn

f � f
���
�

= 0 (f � C [�1� 1])�

Remark� S
ΘF
mn �Nn

f can also be considered as certain arithmetic mean of

the Lagrange interpolation.

7.3. Gr�unwald�Rogosinski type processes� Let us consider the summa-
tion function

ΘG (t) :=

�
cos t �2 � if t � [0� 1]

0� if t � (1�+�).

For its Fourier transform we obtain

Θ̂G (x ) =
sin(x � ��2)

2(x2 � (��2)2)
(x � R+)

and thus Θ̂G � L1(R+ ).

Theorem 6.2 immediately yields

Corollary 	��� If XN = TN �U
�
N �V

�
N or W+

N � lim
n�+�

mn = +� and

mn � 2INn (n � N) then

lim
n�+�

���SΘG
mn �Nn

f � f
���
�

= 0 (f � C [�1� 1])�

A simple calculation shows that�
S

ΘG
[IN ]�N f

�
(x ) =

1
2

��
LN f

��

 +

�

2[IN ]

�
+
�
LN f

��

 � �

2[IN ]

�

�

where �
LN f

�
(
 ) := (LN f ) (cos 
 )�

Therefore Corollary 7.3 contains the Grünwald’s theorem about the Rogosin-
ski type average of Lagrange interpolation based on the roots of TN (see [5,
Theorem]).

Remark� In [25] M. S. Webster obtained similar result for the roots of
Chebyshev polynomials of the second kind UN . He proved that the uni-
form convergence is true only in any closed subinterval of (�1� 1). Later
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G. I. Natanson (see [15, p. 481]) and P. Vértesi [22] generalized these results
for Jacobi roots and for any inrterval [a� b] � (�1� 1). Our Corollary 7.3
states that on the four point system XN the Grünwald–Rogosinski type av-
erage of the corresponding Lagrange interpolation polynomials are uniformly
convergent on the whole interval [�1� 1].

7.4. Hermite�Fej�er type interpolation� Let N � 2 be an integer and
XN = TN �U

�
N �V

�
N or W+

N . Theorem 5.4 states that for every function
f � C [�1� 1] there exists a uniquely determined polynomial HN (f � XN � x )
of degree � 2IN � 1 such that

HN (f � XN � xj�N ) = f (xj�N ) (xj�N � XN )

H �N (f � XN � xj�N ) = 0 (xj�N � XN � (�1� 1)�

Moreover

HN (f � XN � x ) =
�
S

ΘF
2IN �N f

�
(x ) =

2INX
l=0

�
1 � l

2IN

�
cl �N (f )pl (x )�

where cl �N (f ) is given by (2�2). Since

�̂F (x ) =
1

2�

�
sin(x�2)
x�2

�2

(x � R+ )

belongs to L1(R+) thus from Theorem 6.2 we have

Corollary 	��� If XN = TN �U
�
N �V

�
N or W+

N then

lim
N�+�

kHN (f � XN � �)� f k� = 0 (f � C [�1� 1])�

7.5. De la Vell�ee Poussin�Erd�os type interpolation� Fix a number � �
� (0� 1) and let

Θ� (t) :=

����	
���


1� if t � [0� 1��
2 ]

� 1
� (x � 1+�

2 )� if t � [ 1��
2 � 1+�

2 ]

0� if t � ( 1+�
2 �+�).

An easy calculation shows that

Θ̂� (x ) =
1

2(1� �)�
sin2(x�2)� sin2(1 + �)x

(x�2)2 (x � R+ )�
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Consequently Θ̂� � L1(R+). Moreover

Θ� (t) + Θ� (1� t) = 1 (t � [0� 1])�

Thus from Theorem 5.1 and 6.2 we have

Corollary 	��� Fix a number � � (0� 1) and let XN = TN �U
�
N �V

�
N

or W+
N � Then the degree of the polynomial SΘ�

2IN �N f is � IN (1 + �) and it

interpolates the function f at the points of XN � Moreover

lim
N�+�

���SΘ�
2IN �N f � f

���
�

= 0 (f � C [�1� 1])�

We also have the following Erdős type result:

Corollary 	��� If XN = TN �U
�
N �V

�
N or W+

N then to every f �
� C [�1� 1] and � �0 there exists a sequence of polynomials QN (N � N)
such that

�i� the degree of QN is � N (1 + �) (N � N)�

�ii� QN interpolates f at the points of XN �

�iii� (QN � N � N) tends to f uniformly in [�1� 1]�

In 1943, P. Erdős [3, Theorem 1] proved the above statement if the
interpolatory point system is such that the fundamental polynomials of La-
grange interpolation are uniformly bounded. For our four point systems XN
the polynomials QN have very simple explicit forms. Namely

QN (x ) =
�
SΘ�

2IN �N f
�

(x ) (x � [�1� 1]� N � N)�
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DISCRETE CROUZEIX–VELTE DECOMPOSITIONS ON
NON-EQUIDISTANT RECTANGULAR GRIDS

By

GYÖRGYI STRAUBER

The difference approximation of the Stokes problem on staggered non-
equidistant grids and for finite difference and finite volume schemes is investi-
gated in two dimensions. A full description of the discrete Crouzeix–Velte de-
composition is given in the case of a non-equidistant grid for Shortley–Weller
approximation and in the case of second order difference approximation and
homogeneous Dirichlet boundary conditions.

1. Introduction

The Crouzeix–Velte decomposition, introduced in [3], and, independently

in [14] (see also [4]), can be regarded as an (H 1
0 )n equivalent of the well-

known Helmholtz decomposition for vector functions in (L2)n . This decom-
position contains, besides the subspaces of rotation-free and divergence-free

vector functions, a third orthogonal subspace consisting of biharmonic (H 1
0 )n

functions, which are neither rotation-free nor divergence-free. This decompo-
sition can be used to determine the optimal constant in the so-called inf-sup
condition for the Stokes problem. It is known that the eigenvalues of the Schur

complement operator S = � div(Δ)�1 grad lie in [0� 1], and the eigenvectors
to eigenvalues in (0� 1) span the third Velte subspace. The inf-sup constant
is the square root of the smallest among these latter eigenvalues, that is this
optimal constant can be characterized by the third subspace alone [11].
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For the numerical solution of the Stokes problem and its connection to
the inf-sup problem, see [1], [7], [2]. If using finite difference methods for ap-
proximating the Stokes equations and if the discrete scheme admits a discrete
Crouzeix–Velte decomposition, then the same conclusions as in the continu-
ous case can be drawn. In this case both discrete rotation-free and discrete
divergence-free functions exist and their subspaces are in similar relation as

the corresponding subspaces of (H 1
0 )n and there is a third orthogonal subspace

consisting of discrete biharmonic vector functions (or harmonic functions, for
the pressure space, respectively). The optimal constant of the discrete inf-sup
condition can hence be computed on this much smaller third space (see [11]).
The optimal inf-sup constant is useful not only in error estimates for the nu-
merical schemes but in the determination of the optimal iteration parameters
of some numerical methods for solving the corresponding linear systems. In
[13] the Uzawa and Arrow–Hurwitz iterations are investigated and are shown
to reach the third Crouzeix–Velte subspace after at most 2 steps in the sense
that then the error of the iterative solution belongs to that subspace. Using the
fact that in the harmonic Crouzeix–Velte pressure subspace the spectrum of
the Schur complement is closer and can be bounded through estimates of the
inf-sup constant, new optimal iteration parameters for both methods have been
calculated. Also in [13] an improved convergence estimate is derived for the
conjugate gradient method using the estimates of the inf-sup constant. This
method can be also restricted to the third Crouzeix–Velte subspace. Then, the
dimension of the latter subspace is an upper bound on the maximal number of
steps. This dimension is connected to the number of boundary points that is
usually lower (by one power) than the full number of unknowns. For iterative
methods based on space decomposition see also [15].

The aim of the present paper is to investigate the well-known staggered
grid approximation of the Stokes-problem and to prove the existence of the
discrete Crouzeix–Velte decomposition in the case of a non-equidistant grid
for the Shortley–Weller approximation, for a finite volume scheme and in
the case of second order approximation and homogeneous Dirichlet boundary
conditions. The first order staggered grid approximation in a special case was
investigated in [11]. This result has been generalized in [6] to general two-
and three-dimensional domains.

The outline of the paper is as follows. In Section 2, the necessary
notations as well as the Crouzeix–Velte decomposition in the continuous case
are introduced and the discrete Stokes problem and discrete Crouzeix–Velte
decompositions are described. In Section 3, the case of a non-equidistant grid
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is investigated and it is shown that the discrete Crouzeix–Velte decomposi-
tion exists for the Shortley–Weller approximation only if the grid spacing is
changing linearly (Section 3.1). It is also shown that using the finite volume
method on a rectangular grid, the discrete Crouzeix–Velte decomposition
exists without any condition on the grid spacing (Section 3.2). In Section 4,
all details of the discrete Crouzeix–Velte decomposition are given using the
second order finite difference method. Finally, in Section 5 we show some
computational results. Here it becomes visible that — from the point of view
of the convergence rate of Uzawa- and conjugate gradient-like methods for
the iterative solution of the corresponding discrete Stokes problems — it is
worth using non-equidistant grids.

2. The Stokes problem and the Crouzeix–Velte decomposition

Let Ω be a bounded, simply-connected open domain in Rn , n = 2, 3, and

denote by V := (H 1
0 (Ω))n the Sobolev space of vector functions

u(x ) = (u1(x )� � � � � un (x ))T

defined for x = (x1� � � � � xn) � Ω, with generalized derivatives in (L2(Ω))n and
with zero boundary values in the sense of traces on the Lipschitz-continuous
boundary �Ω of Ω.

For a given f � (L2(Ω))n and denoting by L2�0(Ω) the subspace of
L2(Ω) of square integrable functions with zero integral over Ω, consider the
following first-kind Stokes problem in variational formulation:

a(u� v ) + b(v � p) = (f � v )0� for all v � V �(1)

b(u� q) = 0� for all q � L2�0(Ω)�(2)

where

(f � v ) :=
nX
i=1

(fi � vi ) =
Z
Ω

nX
i=1

fi (x )vi (x )dx �(3)

a(u� v ) :=
Z
Ω

nX
i �j=1

�ui
�xj

�vi
�xj

dx �(4)

b(u� p) := �(div u� p)�(5)

The problem consists in finding a velocity vector u � V and a pressure
p � L2�0(Ω). It is well known (see [7], [2]) that this problem is solvable
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and its solution depends in stable way on the data since the so-called inf-sup
condition is satisfied:

(6) sup
u�0

b2(u� p)�a(u� u) � �2
0kpk

2 for all 0�p � L2�0; �0 = const �0�

The following identity is well-known for any w , v � V in both the two-or
three-dimensional case:

(7) a(w� v ) := (divw� div u) + (rotw� rot v )�

In the three-dimensional case rotw is defined as usual and in two-dimensional
case rotw is defined as the scalar �w2

�x1
�

�w1
�x2

often also denoted by curlw . On

the basis of (7), the following orthogonal decomposition of V was derived
in [14]:

(8) (H 1
0 (Ω))n = V = V0 �V1 �V� �

where

V0 = ker div = fw � V� divw = 0g�(9)

V1 = ker rot = fw � V� rotw = 0g�(10)

The third orthogonal subspace V� has been characterized in [14] and in

Lemma 1 in [11] as consisting of the solutions u = u(p) of the variational
problem

(11) a(u� v ) := b(v � p) for all v � V

for harmonic p � L2�0. The space L2 is decomposed similarly (see [11]) into
three orthogonal subspaces:

(12) L2 = P = P0 � P1 � P� �

where

(13) P0 := ker grad� P1 = div ker rot = divV1� P� = divV� �

Here P0 is the one-dimensional space of functions constant on Ω, P� consists

of harmonic functions (see [14]). Both decomposition (8) and (12) are called
Crouzeix–Velte decomposition.

After discretization by finite element or finite difference methods, the
Stokes problem (1) takes the following form:

(14)

�
Ah BT

h

Bh 0

��
u

p

�
=

�
f

0

�
�
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Here Ah corresponds to the vector Laplace operator and is a symmetric
positive definite matrix of dimension nh�nh where nh denotes the number of
velocity degrees of freedom; the 0 block is of dimension mh � mh , with the
number mh of pressure degrees of freedom; Bh corresponds to the negative
divergence operator and is of dimension mh � nh . Further, u , p and f denote
the coefficient vectors of velocities and pressure and of the projection of the
force vector, respectively.

3. The staggered grid approximation on a nonequidistant grid

Now we consider the well-known staggered-grid approximation where Ω
is the unit square subdivided by a non-equidistant grid. The cell midpoints
are pressure nodes, the pressure vector is denoted by ph and its components
by pi j , with i , j = 1, � � � , n�1. The area of the cell of pi j is h1�i+1�2h2�j+1�2.

The sides of the cells contain as their midpoints the velocity nodes: nodes
of the u-components of the velocity are on the east-west sides, nodes of the
v -components are on the north-south sides, and there are (n�1)n such nodes
of each velocity component (including the boundary nodes). The velocity
components are denoted by ui j , i = 1� � � �� n , j = 1� � � �� n � 1, and by vi j ,
i = 1� � � �� n � 1, j = 1� � � �� n . Here the ui j with i = 1 and i = n are the
boundary values of uh ; the vi j with j = 1 and j = n are the boundary values
of vh . For the approximation of the Stokes problem we need the discrete
divergence operator and the discrete vector Laplace operator. Moreover, we
will define also the discrete rotation operator.

3.1. The finite difference approximation on a staggered grid

First we use the finite difference method to approximate the Stokes prob-
lem. To simplify the expressions, the following notations will be introduced:

h̃1�i+1�2 :=
h1�i�1�2 + 2h1�i+1�2 + h1�i+3�2

4

h̃2�j+1�2 :=
h2�j�1�2 + 2h2�j+1�2 + h2�j+3�2

4

h̃1�i :=
h1�i�1�2 + h1�i+1�2

2

h̃2�j :=
h2�j�1�2 + h2�j+1�2

2
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For pressure vectors ph , qh and velocity vectors 	uh = (uh � vh)T , 	wh =

(rh � Sh )T the following discrete scalar products and the corresponding norms
are introduced:

(ph � qh)0�h :=
n�1X
i �j=1

pi j qi j h1�i+1�2h2�j+1�2�(15)

kphk
2
0�h := (ph � ph)0�h �

(ph � qh)0�h̃ :=
n�2X
i=1

nX
j=1

pi j qi j h̃1�i+1h̃2�j+(16)

+
n�1X
j=2

p0�j q0�j h̃1�1h̃2�j +
n�1X
j=2

pn�1�jqn�1�j h̃1�n h̃2�j �

kphk
2
0�h̃

:= (ph � ph)0�h̃ �

(	uh � 	wh )0�h :=
n�1X
i=2

n�1X
j=1

ui j ri j h̃1�i h̃2�j+1�2+(17)

+
n�1X
i=1

n�1X
j=2

vi j si j h̃1�i+1�2h̃2�j �

k	uhk
2
0�h := (	uh �	uh)0�h �

The space Rmh with the scalar product (15) and corresponding norm will be

called the pressure space and denoted by Ph ; similarly, the velocity space 	Vh
is the space Rnh , nh := 2(n � 2)(n � 1), with the scalar product (17) and the
corresponding norm — taking into account that the boundary values of the
velocity components are zero.

The divergence is approximated as follows:

(18) (divh �	uh )i j :=
ui+1�j � ui j
h1�i+1�2

+
vi �j+1 � vi j
h2�j+1�2

�

where 	uh := (uh � vh )T and i = 1� � � �� n � 1, j = 1� � � �� n � 1. The matrix
corresponding to the mapping � div h from the velocity space into the pres-
sure space is denoted by Bh . For the approximation of the discrete Laplace
operator we continue the grid by two lines for u-nodes: one above the square
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at a distance h2�n+1�2�2 and one below the square at a distance h2�1�2�2.

Further we continue the grid by two lines for v -nodes: one left to the square
at a distance h1�1�2�2 and one right to the square at a distance h1�n+1�2�2.

Putting zero values into the u- or v -nodes on these lines and using the usual
Shortley–Weller approximation for the discrete Laplace operator (see, e.g.
[10]) in all inner velocity nodes, we get the following first order approxima-
tion:

Δh	uh = (Δhuh �Δhvh)T �

(Δhuh )i j :=
1

h̃1�i

�
ui+1�j � ui j
h1�i+1�2

�
ui j � ui�1�j

h1�i�1�2

�
+

+
1

h̃2�j+1�2

�
ui �j+1 � ui j

h̃2�j+1
�
ui j � ui �j�1

h̃2�j

�
�

2 � i � n � 1� 1 � j � n � 1�(19)

(Δhvh )i j :=
1

h̃1�i+1�2

�
vi+1�j � vi j

h̃1�i+1
�
vi j � vi�1�j

h̃1�i

�
+

+
1

h̃2�j

�
vi �j+1 � vi j
h2�j+1�2

�
vi j � vi �j�1

h2�j�1�2

�
�

1 � i � n � 1� 2 � j � n � 1�

The matrix corresponding to the mapping �Δh from the velocity space into
itself is denoted by Ah and is positive definite. Finally, we define the discrete
rotation as follows:

(20) (roth 	uh)i j :=
vi+1�j � vi j

h̃1�i+1
�
ui+1�j � ui+1�j�1

h̃2�j
�

and we introduce the following notation: Ch for the matrix of the operator
rot h .

Theorem ��

(21) (Ah	uh �	uh )0�h = kBh	uhk
2
0�h + kCh	uhk

2
0�h̃

holds for all vectors 	uh := (uh � vh)T � 	Vh if and only if

h1�i+1�2 =
h1�i�1�2 + h1�i+3�2

2

and
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h2�j+1�2 =
h2�j�1�2 + h2�j+3�2

2
�

Proof� We apply partial summation to (Ah	uh �	uh)0�h and then con-
tinue the grid functions uh and vh by zero onto the grid of the whole two-
dimensional plane and extend the summation in all expressions to all integer
i , j . Then we get:

(Ah	uh �	uh)0�h =
X
i �j

�
ui+1�j � ui j
h1�i+1�2

�2

h1�i+1�2h̃2�j+1�2+

+
X
i �j

�
ui �j+1 � ui j

h̃2�j+1

�2

h̃1�i h̃2�j+1+

+
X
i �j

�
vi+1�j � vi j

h̃1�i+1

�2

h̃1�i+1h̃2�j+

+
X
i �j

�
vi �j+1 � vi j
h2�j+1�2

�2

h2�j+1�2h̃1�i+1�2 =

=
X
i �j

�
h̃2�j+1�2

h1�i+1�2
(ui+1�j � ui j )

2 +
h̃1�i

h̃2�j+1
(ui �j+1 � ui j )

2+

+
h̃2�j

h̃1�i+1
(vi+1�j � vi j )

2 +
h̃1�i+1�2

h2�j+1�2
(vi �j+1 � vi j )

2

�
�

kBh	uhk
2
0�h may be written as follows:

kBh	uhk
2
0�h =

X
i �j

�
ui+1�j � ui j
h1�i+1�2

+
vi �j+1 � vi j
h2�j+1�2

�2

h1�i+1�2h2�j+1�2 =

=
X
i �j

�
h2�j+1�2

h1�i+1�2
(ui+1�j � ui j )

2 +
h1�i+1�2

h2�j+1�2
(vi �j+1 � vi j )

2+

+ 2(ui+1�j � ui j )(vi �j+1 � vi j )

�
�
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kCh	uhk
2
0�h̃

can be written as

kCh	uhk
2
0�h̃

=
X
i �j

�
�(ui+1�j � ui+1�j�1)

h̃2�j
+
vi+1�j � vi j

h̃1�i+1

�2

h̃1�i+1h̃2�j

=
X
i �j

�
h̃1�i+1

h̃2�j
(ui+1�j � ui+1�j�1)2 +

h̃2�j

h̃1�i+1
(vi+1�j � vi j )

2�

� 2(ui+1�j � ui+1�j�1)(vi+1�j � vi j )

�
�

Performing some index shifts we get:

2
X
i �j

(ui+1�j � ui j )(vi �j+1 � vi j ) =

= 2
X
i �j

(ui+1�j vi �j+1 � ui+1�j vi j � ui j vi �j+1 + ui j vi j ) =

= 2
X
i �j

(ui+1�j�1vi j � ui+1�j vi j � ui+1�j�1vi+1�j + ui+1�j vi+1�j ) =

= 2
X
i �j

(ui+1�j � ui+1�j�1)(vi+1�j � vi j )�

Namely, to get from the second to the third line in the above formulae, in the
fourth term we have replaced i by i + 1, in the first term j by j � 1, and in
the third term both indices have been shifted. Applying both shifts also to the

expression
P
i �j

(ui �j+1 � ui j )
2 in (Ah	uh �	uh)0�h , we find

(Ah	uh �	uh )0�h � kBh	uhk
2
0�h � kCh	uhk

2
0�h̃

=

=
X
i �j

�
h2�j�1�2 � 2h2�j+1�2 + h2�j+3�2

4h1�i+1�2
(ui+1�j � ui j )

2+

+
h1�i�1�2 � 2h1�i+1�2 + h1�i+3�2

4h2�j+1�2
(vi �j+1 � vi j )

2

�
�

Using the assumptions on the step lengths, we get

(Ah	uh �	uh )0�h � kBh	uhk
2
0�h � kCh	uhk

2
0�h̃

= 0�
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Remark �� It can be shown that dim(Vh0) = (n � 2)2, dim(Vh1) =

= (n � 3)2 and dim(Vh��) = 4n � 9, where n denotes the number of grid

points (including corner points) along a side of the square. Namely, to
compute dim(Vh0) = dim ker divh we count the number of conditions to get

k divh 	uhk
2
0�h = 0. Excluding the very last cell (which is depending on the

other cells) we have to require divh 	uh = 0 in all remaining cells, that is, in

(n� 1)2� 1 points. Then dim ker divh = nh � ((n� 1)2� 1) = (n� 2)2 where
nh = 2(n � 1)(n � 2) denotes the number of velocity degrees of freedom.
Similarly, to compute dim(Vh1) = dim ker roth we count the number of

conditions to get k roth 	uhk
2
0�h = 0, starting from the boundary of the grid and

proceeding to the center. Excluding the corners of the square and the very last
cell corner in the center of the grid, in all other cell corners we have to require

roth 	uh = 0, that is in n2�5 points. Then dim ker roth = nh�(n2�5) = (n�3)2.

Therefore dim(Vh��) = nh � (n � 2)2 � (n � 3)2 = 4n � 9.

(We remark that basis functions for ker roth and ker divh have been
described in [8], and for ker divh also in [5] and [2].)

Remark �� Although Ah is not a symmetric matrix, it is symmetric in
the sense of the scalar product (17). This means that (21) can be described in
matrix terms as follows:

(DAAh	uh �	uh ) = (DBBh	uh � Bh	uh ) + (DCCh	uh � Ch	uh) =

= (BT
h DBBh	uh �	uh) + (CT

h DCCh	uh �	uh)�(22)

where ( � � � ) is the Euclidean scalar product and DA, DB , DC are diagonal
matrices corresponding to (17), (15) and (16):

(DAuh )k �k = ui �j h̃1�i h̃2�j+1�2�

k = (n � 1)(i � 2) + j � 2 � i � n � 1� 1 � j � n � 1�

(DAvh )k �k = vi �j h̃1�i+1�2h̃2�j �

k = (n � 2)(i � 1) + j � 1� 1 � i � n � 1� 2 � j � n � 1�

(DBph )k �k = pi �j h1�i+1�2h2�j+1�2�

k = (n � 1)(i � 1) + j � 1 � i � j � n � 1

(DC ph )k �k = pi �j h̃1�i+1h̃2�j �

k = n � 2 + n(i � 1) + j � 1 � i � n � 2� 1 � j � n;

k = j � 1� i = 0� 2 � j � n � 1;

k = (n � 2)(n + 1) + j � 1� i = n � 1� 2 � j � n � 1�
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From (22) we get:

(23) DAAh = BT
h DBBh + CT

h DCCh �

It follows that DAAh is a symmetric matrix and can be written in the follow-
ing form:

(24) DAAh =: A = B + C�

where B = B̃T B̃ and C = C̃T C̃ with the notation B̃ = D
1�2
B Bh , C̃ = D

1�2
C Ch .

Using the staggered grid approximation based on the finite volume
method (see the following subsection) we get similarly:

(25) DAAh = BT
h DBBh + CT

h DCCh �

where the diagonal matrix DA corresponds to the scalar product (32).

Let us mention that using finite element methods — if the discrete
Crouzeix–Velte decomposition exists — we can get the following:

(26) Ah = BT
h M

�1
h Bh + CT

h M
�1
h Ch �

where Mh is the mass matrix (See [6]).

Remark �� Remark 1 and 2 mean that a proper Crouzeix–Velte decom-
position of the velocity and the pressure space into three nontrivial parts
exists, if n �3 (see [12]).

3.2. The staggered grid approximation based on the finite volume
method

Now we use the finite volume method (sometimes also called box
method) to approximate the Stokes problem ([9]). For this approximation
Ω is subdivided into Ω = �Ωi j rectangular cells. For the approximation of
(Δhuh )i j we choose the subdivision where the midpoint of Ωi j is ui j . The
expression (Δu) is integrated over Ωi j and the Gauss–Ostrogradskij formula
is used for transformation of the second order derivatives:

(27)
Z

Ωi j

div(grad u)dx1dx2 =
Z

Γi j

(grad u)	nds =
4X

k=1

	nk

Z
�k

(grad u)ds�
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where n is the normal vector of Γi j . Using suitable low order quadraturc
formulae for approximation of the integrals in (27), (Δhuh)i j may be written
as follows:

(Δhuh )i j =

�
�(ui j � ui �j�1)

h̃2�j
h̃1�i +

ui+1�j � ui j
h1�i+1�2

h2�j+1�2+(28)

+
ui �j+1 � ui j

h̃2�j+1
h̃1�i �

ui j � ui�1�j

h1�i�1�2
h2�j+1�2

�
1

h2�j+1�2

1

h̃1�i
=

=
1

h̃1�i

�
ui+1�j � ui j
h1�i+1�2

�
ui j � ui�1�j

h1�i�1�2

�
+

+
1

h2�j+1�2

�
ui �j+1 � ui j

h̃2�j+1
�
ui j � ui �j�1

h̃2�j

�
�

2 � i � n � 1� 1 � j � n � 1�(29)

For approximation of (Δhvh)i j the domain Ω is subdivided in a different way.
In this case the midpoint of Ωi j sub-domain is vi j . Similar to (28) we get:

(Δhvh)i j :=
1

h1�i+1�2

�
vi+1�j � vi j

h̃1�i+1
�
vi j � vi�1�j

h̃1�i

�
+(30)

+
1

h̃2�j

�
vi �j+1 � vi j
h2�j+1�2

�
vi j � vi �j�1

h2�j�1�2

�
�

1 � i � n � 1� 2 � j � n � 1

and

Δh	uh = (Δhuh �Δhvh)T(31)

is the discrete vector Laplace operator. For approximation of (divh 	uh )i j we
use the subdivision of Ω which is determined by the original grid and for
(roth 	uh)i j another subdivision where the midpoint of Ωi j is a grid point of
the original grid. Integrating the corresponding equations over Ωi j and using

suitable quadrature formulae we get the same approximation for (divh 	uh )i j
and (roth 	uh )i j as in (18) and (20). Instead of (17) we introduce the scalar
product and corresponding norm as follows:

(	uh � 	wh )0�h� :=
n�1X
i=2

n�1X
j=1

ui j ri j h̃1�ih2�j+1�2+(32)
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+
n�1X
i=1

n�1X
j=2

vi j si j h1�i+1�2h̃2�j �

k	uhk
2
0�h� := (	uh �	uh)0�h� �(33)

Using the scalar products and norms (15), (16) and (32), and the approxima-
tions (28), (30), (18) and (20), we obtain:

Theorem ��

(Ah	uh �	uh )0�h� = kBh	uhk
2
0�h + kCh	uhk

2
0�h̃
�

where let Ah be de�ned as �Δh and Bh � Ch are the same as in Theorem 1�

Proof� Similarly to the proof of Theorem 1 we apply partial summation
to (Ah	uh �	uh)0�h� and then continue the grid functions uh and vh by zero onto
the whole plane. Then there follows:

(Ah	uh �	uh)0�h� =
X
i �j

�
ui+1�j � ui j
h1�i+1�2

�2

h1�i+1�2h2�j+1�2+

+
X
i �j

�
ui �j+1 � ui j

h̃2�j+1

�2

h̃1�i h̃2�j+1+

+
X
i �j

�
vi+1�j � vi j

h̃1�i+1

�2

h̃1�i+1h̃2�j+

+
X
i �j

�
vi �j+1 � vi j
h2�j+1�2

�2

h2�j+1�2h1�i+1�2 =

=
X
i �j

�
h2�j+1�2

h1�i+1�2
(ui+1�j � ui j )

2 +
h̃1�i

h̃2�j+1
(ui �j+1 � ui j )

2+

+
h̃2�j

h̃1�i+1
(vi+1�j � vi j )

2 +
h1�i+1�2

h2�j+1�2
(vi �j+1 � vi j )

2

�
�

The further steps of the proof are the same as in the proof of Theorem 1.



2019. május 4. –22:54
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4. Second order staggered grid approximation

Now we consider the staggered grid approximation on an equidistant grid.

That is, Ω is the unit square subdivided by a square grid into mh := (n � 1)2

cells of area h2 each, h := 1�(n � 1). For approximation of the Laplace
operator with first order, in [11], as usual for staggered grids, the grid has
been supplemented by four lines at a distance h�2 from the boundary of the
square, and fictitious zero values have been put into the u or v nodes on these
lines, and then the standard five-point approximation of the Laplace operator
has been used near the boundary as well. (The supplementary values are
needed also for the standard approximation of rot.)

To get a second order approximation, we take the usual five-point ap-
proximation in the inner cells. The corresponding formulae can be obtained
by simplifying (19) to our present case of an equidistant grid:

Δh	uh = (Δhuh �Δhvh)T �

(Δhuh )i j :=
ui+1�j � 2ui j + ui�1�j

h2 +
ui �j+1 � 2ui j + ui �j�1

h2 �

2 � i � n � 1� 2 � j � n � 2�(34)

(Δhvh )i j :=
vi+1�j � 2vi j + vi�1�j

h2 +
vi �j+1 � 2vi j + vi �j�1

h2 �

2 � i � n � 2� 2 � j � n � 1�

For the boundary cells, to get a second order approximation, we put now zero
values into additional u or v nodes on the original boundary. These additional
points are at a distance of h�2 from the nearest u or v point. Therefore, the
approximation in the boundary cells will be different from that in the inner
cells, but both are of Shortley–Weller type:

(Δhuh )i �1 :=
ui+1�1 � 2ui �1 + ui�1�1

h2 +
1
h

�
ui �2 � ui �1

h
�
ui �1 � ui �0

h�2

�
�

(Δhuh )i �n�1 :=
ui+1�n�1 � 2ui �n�1 + ui�1�n�1

h2 +

+
1
h

�
ui �n � ui �n�1

h�2
�
ui �n�1 � ui �n�2

h

�
� 2 � i � n � 1�

(Δhvh)�j :=
1
h

�
v2�j � v1�j

h
�
v1�j � v0�j

h�2

�
+
v1�j+1 � 2v1�j + v1�j�1

h2 �
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(Δhvh )n�1�j :=
1
h

�
vn�j � vn�1�j

h�2
�
vn�1�j � vn�2�j

h

�
+

+
vn�1�j+1 � 2vn�1�j + vn�1�j�1

h2
� 2 � j � n � 1�

Here ui �0, ui �n , v0�j , vn�j are the additional zero values on the boundary. The
discrete divergence is the same as in (18):

(divh 	uh )i j :=
ui+1�j � ui j

h
+
vi �j+1 � vi j

h
� 1 � i � j � n � 1�

and the discrete rotation is:

(roth 	uh)i j :=
vi+1�j � vi j

h
�
ui+1�j � ui+1�j�1

h
�

1 � i � n � 2� 2 � j � n � 1,

(roth 	uh)i �1 :=
vi+1�1 � vi �1

h
�
ui+1�1 � ui+1�0

h�2
�

(roth 	uh )i �n :=
vi+1�n � vi �n

h
�
ui+1�n � ui+1�n�1

h�2
�

1 � i � n � 2�(35)

(roth 	uh)0�j :=
v1�j � v0�j

h�2
�
u1�j � u1�j�1

h
�

(roth 	uh)n�1�j :=
vn�j � vn�1�j

h�2
�
un�j � un�j�1

h
�

2 � j � n � 1�

The discrete L2 scalar products (15) and (17) simplify to

(ph � qh)0�h :=
n�1X
i �j=1

pi j qi j h
2�(36)

(	uh � 	wh )0�h :=
n�1X
i=2

n�1X
j=1

ui j ri j h
2 +

n�1X
i=1

n�1X
j=2

vi j si j h
2�(37)

and the corresponding norms are now

kphk
2
0�h := (ph � ph)0�h � k	uhk

2
0�h := (	uh �	uh )0�h �
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Theorem �� For the staggered grid approximation with second order

approximation�

(Ah
	uh �	uh)0�h � kBh	uhk

2
0�h � kCh	uhk

2
0�h =

= �
n�1X
i=2

2(u2
i �1 + u2

i �n�1)�
n�1X
j=2

2(v2
1�j + v2

n�1�j )(38)

where Bh := � divh and Ch := roth �

Proof� Similarly to the proof of Theorem 1 we apply partial summation
to (Ah

	uh �	uh )0�h and then continue the grid functions uh and vh by zero onto
the grid of the whole two-dimensional plane. Taking into account that

ui �0� ui �n � v0�j � vn�j � u1�j � un�j � vi �1� vi �n

are zero if 1 � i � j � n � 1, we may write:

(Ah
	uh �	uh )0�h =

X
i �j

�
(ui+1�j � ui j )

2 + (ui �j+1 � ui j )
2+

+ (vi+1�j � vi j )
2 + (vi �j+1 � vi j )

2
�

+

+
n�1X
i=2

(u2
i �1 + u2

i �n�1) +
n�1X
j=2

(v2
1�j + v2

n�1�j )�

kBh	uhk
2
0�h =

X
i �j

�
(ui+1�j � ui j )

2 + (vi �j+1 � vi j )
2+

+2(ui+1�j � ui j )(vi �j+1 � vi j )
�
�

kCh	uhk
2
0�h =

X
i �j

�
(ui+1�j � ui+1�j�1)2 + (vi+1�j � vi j )

2�

�2(ui+1�j � ui+1�j�1)(vi+1�j � vi j )
�

+

+
n�2X
i=1

(3u2
i+1�1 + 3u2

i+1�n�1) +
n�1X
j=2

(3v2
1�j + 3v2

n�1�j )�

Performing the same index shifts as during the proof of Theorem 1, we get
the result of Theorem 3.
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Remark �� Introducing the notation Ãh , where

(Ãh
	uh �	uh )0�h = (Ah

	uh �	uh)0�h +
n�1X
i=2

2(u2
i �1 + u2

i �n�1) +
n�1X
j=2

2(v2
1�j + v2

n�1�j )�

Ãh is a symmetric positive definite matrix, together with Ah . Since

dim(Vh0) = (n � 2)2, dim(Vh1) = (n � 3)2 and dim(Vh��) = 4n � 9, a

proper Crouzeix–Velte decomposition exists in this case as well, for n �3.
In this case the algebraic decomposition (see [12]) exists not for the matrices

Ah , (BT
h
Bh), (CT

h
Ch ), but for Ãh , (BT

h
Bh), (CT

h
Ch ). Let us mention that in

[3] there appears an analytical counterpart of (38).

5. Numerical results

Below we show some computational results for the Stokes problem using
the staggered grid approximation based on the finite volume method (28)–
(31), (18), (20), on a non-equidistant grid in the unit square. Choosing differ-
ent nonequidistant grid spacings we have maximized the rate-of convergence

for Uzawa-like methods, that is minimized qUz := (
h � 
h )�(
h + 
h ), where


h and 
h are the smallest and the largest of the eigenvalues different from

0 and 1 of the discrete inf-sup problem, i.e. of Sh = BhA
�1
h BT

h . (Then

[
h � 
h ] contains the eigenvalues corresponding to V� and �h =
p

h is the

discrete inf-sup constant.) We used the Matlab eig function to calculate the
eigenvalues and the Matlab fmins function for minimization.

We found that the optimal grid is not an equidistant one, but a grid which
is condensing in the center and coarser near the boundary of the unit square.
Based on preliminary numerical experiments with arbitrary non-equidistant
grids we chose a symmetrical grid with the same non-equidistant grid spacing
in both directions. From the experimental results we found that the more
condensed the grid is in the center, the smaller qUz is. For the optimal grid

we chose the grid spacing in the center as follows: h1�n�2 := 1
n�110�2. In

Table 1 we show the optimal 
h and 
h denoted by 
h�� and 
h�� in the
case of n = 11, 17, 23. Because of the huge computational time for the

grid optimization in the case of n = 31, 51 the optimal 
h and 
h were not

calculated. In these cases 
h�� and 
h�� were calculated on a grid which is
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obtained by interpolating the optimal grid for the case of n = 23. We give
also the smallest and the largest eigenvalues different from 0 and 1 in the case

of an equidistant grid, denoted by 
h�eq and 
h�eq and in the practically used
case when the grid is coarser in the center and condensing near the boundary

of the unit square, denoted by 
h�pr and 
h�pr . In this case the grid spacings
are determined by the following expression:

h1�i�1�2 =

= 0�111737� 0�006259i(1� i)� 0�000289(i(1� i))2 � 0�000011(i(1� i))3�

where 2 � i � n+1
2 . The grid here is symmetrical also with the same

nonequidistant grid spacing in both directions. In the table, n denotes the
number of grid points — including corner points — along a side of the square.

Table �

n 11 17 23 31 51


h�� 0�6667 0�6667 0�6667 0�6667 0�6667


h�� 0�9999 0�9999 0�9999 0�9999 0�9999

q
��Uz 0�2 0�2 0�2 0�2 0�2

q
��CG 0�101 0�101 0�101 0�101 0�101


h�eq 0�4016 0�3489 0�3226 0�3022 0�2766


h�eq 0�8538 0�8545 0�8549 0�8552 0�8555

qeq�Uz 0�3602 0�4202 0�4521 0�4778 0�5114

qeq�CG 0�1864 0�2203 0�239 0�2544 0�275


h�pr 0�3507 0�2497 0�2168 0�2031 0�1933


h�pr 0�8429 0�8463 0�8469 0�847 0�847

qpr�Uz 0�4124 0�5443 0�5923 0�6132 0�6284

qpr�CG 0�2158 0�296 0�328 0�3426 0�3534

From these experimental results we can conclude that compared with
the equidistant grid the use of such non-equidistant grids can economize
between 58 and 140 percent of the computational work when iterating with an
Uzawa-type method and between 36 and 78 percent for conjugate gradient-
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type methods, where

qCG :=

�q

h �

q

h

�
�

�q

h +

q

h

�
�

Compared with the practically used grid we can economize between 82 and
246 percent of the computational work for Uzawa-type methods and between
50 and 120 percent for conjugate gradient-type methods. Moreover, these
numbers of gain in percent are increasing together with n. Finally, according
to the table, the conjugate gradient-like methods are approximately one and a
half times faster than the Uzawa-like ones, on the optimized grids.
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1. Introduction

In [1] and [2] we established estimates for weighted Lebesgue functions
for a class of general exponential weights which includes non-even weights.
Here we use different methods to prove some new results on the weighted
Lebesgue constants.

Let I = (c� d), �� � c �0 �d � �. Let w := exp(�Q), where
Q : I � R is continuous and convex in I , and such that all momentsZ

I

xnw2(x )dx � n = 0� 1� 2� � � � �

converge. Corresponding to w2(x ) we form a sequence of orthonormal poly-
nomials

pn(x ) := pn (w2� x ) := �nx
n + � � � � �n �0

satisfying Z
I

pnpmw
2 = �mn � m� n = 0� 1� 2� � � � �

The zeros of pn (x ) are denoted by

c �ynn �yn�1�n ��� ��y2n �y1n �d (ykn := ykn (w2))

arranged in increasing order.

Let f : I � R be a continuous function such that

lim
x�c+

jf (x )jw (x ) = 0 = lim
x�d�

jf (x )jw (x )�
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Let Ln [f ] � Pn�1 denote the Lagrange interpolation polynomial to f at the
zeros of pn (x ). Here Pn�1 denotes the set of all algebraic polynomials of
degree at most n � 1. Then

Ln [f ](ykn) = f (ykn)� 1 � k � n�

and it admits the representation

(1�1) Ln [f ](x ) =
nX

k=1

f (ykn)lkn(x )�

where

(1�2) lkn (x ) :=
pn(x )

p�n(ykn )(x � ykn )
� 1 � k � n�

are the fundamental polynomials associated with the zeros of pn (x ). We
define the fundamental polynomials of weighted Lagrange interpolation by

(1�3) ukn (x ) := ukn (w2� x ) :=
(pnw )(x )

(pnw )�(ykn )(x � ykn )
�

We define the nth weighted Lebesgue function by

(1�4) �n(w�Un (w2)� x ) :=
nX

k=1

jlkn(x )j w (x )
w (ykn)

=
nX

k=1

jukn (x )j

where Un(w2) := fykn : 1 � k � ng.

Our main objective here is to estimate (1.4). In [1] and [2] we established

bounds for �n(w�Un(w2)� x ) using different methods. The methods we use
here are similar to those used by Vértesi [9] (for Freud type weights), Szili
and Vértesi [7], [8] (for Erdős type weights and for exponential weights on
[�1� 1]).

First, we introduce our class of weights. To do this we need the notion
of a quasi-increasing function on an interval I : we say that a function f :
(0� d) � R is quasi�increasing if there exists C �0 such that

f (x ) � Cf (y)� 0 �x � y �d�

Obviously, a monotone increasing function is quasi-increasing. Similarly, we
may define the notion of a quasi�decreasing function. Following is our class
of weights.

Definition� Let I := (c� d) (�� � c �0 �d � �) and w := exp(�Q),
where Q : I � [0��) satisfies the following properties:
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�a� Q � is continuous in I and Q(0) = 0;

�b� Q �� exists and is positive in I n f0g;

�c� lim
t�c+

Q(t) = � = lim
t�d�

Q(t).

�d� The function

(1�5) T (t) :=
tQ �(t)
Q(t)

� t � I n f0g

is quasi-increasing in (0� d) and quasi-decreasing in (c� 0), with T (t) � ��1,
t � I n f0g.

�e� There exists C1 �0 such that

Q ��(x )
jQ �(x )j � C1jQ �(x )jQ(x )� a�e� x � I n f0g�

�f� There exists a compact subinterval J of the open interval I , and C2 �0
such that

Q ��(x )
jQ �(x )j � C2jQ �(x )jQ(x )� a�e� x � I n J�

Then we write w � F(C 2+).

Remark� The simplest example of the above definition is when I = R

and

Q(x ) =

�
x� � if x � [0��)
jx j� � if x � (��� 0)

where 	� 
 �1. Here it is easy to see that for the function T (x ) defined by
(1.5) we have

T (x ) =
n
	� if x � [0��)

� if x � (��� 0).

A more general example is

Q(x ) = Qk �l ���� (x ) =

�
expk (x� )� expk (0)� if x � [0��)
expl (jx j� )� expl (0)� if x � (��� 0)

where k � l � 0, 	� 
 �1. Here expk denotes the kth iterated exponential:
exp0(x ) = x and expk (x ) = exp(exp(� � � exp(x ))), k � 1. See [3] for further

discussion of F(C 2+) and other examples.
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2. Notations

In the sequel, C�C1� C2�c� c1� c2� � � �, will denote positive constants inde-
pendent of x � k and n . The same symbol does not necessarily represent the
same constant in different occurrences.

If (An ) and (Bn) are real sequences, then we write An � Bn if there exist

C1�C2 �0 such that C1 � An
Bn

� C2� (n ��).

For w � F(C 2+) and n � N we define the Mhaskar�Rahmanov�Sa�

numbers a�n(w ) =: a�n to be the roots of the system of equations

1
�

anZ
a�n

xQ �(x )p
(x � a�n)(an � x )

dx = n�

1
�

anZ
a�n

Q �(x )p
(x � a�n)(an � x )

dx = 0�

The significance of a�n lies partly in the identity

(2�1) max
x�I

j(Pw )(x )j = max
x�[a�n �an ]

j(Pw )(x )j

valid for all polynomials P of degree at most n (cf. [3, Theorem 1.8]). For
more on a�n , see chapters 1 and 3 in [3].

For a fixed w � F(C 2+) and for n � N we set


n :=
an + a�n

2
� �n :=

an + ja�n j
2

(2�2)

��n :=

�
�nT (a�n)

s
ja�n j
�n

�
A
�2�3

�(2�3)

D�n := T (a�n)
�n
ja�n j � D�n := maxfD�n � Dng�(2�4)


n (x ) :=

���
�	

1
n

jx�a�2n j jx�a2n jp
(jx�a�n j+ja�n j��n )(jx�an j+an�n )

� if x � [a�n � an]


n(an)� if x � (an � d)

n(a�n)� if x � (c� a�n).

(2�5)

For our weights the restricted range inequality (2.1) can be sharpened

(see [3, Theorem 1.9(a) and (1.50)]). Let w � F(C 2+) and M �0. Then
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there exist C �0, n0 � N independent of P and n such that for n � n0 and
P � Pn

(2�6) max
x�I

j(Pw )(x )j � C max
x�IM�n

j(Pw )(x )j�

where

(2�7) IM�n := [a�n(1�M��n)� an(1�M�n )]�

The fundamental properties of orthonormal polynomials pn(w2� x ) for

the weight w � F(C 2+) were proved by Levin and Lubinsky in [3]. P.
Vértesi [12] supplemented results with respect to the distribution of the roots

of pn (w2� x ). Fix a weight w � F(C 2+) and let us define the linear transfor-
mations

x = �n t + 
n � x � [a�n � an ]� t =
x � 
n
�n

� t � [�1� 1]

t = cos � � � � [0� �]�

For every n � N, let

tkn :=
ykn � 
n

�n
=: cos�kn � 1 � k � n(2�8)

(ykn := ykn (w2)� tkn := tkn (w2)� �kn := �kn (w2)� 1 � k � n� n � N)�

tkn (k = 1� 2� � � � � n) are called normalized roots of pn(w2).

If

yn+1�n := a�n � y0n := an �

tn+1�n := �1� t0n := 1� �0n := 0 and �n+1�n := �

then we have

0 = �0n(w2) ��1n(w2) ��� ���nn(w2) ��n+1�n(w2) = ��

3. Results

Theorem �� If w � F(C 2+) then the weighted Lebesgue constants sat�

isfy

(3�1) max
x�I

�n (w�Un(w2)� x ) � (nD�n )1�6 (n � N)�
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Let the points

v0n := v0n(w2) and vn+1�n := vn+1�n(w2)

satisfy

(3�2)
v0n � y1n = �+an�n � �+ �0 fixed�

j(pnw )(x )j � j(pnw )�(y1n)jjx � y1n j (x � [y1n � v0n])�

and

(3�3)
ynn � vn+1�n = ��ja�n j��n � �� �0 fixed�

j(pnw )(x )j � j(pnw )�(ynn)jjx � ynn j (x � [vn+1�n � ynn])�

The existence of such �+� �� will be proved later (see Lemma 3).

Theorem �� Let w � F(C 2+) and

Vn (w2) := Un(w2) � fvn+1�n � v0ng�
Then we have

(3�4) max
x�I

�n(w�Vn(w2)� x ) � log n (n � N)�

Theorem �� For every weight w � F(C 2+) there esists C �0 such that

(3�5) Hn(w� x ) :=
nX

k=1

u2
kn (w�Un(w2)� x ) � C

for all x � I and n � N �

4. Proofs

Our main tool is the following lemma which supplements the results

with respect to the distribution of the roots of pn(w2� x ) proved by Levin
and Lubinsky in [3].

Lemma �� Let w � F(C 2+)� Then for any constants 0 �c1 �
p
Dn and

0 �c2 �
p
D�n � and for n � N � we have

(a) if �kn �


0� �2

�
then

(4�1) �kn �

����
��	
�

k

nDn


1�3

� if 1 � k � c1
np
Dn

k

n
� otherwise

;
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(b) if �kn �
�
�
2 � �

�
then

(4�2) � � �kn �

����
��	
�

K

nD�n


1�3

� if 1 � K � c2
np
D�n

K

n
� otherwise

;

(c)

(4�3) �k+1�n � �kn �

��������
������	

1

(nDn)1�3(k + 1)2�3
� if 0 � k � c1

np
Dn

1
n
� if

c1np
Dn

� k � n � c2np
D�n

1

(nD�n)1�3K 2�3
� if 1 � K � c2

np
D�n

;

(d)

(4�4) �k+1�n � �kn �

���
�	
�kn
k
� if �kn � �k+1�n �



0� �2

�
� � �kn

K
� if �kn � �k+1�n �

�
�
2 � �

� �
Here K := n � k + 1� Moreover�

(e) for every �xed A�0

(4�5) �kn � �[Ak ]n � �kn � �[Ak ]n �
�

0�
�

2

�
�

and

(f) for �kn � �j n �


0� �2

�
� we have

(4�6) j�2
j n � �2

kn j �

����
��	
�2
j n � if 1 � k � j

2

�2
j n
jk�j j
j � if

j
2 � k � 2j

�2
kn � if 2j � k �

Proof� Since for every w � F(C 2+) there exist � �0, C �0 and n0 � N

such that

Dn =
Tn�n
an

� Cn2�� (n � n0)

(see [3, (3.38)]) thus

(4�7)
np
Dn

� Cn��2 � +� as n � +��
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Similarly we have

(4�8)
np
D�n

� Cn��2 � +� as n � +��

(a), (b) and (c) were proved in [12] and (d) follows from these.

The proof of (e) and (f) is a word-by-word repetition of the proof of (3.5)
and (3.6) of [7], so we omit the details.

Remark� Observe that from (a) it also follows that there exists c �0
independent of n such that

(4�9) 1 � k � cn for �kn �
�

0�
�

2

i
�

Moreover, there exists c �0 independent of n such that

(4�10) 1 � K = n + 1� k � cn for �kn �
h�

2
� �
�

(see (b)).

Lemma �� If w � F(C 2+) then we have

yk�1�n � ykn � ykn � yk+1�n (k = 1� 2� � � � � n);(4�11)

jyj n � ykn j � �n sin

�
�j n + �kn

2



j�j n � �kn j

(j � k = 1� 2� � � � � n);

(4�12)

ykn � yk+1�n � �n (sin�kn )(�k+1�n � �kn) (k = 0� 1� � � � � n);(4�13)

j(pnw )�(ykn)j � 1

�
3�2
n

1

(sin�kn )3�2

1
�k+1�n � �k �n

(k = 1� 2� � � � � n);

(4�14)

Proof� (4.11) follows from [3, (1.110) and (12.20)].

Using (2.8) we have

yj n � ykn = �n (cos �j n � cos �kn ) = 2�n sin
�j n + �kn

2
sin

�kn � �j n
2

which yields (4.12). From (4.5) and (4.12) we obtain (4.13).
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To verify (4.14) first observe that

j(pnw )�(ykn)j = j(p�nw )(ykn)j �
� 
�1

n (ykn)(jykn � a�n jjykn � an j)�
1
4 �

� (ykn � yk+1�n)�1(jykn � a�n jjykn � an j)�
1
4 �

Here we have used Theorem 1.19 (a) and (e) in [3]. Next, we continue this
as follows: since

(4�15) jykn � a�n jjykn � an j = �2
n (1� cos2 �kn ) = �2

n sin2 �kn

thus for every k = 1� 2� � � � � n we have

j(pnw )�(ykn)j � (�n (sin�kn )(�k+1�n � �kn ))�1(�2
n sin2 �kn )�1�4 =

= �
�3�2
n (sin�kn )�3�2(�k+1�n � �kn )�1

which is (4.14).

For x � I let us denote by yj n (one of) the closest node(s) to x (shortly

x 	 yj n) from Un(w2) = fykn j k = 1� 2� � � � � ng.

Lemma �� If w � F(C 2+) then

(a)

(4�16) max
x�I

jukn (x )j � 1 (n � N)�

(b) Moreover� there exist �+ �0� �� �0 such that uniformly for x and

n � we have

(4�17)
j(pnw )(x )j � j(pnw )�(yj n)jjx � yj n j
(x 	 yj n � [vn+1�n � v0n]� n � N)�

where

v0n := y1n + �+an�n � vn+1�n := ynn � ��ja�n j��n �
(c)

(4�18)
jukn (x )j � c

(sin�kn )3�2q
sin�j n

j�k+1�n � �kn j
sin

	j n+	kn
2 sin

j	j n�	kn j
2

(x � [vn+1�n � v0n]� k = 1� 2� � � � � n� n � N)�

Proof� (a) The relation (4.16) is Theorem 1.19(c) in [3].
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(b) If x � [ynn � y1n] then (4.17) is Theorem 1.19(d) in [3].

Next we show that there exists �+ �0 such that

(4�19)
j(pnw )(x )j � j(pnw )�(y1n)jjx � y1n j

(x � [y1n � v0n]� n � N)�

(The existence of �� can be proved similarly.)

First we observe that by (4.16) we have

(4�20) j(pnw )(x )j � C j(pnw )�(y1n)(x � y1n)j
for all x � I and n � N.

Now let �+ �0. It will be fixed later. By [3, Theorem 1.19(e)], (4.13)
and Lemma 1 we have

(4�21) 
n (y1n) � y1n � y2n � �n�
2
1n �

�n

(nDn)2�3
= an�n

(see also (2.3) and (2.4)).

From Theorem 5.7(b) and (1.50) of [3] we obtain that

(4�22) 
n(x ) � 
n(y1n) (x � [y1n � v0n]� n � N)�

We shall need the Markov–Bernstein inequality for w � F(C 2+) (see [3,
Theorem 1.15 and (1.50)]) which states that there exists C �0 such that for
n � 1 and P � Pn

j(Pw )�(x )
n(x )j � C max
x�I

j(Pw )(x )j (x � I )�

Using this with Pw = u1n we have from (4.16), (4.21) and (4.22)

ju �1n(s)j � C


n(y1n)
� C1
an�n

(s � [y1n � v0n])�

Thus

ju �1n (s)(x � y1n)j � C1�+

(y1n � s � x � v0n = y1n + �+an�n)�

Hence, if x � [y1n � v0n], we have for some s between y1n and x ,

ju1n (x )j = ju1n(y1n) + u �1n(s)(x � y1n)j �

� 1� ju �1n(s)(x � y1n)j � 1� C1�+ � 1
2
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if 0 ��+ � 1
2C1

. Thus

ju1n (x )j =
��� (pnw )(x )
(pnw )�(y1n)(x � y1n)

��� � 1
2

for x � [y1n � v0n] and n � N . Combining this and (4.20) we obtain ((4.19)
which proves the statement (b).

(c) By (4.17) we get

(4�23)

jukn (x )j =

���� (pnw )(x )
(pnw )�(ykn )(x � ykn )

���� �
� ��(pnw )�(yj n)(pnw )�(ykn)

�� ���� x � yj n
x � ykn

���� �
� ��(pnw )�(yj n)(pnw )�(ykn )

�� ����yj�1�n � yj n
yj n � ykn

���� �
Therefore (4.18) follows from Lemma 2.

4.2. Proof of Theorem 1

Since
v0n � y1n � an�n � an � y1n �

ynn � vn+1�n � ja�n j��n � ynn � a�n
(see (3.2), (3.3) and [3, Theorem 1.19(f)]) thus from (2.6) it follows that it is
enough to estimate the weighted Lebesgue function �n (w�Un(w2)� x ) on the
interval x � [vn+1�n � v0n].

Fix a weight w � F(C 2+) and n � N . First suppose that x 	 yj n �
� [
n � v0n] (i.e. �j n � (0� �2 ]). Let

(4�24)
An := fk j ykn � [
n � an)g =

n
k j 0 ��kn �

�

2

o
�

Bn := fk j ykn � (a�n � 
n )g =
n
k j �

2
��kn ��

o
�

Then

(4�25) �n(w�Un(w2)� x ) =
nX

k=1

jukn (x )j =
X
k�An

jukn (x )j +
X
k�Bn

jukn (x )j�
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In order to estimate (4.25), we distinguish several cases.

Case �� Let x 	 yj n � [
n � v0n] and k � An . Then �j n � �kn �


0� �2

�
thus by (4.18), (4.4), (4.6) and (4.16) we have

(4�26) jukn (x )j � C

�����������
���������	

1
k

�
�kn
�j n


5�2

� if 1 � k � j �2

1
jk � j j + 1

� if j �2 � k � 2j

1
k

�
�kn
�j n


1�2

� if 2j � k � k � An .

Then we obtain that X
k�An

jukn (x )j �

� C

���
�	

j
2X

k=1

1
k

�
�kn
�j n


5�2

+
2jX

k=j �2

1
jk � j j + 1

+
X

k�2j �k�An

1
k

s
�kn
�j n

���
�� �

If k � An then 1 � k � cn with a constant 0 �c �1 independent of n (see
(4.1)).

Case �(a)� If 1 � j � c1np
Dn

, then using (4.1) we obtain that

X
k�An

jukn (x )j � C

�����
���	

j
2X

k=1

1
k

�
k

j


5�6

+ log(2j ) +
c1nD

�1
2

nX
k=2j

1
k

�
k

j


1�6

+

+
[cn]X

k=c1nD
�1

2
n

1
k

r
k

n

�
nDn

j


1�6

�����
����
� C1

���
�	
�

1
j


5�6
j
2X

k=1

1

k1�6
+ log(2j )+

+
1

j 1�6

c1np
DnX

k=2j

1

k5�6
+

�
nDn

j


1�6 1p
n

[cn]X
k=

c1np
Dn

1p
k

����
��� �
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� C2

�
1 + log(2j ) +

1

j 1�6

�
np
Dn


1�6

+

�
nDn

j


1�6
�
� C3(nDn)1�6�

Case �(b)� If c1np
Dn

� j � [cn], then by (4.1) we obtain that

X
k�An

jukn (x )j � C

����
��	

c1np
DnX

k=1

1
k

�
k

nDn


5�6�n
j


5�2

+
j �2X

k=
c1np
Dn

1
k

�
k

j


5�2

+

+ log(2j ) +
[cn]X
k=2j

1
k

s
k

j

��
� �

� C1

��
1

nDn


5�6�n
j


5�2� np
Dn


5�6

+
1

j 5�2
(j )5�2 + log(2j ) +

p
np
j

�
�

� C2f1 + 1 + log(2j ) + D1�4
n g � C3(nDn)1�6�

where we used the fact that Dn � Cn2� From these relations it follows that

(4�27)
X
k�An

jukn (x )j � C (nDn)1�6 (x � [
n � v0n]� n � N)

with a constant C �0 independent of x and n .

Case �� Now we estimate the second term of (4.25), i.e. we suppose
that x 	 yj n � [
n � v0n] is a fixed point (�j n � (0� �2 ]) and k � Bn , i.e.

ykn � (a�n � 
n], �kn � [�2 � �). Then

sin
�j n + �kn

2
sin

j�j n � �kn j
2

� j�2
j n � �2

kn j � j�j n � �kn j�

Therefore from (4.18) and (4.4) we get

(4�28)
X
k�Bn

jukn (x )j � C
X
k�Bn

1
K

(� � �kn )5�2

�
1�2
j n

1
j�j n � �kn j

�

Case �(a)� If 0 ��j n � �
4 then j�kn � �j n j � 1. Since k � Bn thus

cn � k � n with a constant c �0 independent of n (i.e. 1 � K = n + 1 �
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� k � cn). Consequently by (4.2) we get

X
k�Bn

jukn (x )j � C
1

�
1�2
j n

�����
���	

c2np
D�nX
K=1

1
K

�
K

nD�n


5�6

+

+
[cn]X

K=
c2np
D�n

1
K

�
K

n


5�2

�����
����
� C1

�
1�2
j n

��
	 1

D
5�4
�n

+ 1

��
� � C2(nDn)1�6�

Case �(b)� Now, we suppose that �
4 � �j n � �

2 . If �kn � [�2 �
3�
4 ] then

j�kn � �j n j � jk�j j
n (see (4.4)). If �kn � [ 3�

4 � �) then j�kn � �j n j � 1.
Therefore by (4.28) and (4.2) we get

X
k�Bn

jukn (x )j � C
X
k�Bn

1
K

(� � �kn )5�2

j�kn � �j n j
�

� C

�����
���	

X
	kn�[�2 �

3�
4 ]

1
K

n

jk � j j + 1
+

X
	kn�

h
3�
4 ��

�
(� � �kn )5�2

K

�����
����
�

� C1

�����
���	

log n +

c2np
D�nX
K=1

1
K

�
K

nD�n


5�6

+
[cn]X

K=
c2np
D�n

1
K

�
K

n


5�2

�����
����
�

� C2 log n � C3(nDn)1�6�

Consequently

(4�29)
X
k�Bn

jukn (x )j � C (nDn)1�6 (x � [
n � v0n]� n � N)�

Combining (4.25), (4.27) and (4.29) we get

(4�30)
nX

k=1

jukn (x )j � C (nDn )1�6 (x � [
n � v0n]� n � N)�
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Now let zin := (yin + yi+1�n)�2 (cos �in := (zin � 
n )��n) for 1 � i � s ,
where s is a fixed index. Then by Theorem 1.19 of [3], (4.1) and (4.15) we
have

j(pnw )(zin)j � yin � yi+1�n


(yin)(jyin � a�n jjyin � an j)1�4
�

� (jyin � a�n jjyin � an j)�1�4 � 1p
�n sin �in

� 1p
�n

�
nDn

i


1�6

�

Let

B1�n :=

�
k
��� �

2
� �kn �� � cp

D�n

�
=

�
K
��� c2

np
D�n

� K � c3n

�

(see (4.2)). Then by (4.2), (4.4) and (4.14)

nX
k=1

jukn (zin )j �
�
nDn

i


1�6 nX
k=1

(sin�kn )3�2j�k �n � �k+1�n j
j�2
in � �2

kn j
�

� C (nDn)1�6
X

K�B1�n

(� � �kn)5�2

K
� C1(nDn)1�6

[c3n]X
K=

c2np
D�n

1
K

�
K

n


5�2

�

� C2(nDn)1�6�

This together with (4.30) gives

max
x�[�n �v0n ]

nX
k=1

jukn (x )j � (nDn)1�6 (n � N)�

For x � [vn+1�n � 
n ] similar estimate holds if one replaces Dn by D�n .
Thus Theorem 2 is proved.

4.3. Proof of Theorem 2

It is sufficient to prove that

(4�31) max
x�[�n �v0n ]

�n(w�Vn (w2)� x ) � log n (n � N)

(see Part 4.2).
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The weighted Lebesgue function has the form

�n(w�Vn(w2)� x ) =
nX

k=1

���� (x � vn+1�n)(x � v0n)

(ykn � vn+1�n)(ykn � v0n)

���� jukn (x )j+

+

���� (pnw )(x )
(pnw )(v0n)

x � vn+1�n

v0n � vn+1�n

���� +

���� (pnw )(x )
(pnw )(vn+1�n)

x � v0n
v0n � vn+1�n

���� =:

=:
X

1
(x ) + S1(x ) + S2(x )�

Let x 	 yj n � [
n � v0n] (i.e. �j n � (0� �2 ]). Then by (4.17), (4.14), (4.13) and
(4.1) we have

j(pnw )(x )j � j(pnw )�(yj n)(x � yj n)j � C j(pnw )�(yj n)(yj+1�n � yj n)j �

� C1
1q
�n�j n

� C2p
�n

�
nDn

j


1�6

�

moreover

j(pnw )(v0n)j � C j(pnw )�(y1n)(v0n � y1n)j �

� C1
1

�
3�2
n

1

�
5�2
1n

an�n � C2p
�n�1n

� C3
1p
�n

(nDn)1�6

(see (4.21)). From these it follows that

(4�32) S1(x ) � C (x � [
n � v0n]� n � N)�

Similarly we get

(4�33) S2(x ) � C (x � [
n � v0n]� n � N)�

For the estimation of
P

1(x ) we need

(4�34)

jx � vn+1�n jjx � v0n j
jykn � vn+1�n jjykn � v0n j

� jx � a�n jjx � an j
jykn � a�n jjykn � an j �

� jyj n�a�n jjyj n�an j
jykn�a�n jjykn�an j �

�
sin 	j n
sin 	kn


2

(see (2.8)). Split
P

1(x ) into two parts

(4�35)
X

1
(x ) =

X
k�An

(x ) +
X
k�Bn

(x )�

In order to estimate the first sum, we distinguish two cases.
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Case �� Let 1 � j � c1
np
Dn

and k � An , i.e. �j n � �kn �


0� �2

�
. From

(4.26) and (4.34) we obtain that

X
k�An

(x ) � C

��
	

j �2X
k=1

�
�j n
�kn


2 1
k

�
�kn
�j n


5�2

+
2jX

k=j �2

1
jk � j j + 1

+

+
[cn]X
k=2j

�
�j n
�kn


2 1
k

s
�kn
�j n

��
� = C

��
	

j �2X
k=1

1
k

s
�kn
�j n

+ log(2j ) +
[cn]X
k=2j

1
k

�
3�2
j n

�
3�2
kn

��
� �

(Here we used the Remark in Part 4.1.)

Case �(a)� If 1 � j � c1
np
Dn

then using (4.1) we get

X
k�An

(x ) � C

���
�	

j �2X
k=1

1
k

�
k

j


1�6

+ log(2j ) +

c1
np
DnX

k=2j

1
k

�
j

k


1�2

+

+
[cn]X

k=c1
np
Dn

1
k

�
j

nDn


1�2 �n
k

�3�2

����
��� � C1

��
	 1

j 1�6

j �2X
k=1

1

k5�6
+ log(2j )+

+

c1
np
DnX

k=2j

j 1�2

k3�2
+

�
j

nDn


1�2 [cn]X
k=c1

np
Dn

n3�2

k5�2

����
��� �

� C2

�
1 + log(2j ) + 1 +

�
j
p
Dn

n


1�2
�
� C3 log(2j )�

Case �(b)� If c1
np
Dn

� j � [cn] then

X
k�An

(x ) � C

���
�	

c1
np
DnX

k=1

1
k

�
k

nDn


1�6rn

j
+

+
j �2X

k=c1
np
Dn

1
k

s
k

j
+ log(2j ) +

[cn]X
k=2j

1
k

�
j

k


3�2

����
��� �
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� C1

����
��	
�

1
nDn


1�6�n
j


1�2
c1

np
DnX

k=1

1

k5�6
+

j �2X
k=c1

np
Dn

1p
j k

+ log(2j )+

+
[cn]X
k=2j

j 3�2

k5�2

��
� � C2

��
1

nDn


1�6�n
j


1�2� np
Dn


1�6

+ 1 + log(2j ) + 1

�
�

� C3

�r
n

j
p
Dn

+ log(2j )

�
� C4 log(2j )�

Thus we proved that

(4�36)
X
k�An

(x ) � C log n (x � [
n � v0n]� n � N)�

Case �� Now we estimate the second term of (4.35), i.e. we suppose that
x 	 yj n � [
n � v0n] is a fixed point (�j n � (0� �2 ]) and k � Bn . From (4.34),
(4.18) and Lemma 1 we get

(4�37)

X
k�Bn

(x ) � C
X
k�Bn

�
sin�j n
sin�kn


2 1
K

(� � �kn )5�2

�
1�2
j n

1
j�j n � �kn j

�

� C1

X
k�Bn

�
3�2
j n

K

(� � �kn )1�2

j�j n � �kn j

Case �(a)� If 0 ��j n � �
4 then j�kn � �j n j � 1. Since k � Bn thus

cn � k � n with a constant c �0 independent of n (i.e. 1 � K = n + 1 �
� k � cn). Consequently by (4.2) we get

X
k�Bn

(x ) � C�
3�2
j n

����
��	

c2
np
D�nX

K=1

1
K

�
K

nD�n


1�6

+
[cn]X

K=c2
np
D�n

1
K

�
K

n


1�2

����
��� �

� C1�
3�2
j n

��
1

nD�n


1�6� np
D�n


1�6

+
1p
n

p
n

�
� C2�

Case �(b)� Now, we suppose that �
4 � �j n � �

2 . If �kn �
h
�
2 �

3�
4

i
then j�kn � �j n j � jk�j j

n (see (4.4)). If �kn � [ 3�
4 � �) then j�kn � �j n j � 1.
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Therefore by (4.37) and (4.2) we getX
k�Bn

(x ) � C
X
k�Bn

1
K

(� � �kn )1�2

j�kn � �j n j
�

� C

���
�	

X
	kn�[�2 �

3�
4 ]

1
K

n

jk � j j + 1
+

X
	kn�[ 3�

4 ��)

(� � �kn )1�2

K

���
�� �

� C1

�����
���	

log n +

c2np
D�nX

K=1

1
K

�
K

nD�n


1�6

+
[cn]X

K=
c2np
D�n

1
K

�
K

n


1�2

�����
����
�

� C2flog n + 1 + 1g � C3 log n�

Consequently X
k�Bn

(x ) � C log n (x � [
n � v0n]� n � N)�

Combining this with (4.35) and (4.36) we getX
1
(x ) � C log n (x � [
n � v0n]� n � N)�

Therefore using (4.32) and (4.33) we obtain that

�n(w�Vn(w2)� x ) � C log n (x � [
n � v0n]� n � N)�

As in Part 4.2 we can prove that

�n (w�Vn(w2)� zin) � C log n�

where zin := (yin + yi+1�n)�2 for 1 � s (s is a fixed index, independent of n)
which proves (4.31).

4.4. Proof of Theorem 3

Here it suffices to show that

(4�38)

nX
k=1

jukn (x )j2 =
X
k�An

jukn (x )j2 +
X
k�Bn

jukn (x )j2 � C

(x � [
n � v0n]� n � N)�

(see Part 4.2 and (4.24)).
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Case �� Let x 	 yj n � [
n � v0n] and k � An . By (4.26) we get

X
k�An

jukn (x )j2 � C

����
��	

j �2X
k=1

1

k2

�
�kn
�j n


5

+
2jX

k=j �2

1

(jk � j j + 1)2 +
X
k=2j
k�An

1

k2
�kn
�j n

����
��� �

We consider two cases.

Case �(a)� If 1 � j � c1
np
Dn

, then by (4.1) we have

X
k�An

jukn (x )j2 � C

��
	

j �2X
k=1

1

k2

�
k

j


5�3

+ 1+

+

c1
np
DnX

k=2j

1

k2

�
k

j


1�3

+
[cn]X

k=c1
np
Dn

1

k2
k

n

�
nDn

j


1�3

����
��� �

� C1

���
�	

1

j 5�3

j �2X
k=1

1

k1�3
+ 1 +

1

j 1�3

c1
np
DnX

k=2j

1

k5�3
+

1
n

�
nDn

j


1�3






[cn]X

k=c1
np
Dn

1
k

����
��� � C2

�
1
j

+ 1 +
1

j 1�3
+

1
n

�
nDn

j


1�3

log n

�
�

� C3

�
1 + 1 + 1 +

�
Dn

n2


1�3

log n

�
� C4�

where we used (4.7).

Case �(b)� If c1
np
Dn

� j � [cn], then (4.1) gives

X
k�An

jukn (x )j2 � C

����
��	

c1
np
DnX

k=1

1

k2

�
k

nDn


5�3�n
j


5

+
j �2X

k=c1
np
Dn

1

k2

�
k

j


5

+

+
2jX

k=j �2

1

(jk � j j + 1)2
+

[cn]X
k=2j

1

k2
k

j

��
� �
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� C1

����
��	
�

1
nDn


5�3�n
j


5
c1

np
DnX

k=1

1

k1�3
+

1

j 5

j �2X
k=c1

np
Dn

k3 + 1 +
1
j

[cn]X
k=2j

1
k

����
��� �

� C2

��
	 1

j 5

�
n2

Dn

�2

+
1
j

+ 1 +
1
j

log n

��
� �

� C3

��
	
�p

Dn

n


5
�
n2

Dn

�2

+ 1 + 1 +

�p
Dn

n



log n

��
� �

� C4

�p
Dn

n
+

p
Dn

n
log n

�
� C5�

where we used (4.7).

Case �� Suppose that x 	 yj n � [
n � v0n] is a fixed point (�j n � (0� �2 ])
and k � Bn . From (4.18) and (4.4) we get

(4�39)
X
k�Bn

jukn (x )j2 � C
X
k�Bn

1

K 2
(� � �kn )5

�j n

1

j�j n � �kn j2
�

Case �(a)� If 0 ��j n � �
4 then by (4.2) we have

X
k�Bn

jukn (x )j2 �

� C
1
�j n

����
��	

c2
np
D�nX

K=1

1

K 2

�
K

nD�n


5�3

+
[cn]X

K=c2
np
D�n

1

K 2

�
K

n


5

����
��� �

� C1
1
�j n

����
��	
�

1
nD�n


5�3
c2

np
D�nX

K=1

1

K 1�3
+

1

n5

[cn]X
K=c2

np
D�n

K 3

����
��� �

� C2
1
�j n

��
1

nD�n


5�3� np
D�n


2�3

+
1
n

�
�
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� C3

�
nDn

j


1�3
�

1

nD2�n
+

1
n

�
� C4

�p
Dn

n


2�3

� C5�

Case �(b)� Let �
4 � �j n � �

2 . Since

j�j n � �kn j �

���
�	
jk � j j
n

� if �kn �
h
�
2 �

3
4�
i

1� if �kn �
h

3
4�� �

�
thus by (4.39) and (4.2) we obtain that

X
k�Bn

jukn (x )j2 � C
X
k�Bn

1

K 2
(� � �kn)5

j�kn � �j n j2
�

� C1

���
�	

X
	kn�[�2 �

3
4�]

1

K 2
n2

(jk � j j + 1)2 +
X

	kn�[ 3
4���)

(� � �kn )5

K 2

���
�� �

� C2

����
��	1 +

c2
np
D�nX

K=1

1

K 2

�
K

nD�n


5�3

+
[cn]X

K=c2
np
D�n

1

K 2

�
K

n


5

����
��� �

� C3

�
1 +

�
1

nD�n


5�3� np
D�n


2�3

+
1
n

�
� C4

which proves Theorem 3.
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142, 237–253, Birkhäuser Verlag, Basel, 2002.
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A NOTE ON THE “GOOD” NODES OF WEIGHTED LAGRANGE
INTERPOLATION FOR NON-EVEN WEIGHTS
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In [4] J. Szabados established the connection between “good” nodes of
weighted Lagrange interpolation and the Lebesgue constants. L. Szili [5]
extended this result to other even exponential weights. Here we generalize
these results to include non�even exponential weights. These point systems
serve as basis for Erdős type convergence processes in weighted interpolation
(see [6]–[8]).

In defining our class of weights, we need the notion of a quasi-increasing
function. We say that a function f : (0� d) � R is quasi�increasing if there
exists C �0 such that

0 �x � y �d � f (x ) � Cf (y)�

Obviously, a monotone increasing function is quasi-increasing. Similarly, we
may define the notion of a quasi�decreasing function. Following is our class
of weights (see [3, Chapter 1]).

Definition� Let I := (c� d) (�� � c�0 �d � �) and w := exp(�Q),
where Q : I � [0��) satisfies the following properties:

�a� Q � is continuous in I and Q(0) = 0;

�b� Q �� exists and is positive in I n f0g;

�c� lim
t�c+

Q(t) = � = lim
t�d�

Q(t).

�d� The function

(1) T (t) :=
tQ �(t)
Q(t)

� t � I n f0g

is quasi-increasing in (0� d) and quasi-decreasing in (c� 0), with T (t) � ��1,
t � I n f0g.
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(e) There exists C1 �0 such that

Q ��(x )
jQ �(x )j � C1jQ �(x )jQ(x )� a�e� x � I n f0g�

(f) There exists a compact subinterval J of the open interval I , and
C2 �0 such that

Q ��(x )
jQ �(x )j � C2

jQ �(x )j
Q(x )

� a�e� x � I n J�

Then we write w � F(C 2+).

Let

(2) Xn := fxnn �xn�1�n ��� ��x2n �x1ng � I

be an interpolatory matrix and suppose that w � F(C 2+). It is known that
the weighted Lebesgue constants �n(w�Xn) (n � N) play an important role
in the convergence-divergence behaviour of weighted Lagrange interpolation
polynomials. �n(w�Xn) is defined as the sup norm on I of the weighted
Lebesgue function

(3) �n (w�Xn � x ) :=
nX

k=1

j�kn(x )j w (x )
w (xkn)

=
nX

k=1

jqkn (x )j�

where

(4)
qkn(x ) := qkn (w�Xn � x ) := (	nw )(x )(	 �nw )(xkn)(x � xkn)

(1 � k � n� n � N)

are the fundamental functions of weighted Lagrange interpolation. Here

	n (x ) = cn
nQ

k=1
(x � xkn ).

For a fixed weight w � F(C 2+) and for all n � N we define the Mhaskar�

Rahmanov�Sa� numbers a�n := a�n(w ) to be the roots of the system of
equations

1
	

anZ
a�n

xQ �(x )p
(x � a�n)(an � x )

dx = n�

1
	

anZ
a�n

Q �(x )p
(x � a�n)(an � x )

dx = 0�
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The significance of a�n lies partly in the identity

kPwk := max
x�I

j(Pw )(x )j = max
x�[a�n �an ]

j(Pw )(x )j

valid for all polynomials P of degree at most n (shortly P � Pn). For more
on a�n , see Chapters 1 and 3 in [3].

For a fixed weight w � F(C 2+) and for n � N we set

(5)

n :=

1
2

(an + ja�n j)� ��n :=

�
�nT (a�n)

s
ja�n j

n

�
A
�2�3

�

D�n := T (a�n)

n
ja�n j � D�n := maxfD�n � Dng�

Our generalization of Proposition 2 in [4] and Theorem in [5] is the
following

Theorem �� Let w � F(C 2+)� If rn � Pn satis�es

(6) krnwk�e
C0

np
D�n

with a constant C0 �0 �independent of n�� moreover for a point y � I we

have (rnw )(y) = 1 then

(7) a�n
�
1 + C2��n(log krnwk)2�3� � y � an

�
1 + C1�n(log krnwk)2�3��

where the constants C1� C2 �0 depend only on w �

Remark� For every weight w � F(C 2+) there exist � �0, C �0 and
n0 � N such that

Dn =
T (an )
n
an

� Cn2�� (n � n0)

(see [3, Lemma 3.7]) and hence
np
Dn

� Cn��2 �� as n ���

(Similar relations hold for D�n .)

Let’s consider a point system Xn for which the weighted fundamental
polynomials qkn (see (4)) are uniformly bounded on I , i.e. there exists a
constant A�0 such that

jqkn (w�Xn � x )j � A (x � I � k = 1� 2� � � � � n� n � N)�
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This will be called an E (w )�system (the letter E reminds of Erdős). For
many weights and for these type point systems one can construct convergent
sequence of weighted Lagrange interpolation polynomials of degree at most
n(1 + �), where � �0 is a fixed real number (see [6]–[8]).

From the Theorem 1 and the Remark above immediately follows the
following

Corollary �� Let w � F(C 2+) and suppose that the point system Xn
(n � N) is an E (w )�system� Then there exist C1� C2 �0 such that

(8)
a�n(1 + C2��n) � xkn � an (1 + C1�n)

(k = 1� 2� � � � � n� n � N)�

Remark� For even exponential weights L. Szili and P. Vértesi proved
(8) using different methods (see [6]–[8]).

Now let’s consider the Lebesgue constants �n(w�Xn) (n � N). Let
yn � I such that

�n(w�Xn) = �n (w�Xn � yn)

and consider the weighted polynomial

(rnw )(x ) :=
nX

k=1

�
sgn qkn (ykn )

�
qkn (x )�

Then

j(rnw )(x )j � �n(w�Xn � x ) � �n(w�Xn) = (rnw )(yn)�

that is, krnwk = �n(w�Xn). Since j(rnw )(xkn )j = 1, it follows from Theorem
1 that we have

Corollary �� Let w � F(C 2+)� Suppose that the point system Xn is

such that

(9) �n(w�Xn ) �e
C0

np
D�n

with a constant C0 �0 independent of n � Then there exist C1� C2 �0 such

that

(10)
a�n(1 + C2��nBn) � xkn � an (1 + C1�nBn)

(k = 1� 2� � � � � n� n � N)�

where

Bn :=
�
log�n(w�Xn)

�2�3
�
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For w � F(C 2+) it is known that there exists a point system for which
�n(w�Xn) 	 log n , n � N . For the construction of these point systems,
see [1] and [2]. Moreover P. Vértesi [9] proved that the log n order is the
best possible. Thus the “best” weighted Lagrange interpolation point systems
satisfy

(11)
a�n(1 + C2��n(log log n)2�3) � xkn � an (1 + C1�n(log log n)2�3)

(k = 1� 2� � � � � n� n � N)

with some constants C1� C2 �0 depending only on w .

Proof of Theorem �� Let us fix w � F(C 2+) and n � N . For every
rn � Pn we have

(12) j(rnw )(x )j � eUn (x )krnwk (x � I )

where Un is the “decaying factor” for weighted polynomials, see Lemma 4�4,
(1�93), pp. 254 and 473 in [3]. Note that here we have used (4�12) in [3] with

Ω = t � 2
p .

We shall prove our statement only for the interval (0� d). We can obtain
the analogous statement for (c� 0) by replacing x by �x .

Let us suppose that x �0. We need the following properties of Un (see
[3, Lemma 4.5 and (1.93)]:

(a) Un(x ) = 0 if x � [0� an];

(b) Un(x ) is decreasing and negative for x � [an � d);

(c) for K �1 there exist C �0 and n0 � N such that for n � n0 and
an � x � aKn

(13) Un (x ) � �CnT (an)
r
an

n

�
x

an
� 1

�3�2

= �C
	

1
�n

�
x

an
� 1

�
3�2

�

moreover for x � aKn

Un (x ) � �Cn
r

an
T (an)
n

= �C np
Dn

�

From Lemma 3.11 in [3], it follows that for K �1, we have� aKn
an

� 1

�n

�3�2

	
�

1
T (an)�n

�3�2

=



T (an )

�
nT (an)

r
an

n

��2�3
��3�2

=

= n
r

an
T (an)
n

=
np
Dn

�



2019. május 4. –22:54

112 D. G. KUBAYI

From this relation, we obtain that there exists C0 �0 such that

j(rnw )(x )j � e
�C0

np
Dn krnwk if x �aKn �

Therefore, if rn � Pn satisfies (6) then j(rnw )(x )j �1 for x � aKn . This
means that if for a point y � I we have (rnw )(y) = 1 then y �aKn and by
(12) and (13) we obtain

1 = j(rnw )(y)j � e
�C1( 1

�n
( y
an
�1))3�2

krnwk
which gives

(14) y � an

�
1 + C1�n(log krnwk)2�3

�
�

As we observed earlier, replacing x by �x gives

y � a�n

�
1 + C2��n(log krnwk)2�3

�
�

which together with (14) gives the statement of the theorem.
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1. Introduction

Semi-open sets, preopen sets, �-open sets, �-open sets and �-open sets
play an important role in the researches of generalizations of continuity
in topological spaces. By using these sets many authors introduced and
studied various types of generalizations of continuity. In 1996, Dontchev
[13] introduced the notion of contra-continuous functions. Recently, new
types of contra-continuous functions are introduced and studied: for ex-
ample, subcontra-continuity [6], contra � -semi-continuity [9], contra-super-
continuity [16], contra-�-continuity [17], contra-semi-continuity [14], contra-
precontinuity [18], contra-�-continuity [7]. On the other hand, the present
authors introduced and investigated the notions of m-continuous functions
[50], almost m-continuous functions [52] and weakly m-continuous functions
[53].

In this paper, we introduce the notion of contra m-continuous functions as
functions from a set X satisfying some minimal conditions into a topological
space and investigate their properties and the relationships between contra
m-continuity and other related generalized forms of continuity. It turns out
that the contra m-continuity is a unified form of several modifications of
contra-continuity due to Dontchev [13].

2. Preliminaries

Let (X� �) be a topological space and A a subset of X . The closure of
A and the interior of A are denoted by Cl(A) and Int(A), respectively. A
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subset A is said to be regular closed (resp. regular open) if Cl(Int(A)) = A
(resp. Int(Cl(A)) = A). A point x � X is called a ��cluster (resp. � �cluster)
point of A if Int(Cl(V )) � A �= � (resp. Cl(V ) � A �= �) for every open
set V containing x . The set of all �-cluster (resp. � -cluster) points of A is
called the ��closure (resp � �closure) of A and is denoted by Cl� (A) (resp.
Cl� (A)). If A = Cl� (A) (resp. A = Cl� (A)), then A is said to be �-closed
(resp. � -closed). The complement of a �-closed (resp. � -closed) set is called
a �-open (resp. � -open) set. The union of all �-open (resp. � -open) sets
contained in a subset A is called the ��interior (resp. � �interior) of A and is
denoted by Int� (A) (resp. Int� (A)).

Definition ���� Let (X� �) be a topological space. A subset A of X
is said to be semi�open [22] (resp. preopen [29], ��open [36], ��open [1]
or semi�preopen [3]) if A � Cl(Int(A)), (resp. A � Int(Cl(A)), A �
� Int(Cl(Int(A))), A � Cl(Int(Cl(A)))).

The family of all semi-open (resp. preopen, �-open, �-open) sets in X
is denoted by SO(X ) (resp. PO(X ), �(X ), �(X )).

Definition ���� The complement of a semi-open (resp. preopen, �-open,
�-open) set is said to be semi�closed [11] (resp. preclosed [29], ��closed [30],
��closed [1] or semi�preclosed [3]).

Definition ���� The intersection of all semi-closed (resp. preclosed, �-
closed, �-closed) sets of X containing A is called the semi�closure [11] (resp.
preclosure [15], ��closure [30], ��closure [2] or semi�preclosure [3]) of A
and is denoted by sCl(A) (resp. pCl(A), � Cl(A), � Cl(A) or spCl(A)).

Definition ���� The union of all semi-open (resp. preopen, �-open,
�-open) sets of X contained in A is called the semi�interior (resp. preinterior,
��interior, ��interior or semi�preinterior) of A and is denoted by sInt(A)
(resp. pInt(A), � Int(A), � Int(A) or spInt(A)).

Throughout the present paper, (X� �) and (Y� �) denote topological spaces
and f : (X� �) � (Y� �) presents a (single valued) function from a topological
space (X� �) into a topological space (Y� �).

Definition ���� A function f : (X� �) � (Y� �) is said to be contra�

continuous [13] (resp. contra�super�continuous [16], contra�semi�continuous

[14], contra�precontinuous [18], contra ��continuous [17], contra ��continu�

ous [7]) if f �1(V ) is closed (resp. �-closed, semi-closed, preclosed, �-closed,
�-closed) for every open set V of Y .
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3. Contra m-continuous functions

Definition ���� A subfamily mX of the power set P(X ) of a nonempty
set X is called a minimal structure (briefly m�structure) on X if � � mX and
X � mX . By (X�mX ), we denote a nonempty set X with a minimal structure
mX on X . Each member of mX is said to be mX �open and the complement
of an mX -open set is said to be mX �closed.

Remark ���� Let (X� �) be a topological space. Then the families � ,
SO(X ), PO(X ), �(X ), �(X ) are all m-structures on X .

Definition ���� Let X be a nonempty set and mX an m-structure on X .
For a subset A of X , the mX �closure of A and the mX �interior of A are
defined in [27] as follows:

(1) mX - Cl(A) =
T
fF : A � F�X � F � mX g,

(2) mX - Int(A) =
S
fU : U � A�U � mX g.

Remark ���� Let (X� �) be a topological space and A a subset of X . If
mX = � (resp. SO(X ), PO(X ), �(X ), �(X )), then we have

(1) mX - Cl(A) = Cl(A) (resp. sCl(A), pCl(A), � Cl(A), � Cl(A)),

(2) mX - Int(A) = Int(A) (resp. sInt(A), pInt(A), � Int(A), � Int(A)).

Lemma ���� (Maki [27]) Let X be a nonempty set and mX a minimal

structure on X � For subsets A and B of X � the following properties hold�

(1) mX �Cl(X � A) = X � (mX � Int(A)) and mX � Int(X � A) = X �
� (mX �Cl(A))�

(2) If (X � A) � mX � then mX �Cl(A) = A and if A � mX � then

mX � Int(A) = A�

(3) mX �Cl(�) = �� mX �Cl(X ) = X � mX � Int(�) = � and mX � Int(X ) = X �

(4) If A � B � then mX �Cl(A) � mX �Cl(B) and mX � Int(A) �
� mX � Int(B)�

(5) A � mX �Cl(A) and mX � Int(A) � A�

(6) mX �Cl(mX �Cl(A)) = mX �Cl(A) and mX � Int(mX � Int(A)) =
= mX � Int(A)�

Lemma ���� (Popa and Noiri [49]) Let X be a nonempty set with a

minimal structure mX and A a subset of X � Then x � mX �Cl(A) if and

only if U �A �= � for every U � mX containing x �



2019. május 4. –22:54

118 TAKASHI NOIRI, VALERIU POPA

Definition ���� A minimal structure mX on a nonempty set X is said to
have the property (B) [27] if the union of any family of subsets belonging to
mX belongs to mX .

Lemma ���� (Popa and Noiri [48]) For a minimal structure mX on a
nonempty set X � the following properties are equivalent�

(1) mX has the property �B��

(2) If mX � Int(V ) = V � then V � mX �

(3) If mX �Cl(F ) = F � then X � F � mX �

Lemma ���� Let X be a nonempty set and mX a minimal structure on
X satisfying the property �B�� For a subset A of X � the following properties
hold�

(1) A � mX if and only if mX � Int(A) = A�

(2) A is mX �closed if and only if mX �Cl(A) = A�

(3) mX � Int(A) � mX and mX �Cl(A) is mX �closed�

Proof� This follows immediately from Lemmas 3.1 and 3.3.

Definition ���� A function f : (X�mX ) � (Y� �), where X is a
nonempty set with an m-structure mX and (Y� �) is a topological space,
is said to be m�continuous [50] (resp. almost m�continuous [52], weakly
m�continuous [53]) if for each point x � X and each open set V of Y
containing f (x ), there exists U � mX containing x such that f (U ) � V
(resp. f (U ) � Int(Cl(V )), f (U ) � Cl(V )).

Theorem ���� For a function f : (X�mX ) � (Y� �)� where (X�mX ) is
a nonempty set with an m�structure mX and (Y� �) is a topological space�the
following properties are equivalent�

(1) f is m�continuous�

(2) f �1(V ) = mX � Int(f �1(V )) for every open set V of (Y� �)�

(3) f �1(K ) = mX �Cl(f �1(K )) for every closed set K of (Y� �)�

Proof� This follows from Theorem 3.1 of [50].

Corollary ���� (Popa and Noiri [48]) Let X be a nonempty set with
an m�structure mX satisfying the property �B�� For a function f : (X�mX ) �
� (Y� �)� the following properties are equivalent�

(1) f is m�continuous�

(2) f �1(V ) � mX for every open set V of (Y� �)�

(3) f �1(K ) is mX �closed in (X�mX ) for every closed set K of (Y� �)�
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Definition ���� A function f : (X�mX ) � (Y� �) is said to be contra

m�continuous if f �1(V ) = mX - Cl(f �1(V )) for every open set V of (Y� �).
And also f is said to be contra m�continuous at x � X if for each closed set
F containing f (x ), there exists U � mX containing x such that f (U ) � F .

Remark ���� The notions of m-continuity and contra m-continuity are
independent by Examples 2.1 and 2.2 of [7] and Examples 2.1 and 2.2 of
[18].

Definition ���� Let A be a subset of a topological space (X� �). The setT
fU � � : A � U g is called the kernel of A [32] and is denoted by Ker(A).

In [26], the kernel of A is called a ��set.

Lemma ���� (Jafari and Noiri [16]) For subsets A and B of a topological

space (X� �)� the following properties hold�

(1) x � Ker(A) if and only if A � F �= � for any closed set F containing

x �

(2) If A is open in (X� �)� then A = Ker(A)�

(3) If A � B � then Ker(A) � Ker(B)�

Theorem ���� For a function f : (X�mX ) � (Y� �)� the following

properties are equivalent�

(1) f is contra m�continuous�

(2) f �1(F ) = mX � Int(f �1(F )) for every closed set F of Y �

(3) for each x � X � f is contra m�continuous at x �

(4) f (mX �Cl(A)) � Ker(f (A)) for every subset A of X �

(5) mX �Cl(f �1(B)) � f �1(Ker(B)) for every subset B of Y �

Proof� (1) � (2): Let F be any closed set of Y . Then Y �F is open and

f �1(Y �F ) = mX - Cl(f �1(Y �F )). By Lemma 3.1, we have X � f �1(F ) =

= X � [mX - Int(f �1(F ))]. Therefore, we have f �1(F ) = mX - Int(f �1(F )).

(2) � (3): Let x � X and F be a closed set of Y containing f (x ). Then

x � f �1(F ). By (2), x � mX - Int(f �1(F )). There exists U � mX containing

x such that x � U � f �1(F ). Then, x � U and f (U ) � F .

(3) � (4): Let A be any subset of X . Let x � mX - Cl(A) and F be a
closed set of Y containing f (x ). Then by (3) there exists U � mX containing

x such that f (U ) � F ; hence x � U � f �1(F ). Since x � mX - Cl(A), by
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Lemma 3.2 U �A �= � and hence � �= f (U �A) � f (U )� f (A) � F � f (A). By
Lemma 3.5, we have f (x ) � Ker(f (A)) and hence f (mX - Cl(A)) � Ker(f (A)).

(4) � (5): Let B be any subset of Y . By (4) and Lemma 3.5,

f (mX - Cl(f �1(B))) � Ker(f (f �1(B))) � Ker(B)

and hence mX - Cl(f �1(B)) � f �1(Ker(B)).

(5) � (1): Let V be any open set of Y . Then by (5) and Lemma

3.5 we have mX - Cl(f �1(V )) � f �1(Ker(V )) = f �1(V ). By Lemma 3.1,

mX - Cl(f �1(V )) = f �1(V ). This shows that f is contra m-continuous.

Corollary ���� Let X be a nonempty set with a minimal struture mX

satisfying the property �B� and (Y� �) a topological space� For a function

f : (X�mX ) � (Y� �)� the following properties are equivalent�

(1) f is contra m�continuous�

(2) f �1(F ) � mX for every closed set F of Y �

(3) f �1(V ) is mX �closed in (X�mX ) for every open set V of Y �

Remark ���� Let (X� �) and (Y� �) be topological spaces. We put mX =
� (resp. SO(X ), PO(X ), �(X ), �(X )). Then a contra m-continuous function
f : (X�mX ) � (Y� �) is contra-continuous (resp. contra-semi-continuous,
contra-precontinuous, contra-�-continuous, contra-�-continuous). Moreover,
Theorem 3.2 and Corollary 3.2 establish their characterizations which are
obtained in [13] (resp. [14], [18], [17], [7]).

For contra-�-continuous functions, for example, the following character-
izations are known in [7]:

Corollary ���� For a function f : (X� �) � (Y� �)� the following

properties are equivalent�

(1) f is contra���continuous�

(2) f �1(F ) � �(X ) for every closed set F of Y �

(3) for each x � X and each closed set F containing f (x )� there exists

U � �(X ) containing x such that f (U ) � F �

(4) f (�Cl(A)) � Ker(f (A)) for every subset A of X �

(5) � Cl(f �1(B)) � f �1(Ker(B)) for every subset B of Y �
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4. Almost m-continuity

In this section, we obtain some sufficient conditions for a contra m-
continuous function to be almost m-continuous.

Definition ���� A function f : (X� �) � (Y� �) is said to be weakly con�

tinuous [21] (resp. weakly quasicontinuous [55] or weakly semi�continuous

[5], [10], [20]; almost weakly continuous [19] or quasi precontinuous [43];
weakly ��continuous [37]; weakly ��continuous [48]) if for each x � X and
each open set V of Y containing f (x ), there exists an open (resp. semi-open,
preopen, �-open, �-open) set U of X containing x such that f (U ) � Cl(V ).

Remark ���� Let f : (X� �) � (Y� �) be a function and mX = � (resp.
SO(X ), PO(X ), �(X ), �(X )). Then a weakly m-continuous function f :
(X�mX ) � (Y� �) is weakly continuous (resp. weakly semi-continuous,
almost weakly continuous, weakly �-continuous, weakly �-continuous).

It is proved in [18] that every contra-precontinuous function is almost
weakly continuous. The following theorem is a generalization of this result.

Theorem ���� If a function f : (X�mX ) � (Y� �) is contra m�continu�

ous� then it is weakly m�continuous�

Proof� Let x � X and V be any open set of Y containing f (x ). Then
Cl(V ) is a closed set containing f (x ). Since f is contra m-continuous, by
Theorem 3.2 there exists U � mX containing x such that f (U ) � Cl(V );
hence f is weakly m-continuous.

Corollary ���� If a function f : (X�mX ) � (Y� �) is contra�continuous
�resp� contra�semi�continuous� contra�precontinuous� contra���continuous�
contra���continuous�� it is weakly continuous �resp� weakly semi�continuous�

almost weakly continuous� weakly ��continuous� weakly ��continuous��

Definition ���� A function f : (X� �) � (Y� �) is said to be almost�

continuous [60] (resp. almost quasicontinuous [45] or almost semi�continuous

[28], [33], [38]; almost precontinuous [35], [54]; almost ��continuous [62]
or almost feebly continuous [24]; almost ��continuous [35]) if for each x �
� X and each open set V of Y containing f (x ), there exists an open (resp.
semi-open, preopen, �-open, �-open) set U of X containing x such that
f (U ) � Int(Cl(V )).

Remark ���� Let f : (X� �) � (Y� �) be a function and mX = � (resp.
SO(X ), PO(X ), �(X ), �(X )). Then an almost m-continuous function f :
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(X�mX ) � (Y� �) is almost continuous (resp. almost semi-continuous, almost
precontinuous, almost �-continuous, almost �-continuous).

Definition ���� A function f : (X� �) � (Y� �) is said to be almost

open [58] (resp. almost preopen [47], almost regular open [1] or M �preopen

[31], ��preopen [51], almost ��open [40]) if for each open (resp. semi-open,
preopen, �-open, �-open) set U of X , f (U ) � Int(Cl(U ))	

Definition ���� A function f : (X�mX ) � (Y� �) is said to be almost

m�open if f (U ) � Int(Cl(U )) for every U � mX .

It is proved in [18] that every M -preopen contra-precontinuous function
is almost precontinuous. The following theorem is a generalization of this
result.

Theorem ���� If f : (X�mX ) � (Y� �) is almost m�open and contra

m�continuous� then f is almost m�continuous�

Proof� Let x � X and V be any open set of Y containing f (x ). Then
Cl(V ) is a closed set containing f (x ). Since f is contra m-continuous, by
Theorem 3.2 there exists U � mX containing x such that f (U ) � Cl(V ).
Since f is almost m-open, f (U ) � Int(Cl(f (U ))) � Int(Cl(V )). Hence f is
almost m-continuous.

Corollary ���� If f : (X� �) � (Y� �) is contra�continuous �resp�

contra�semi�continuous� contra�precontinuous� contra���continuous� contra�

��continuous� and almost�open �resp� almost preopen� M �preopen� ��pre�
open� almost ��open�� then it is almost continuous �resp� almost semi�contin�

uous� almost precontinuous� almost ��continuous� almost ��continuous��

Definition ���� A topological space (Y� �) is said to be almost�regular

[59] if for any regular closed set F of Y and any y 
� F , there exist disjoint
open sets U and V such that y � U and F � V .

Theorem ���� If f : (X�mX ) � (Y� �) is contra m�continuous and (Y� �)
is almost�regular� then f is almost m�continuous�

Proof� Let x � X and V be any open set of Y containing f (x ). Since
(Y� �) is almost-regular, by Theorem 2.2 of [59] there exists a regular open
set G of Y such that f (x ) � G � Cl(G) � Int(Cl(V )). Since f is contra
m-continuous and Cl(G) is closed in Y , by Theorem 3.2 there exists U � mX
containing x such that f (U ) � Cl(G) � Int(Cl(V ). Hence f is almost
m-continuous.
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Definition ���� A function f : (X�mX ) � (Y� �) is said to be faintly

m�continuous if, for each x � X and each � -open set V of Y containing
f (x ), there exists U � mX containing x such that f (U ) � V .

Remark ���� Let (X� �) be a topological space and mX = � (resp.
SO(X ), PO(X ), �(X )). Then faint m-continuity coincides with faint con-
tinuity [23] (resp. faint semi-continuity [39], faint precontinuity [39], faint
�-continuity [39]).

Lemma ���� For a function f : (X�mX ) � (Y� �)� the following proper�

ties are equivalent�

(1) f is faintly m�continuous�

(2) f �1(V ) = mX � Int(f �1(V )) for every � �open set V of (Y� �)�

(3) f �1(K ) = mX �Cl(f �1(K )) for every � �closed set K of (Y� �)�

Theorem ���� If (Y� �) is a regular space� then the implications (1) �
(2) � (3) � �	� � (5) hold for a function f : (X�mX ) � (Y� �)�

(1) f is contra m�continuous�

(2) f is almost m�continuous�

(3) f is weakly m�continuous�

(4) f is faintly m�continuous�

(5) f is m�continuous�

Proof� (1) � (2): This follows from Theorem 4.3.

(2) � (3): This is obvious.

(3) � (4): Let F be any � -closed set of Y . It follows from Theorem 3.2

of [53] that mX - Cl(f �1(F )) � f �1(Cl� (F )) = f �1(F ). By Lemma 4.1, f is
faintly m-continuous.

(4) � (5): Let V be any open set of Y . Since Y is regular, V is

� -open. By Lemma 4.1, f �1(V ) = mX - Int(f �1(V )). By Theorem 3.1, f is
m-continuous.

Corollary ���� If a function f : (X� �) � (Y� �) is contra���continuous
�resp� contra precontinuous� and (Y� �) is regular� then f is ��continuous
�resp� precontinuous��

Proof� This is shown in [7] (resp. [18]).

Remark ���� By Remark 3.1 of [18], every m-continuous function is not
always contra m-continuous even if (Y� �) is regular.
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Lemma ���� (Popa and Noiri [52])� A function f : (X�mX ) � (Y� �) is

almost m�continuous if and only if for any x � X and any regular open set

V containing f (x )� there exists U � mX containing x such that f (U ) � V �

We recall that a topological space (X� �) is said to be extremally discon�

nected (briefly E.D.) if the closure of every open set of X is open in (X� �).

Theorem ���� If f : (X�mX ) � (Y� �) is contra m�continuous and (Y� �)
is E�D�� then f is almost m�continuous�

Proof� Let x � X and V be any regular open set of Y containing f (x ).
Since (Y� �) is E.D., by Lemma 5.6 of [43] V is clopen. Since f is contra
m-continuous, by Theprem 3.2 there exists U � mX containing x such that
f (U ) � V . Hence, by Lemma 4.2 f is almost m-continuous.

Definition ��	� A function f : (X�mX ) � (Y� �) is said to satisfy the

m�interiority condition if mX - Int(f �1(Cl(V ))) � f �1(V ) for each open set
V of (Y� �).

Theorem ���� If f : (X�mX ) � (Y� �) is contra m�continuous and

satis
es the m�interiority condition� then f is m�continuous�

Proof� Let V be any open set of Y . Since f is contra m-continuous, by
Theorem 3.2 and Lemma 3.1

f �1(V ) � f �1(Cl(V )) = mX - Int(f �1(Cl(V ))) =

= mX - Int(mX - Int(f �1(Cl(V ))) � mX - Int(f �1(V )) � f �1(V )	

Therefore, we obtain f �1(V ) = mX - Int(f �1(V )). Hence, by Theorem 3.1 f
is m-continuous.

5. Contra m-closed graphs

Definition ���� A function f : (X�mX ) � (Y� �) is said to have a
contra m�closed graph if for each (x � y) � (X 	 Y ) � G(f ), there exist an
mX -open set U containing x and a closed set V of Y containing y such that
(U 	V ) �G(f ) = �.

Lemma ���� A function f : (X�mX ) � (Y� �) has a contra m�closed

graph if and only if for each (x � y) � (X 	 Y ) � G(f )� there exist an mX �

open set U containing x and a closed set V of Y containing y such that

f (U ) �V = ��
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Theorem ���� If f : (X�mX ) � (Y� �) is a contra m�continuous function

and (Y� �) is Urysohn� then G(f ) is contra m�closed�

Proof� Suppose that (x � y) � (X 	 Y ) � G(f ). Then y �= f (x ). Since
Y is Urysohn, there exist open sets V and W in Y containing y and f (x ),
respectively, such that Cl(V ) � Cl(W ) = �. Since f is contra m-continuous,
there exists an mX -open set U containing x such that f (U ) � Cl(W ). This
implies that f (U ) � Cl(V ) = � and by Lemma 5.1 G(f ) is contra m-closed.

Remark ���� Let f : (X� �) � (Y� �) be a function. If mX = PO(X )
(resp. �(X ), �(X )), then by Theorem 5.1 we obtain the results established in
Theorem 4.1 of [18] (resp. Theorem 4.1 of [17], Theorem 2.21 of [7]).

Theorem ���� If f : (X�mX ) � (Y� �) is an m�continuous function and

(Y� �) is T1� then G(f ) is contra m�closed�

Proof� Let (x � y) � (X 	 Y ) � G(f ). Then y �= f (x ). Since Y is T1,
there exists an open set V in Y such that f (x ) � V and y 
� V . Since f

is m-continuous, there exists U � mX containing x such that f (U ) � V .
Therefore, f (U ) � (Y � V ) = � and Y � V is a closed set of Y containing
y . This shows that G(f ) is contra m-closed.

Remark ���� Let f : (X� �) � (Y� �) be a function. If mX = �(X ), then
by Theorem 5.2 we obtain the results established in Theorem 4.2 of [17].

Definition ���� A nonempty set X with an m-structure mX is said to
be m-T2 [50] if for each distinct points x � y � X , there exist U�V � mX

containing x and y , respectively, such that U �V = �.

Theorem ���� If f : (X�mX ) � (Y� �) is an injective contra m�continu�

ous function with a contra m�closed graph� then (X� �) is m�T2�

Proof� Let x and y be any distinct points of X . Then, since f is injective,
we have f (x ) �= f (y). Then we have (x � f (y)) � (X 	 Y ) � G(f ). Since
G(f ) is contra m-closed, by Lemma 5.1 there exist an mX -open set U of X
containing x and a closed set V of Y containing f (y) such that f (U )�V = �.
Since f is contra m-continuous, there exists G � mX containing y such
that f (G) � V . Therefore, we have f (U ) � f (G) = �. Clearly, we obtain
U �G = �. This shows that X is m-T2.
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6. Some properties of contra m-continuity

Theorem ���� Let (X�mX ) be a nonempty set with an m�structure mX �

If for each pair of distinct points x1 and x2 in X there exists a function f of

(X�mX ) into a Urysohn space (Y� �) such that f (x1) �= f (x2) and f is contra

m�continuous at x1 and x2� then X is m�T2�

Proof� Let x and y be any distinct points of X . Then by the hypothesis,
there exist an Urysohn space (Y� �) and a function f : (X�mX ) � (Y� �)
which satisfies the conditions of this theorem. Let yi = f (xi ) for i = 1� 2. Then
y1 �= y2. Since Y is Urysohn, there exist open sets U1 and U2 containing
y1 and y2, respectively, such that Cl(U1) � Cl(U2) = �. Since f is contra
m-continuous at xi , by Theorem 3.2 there exists Gxi � mX containing xi
such that f (Gxi ) � Cl(Ui ) for i = 1� 2. Hence we obtain Gx1 � Gx2 = �.
Therefore, X is m-T2.

Corollary ���� If f : (X�mX ) � (Y� �) is a contra m�continuous

injection and (Y� �) is Urysohn� then (X�mX ) is m�T2�

Proof� For each pair of distinct points x1 and x2 in X , f is a contra
m-continuous function of (X�mX ) into a Urysohn space (Y� �) such that
f (x1) �= f (x2) because f is injective. Hence, by Theorem 6.1 (X�mX ) is
m-T2.

Definition ���� A topological space (Y� �) is said to be ultra�Hausdor�

[61] if for each pair of distinct points x and y in Y there exist clopen sets U
and V containing x and y , respectively, such that U �V = �.

Theorem ���� If f : (X�mX ) � (Y� �) is a contra m�continuous injec�

tion and (Y� �) is ultra�Hausdor�� then (X�mX ) is m�T2�

Proof� Let x1 and x2 be any distinct points in X . Then, since f is
injective, f (x1) �= f (x2). Moreover, since (Y� �) is ultra-Hausdorff, there exist
clopen sets V1� V2 such that f (x1) � V1, f (x2) � V2 and V1 � V2 = �. By
Theorem 3.2, there exists Ui � mX containing xi such that f (Ui ) � Vi for
i = 1� 2. Clearly, we obtain U1 �U2 = �. Thus (X�mX ) is m-T2.

Remark ���� Let f : (X� �) � (Y� �) be a function. If mX = �(X ),
then by Theorem 6.1, Corollary 6.1 and Theorem 6.2 we obtain the results
established in Theorem 2.14, Corollary 2.1 and Corollary 2.2 of [7].

Definition ���� Let (X�mX ) be a nonempty set with an m-structure mX .
A subset A of X is said to be m�dense in X if mX - Cl(A) = X .
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Theorem ���� Let X be a nonempty set with two minimal structures m1
X

and m2
X such that U �V � m2

X whenever U � m1
X and V � m2

X and (Y� �)

be a Hausdor� space� If g : (X�m1
X ) � (Y� �) is almost m�continuous�

f : (X�m2
X ) � (Y� �) is contra m�continuous and f (x ) = g(x ) on an m�dense

set D of (X�m2
X )� then f (x ) = g(x ) on X �

Proof� Let A = fx � X : f (x ) = g(x )g. Suppose that x � X � A. Then
f (x ) �= g(x ). Since (Y� �) is Hausdorff, there exist open sets V and W such
that f (x ) � V , g(x ) � W and V �W = �; hence Cl(V ) � Int(Cl(W )) = �.
Since g is almost m-continuous, there exists U1 � m1

X containing x such
that g(U1) � Int(Cl(W )). Since f is contra m-continuous, by Theorem 3.2

there exists U2 � m2
X containing x such that f (U2) � Cl(V ). Now put

U = U1 � U2, then x � U , U � m2
X and U � A = �. Therefore, by

Lemma 3.2 x � X � m2
X - Cl(A) and hence A = m2

X - Cl(A). On the other

hand, f (x ) = g(x ) on D ; hence D � A. Since D is m-dense in (X�m2
X ),

X = m2
X - Cl(D) � m2

X - Cl(A) = A. Therefore, X = A and f (x ) = g(x ) for
each x � X .

Definition ���� A nonempty set X with an m-structure mX is said to be
m�compact [50] if every cover of X by mX -open sets has a finite subcover.

Remark ���� Let (X� �) be a topological space. If mX = � (resp. SO(X ),
PO(X ), �(X )) then by Definition 6.3 we obtain the definitions of compact
(resp. semi-compact, strongly compact, �-compact) spaces.

Definition ���� A topological space (X� �) is said to be strongly S �
closed [13] (resp. semi�compact [8], strongly compact [31], ��compact [25])
if every cover of X by closed (resp. semi-open, preopen, �-open) sets of
(X� �) has a finite subcover.

Definition ���� A topological space (Y� �) is said to be S �closed [63]
(resp. quasi H �closed [56]) if for every cover fV� : � � Δg of Y by
semi-open (resp. open) sets of (Y� �), there exists a finite subset Δ0 of Δ
such that Y =

S
fCl(Vi ) : � � Δ0g.

Theorem ���� If f : (X�mX ) � (Y� �) is a contra m�continuous surjec�

tion and (X�mX ) is m�compact� then (Y� �) is strongly S �closed�

Proof� Let (X�mX ) be m-compact and fV� : � � Δg any cover of
Y by closed sets of (Y� �). For each x � X , there exists �(x ) � Δ such
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that f (x ) � V�(x ). Since f is contra m-continuous, by Theorem 3.2 there
exists an mX -open set U (x ) containing x such that f (U (x )) � V�(x ) . The
family fU (x ) : x � X g is a cover of X by mX -open sets. Since (X�mX ) is
m-compact, there exist a finite number of points, say, x1� x2� 	 	 	� xn in X such
that X =

S
fU (xk ) : xk � X� 1 
 k 
 ng. Therefore, we obtain

Y = f (X ) =
�
ff (U (xk )) : xk � X� 1 
 k 
 ng �

�
�
fV�(xk ) : xk � X� 1 
 k 
 ng	

This shows that (Y� �) is strongly S -closed.

Corollary ���� If f : (X�mX ) � (Y� �) is a contra m�continuous

surjection and (X�mX ) is m�compact� then (Y� �) is S �closed and hence quasi

H �closed�

Remark ���� Let (X� �) be a topological space. If mX = � (resp. SO(X ),
PO(X ), �(X )), then by Theorem 6.4 we obtain the results established in
Theorem 4.2 of [14] (resp. Theorem 4.2 of [14], Corollary 5.1 of [18],
Corollary 5.1 of [17]).

Definition ���� A nonempty set (X�mX ) with an m-structure mX is said
to be m�connected [50] if X cannot be written as the union of two nonempty
sets of mX .

Remark ���� Let (X� �) be a topological space. If mX = � (resp. SO(X ),
PO(X ), �(X )) then by Definition 6.6 we obtain the definitions of connected
(resp. semi-connected [44], preconnected [46], �-connected [48]) spaces.

Theorem ���� Let (X�mX ) be a nonempty set with an m�structure mX
satisfying the property �B� and (Y� �) a topological space� If f : (X�mX ) �
� (Y� �) is a contra m�continuous surjection and (X�mX ) is m�connected�

then (Y� �) is connected�

Proof� Assume that (Y� �) is not connected. Then, there exist nonempty
open sets V1� V2 of (Y� �) such that V1 � V2 = � and V1 � V2 = Y .

Hence we have f �1(V1) � f �1(V2) = � and f �1(V1) � f �1(V2) = X .

Since f is surjective, f �1(V1) and f �1(V2) are nonempty sets. Since f is

contra m-continuous and V1� V2 are clopen sets, by Theorem 3.2, f �1(V1) =

= mX - Int(f �1(V1)) and f �1(V2) = mX - Int(f �1(V2)). Since mX has the

property (B), by Lemma 3.4, f �1(V1) and f �1(V2) are mX -open sets in
(X�mX ). Therefore, (X�mX ) is not m-connected.
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Remark ���� Let (X� �) be a topological space. If mX = SO(X ) (resp.
�(X ), �(X )), then by Theorem 6.5 we obtain the results established in The-
orem 5.4 of [14] (resp. Theorem 6.3 of [17], Theorem 3.2 of [7]).

Corollary� If f : (X� �) � (Y� �) is a contra�continuous �resp� contra�

precontinuous� surjection and (X� �) is connected �resp� preconnected�� then

(Y� �) is connected�

Proof� This is an immediate consequence of Theorem 6.5.

Definition ��	� Let A be a subset of (X�mX ). The mX �frontier of A,
mX - Fr(A), is defined by mX - Fr(A) = mX - Cl(A) � mX - Cl(X �A).

Theorem ���� The set of all points x � X at which a function f :
(X�mX ) � (Y� �) is not contra m�continuous is identical with the union of

the mX �frontiers of the inverse images of closed sets of Y containing f (x )�

Proof� Suppose that f is not contra m-continuous at x � X . There
exists a closed set F of Y containing f (x ) such that f (U ) � (Y � F ) �= � for

every U � mX containing x . By Lemma 3.2 we have x � mX - Cl(f �1(Y �

� F )) = mX - Cl(X � f �1(F )). On the other hand, we have x � f �1(F ) �

� mX - Cl(f �1(F )) and hence x � mX - Fr(f �1(F )).

Conversely, suppose that f is contra m-continuous at x � X and let F be

any closed set containing f (x ). Then by Theorem 3.2 we have x � f �1(F ) =

= mX - Int(f �1(F )). Therefore, x 
� mX - Fr(f �1(F )) for each closed set F
containing f (x ). This completes the proof.

7. New varieties of contra-continuity

Let A be a subset of a topological space (X� �). A point x of X is called a
semi�� �cluster point of A if sCl(U )�A �= � for every U � SO(X ) containing
x . The set of all semi-� -cluster points of A is called the semi�� �closure [12]
of A and is denoted by sCl� (A). A subset A is said to be semi�� �closed if A =
= sCl� (A). The complement of a semi-� -closed set is said to be semi�� �open.
A subset A is said to be semi�regular [12] if it is semi-open and semi-closed.

Definition 	��� Let (X� �) be a topological space. A subset A of X is
said to be

(1) b�open [4] if A � Cl(Int(A)) � Int(Cl(A)),
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(2) ��preopen [57] (resp. ��semi�open [42]) if A � Int(Cl� (A)) (resp.
A � Cl(Int� (A))).

The family of all b-open (resp. �-preopen, �-semi-open, semi-� -open, � -
open) sets in (X� �) is denoted by BO(X ) (resp. � PO(X ), � SO(X ), S�O(X ),
�� ).

Definition 	��� The complement of a b-open (resp. �-preopen, �-semi-
open) set is said to be b�closed [4] (resp. ��preclosed [57], ��semi�closed

[42]).

Definition 	��� The intersection of all b-closed (resp. �-preclosed, �-
semi-closed) sets of X containing A is called the b�closure [4] (resp. ��
preclosure [57], ��semi�closure [42]) of A and is denoted by bCl(A) (resp.
pCl� (A), sCl� (A)).

Definition 	��� The union of all semi-� -open (resp. b-open, �-preopen,
�-semi-open) sets of X contained in A is called the semi�� �interior (resp.
b�interior, ��preinterior, ��semi�interior) of A and is denoted by sInt� (A)
(resp. bInt(A), pInt� (A), sInt� (A)).

Lemma 	��� For a subset A of a topological space (X� �)� the following

properties hold�

(1) If A is a semi�open set� then sCl(A) is semi�regular�

(2) If A is a semi�regular set� then it is semi�� �open�

(3) If A is a semi�regular set� then it is ��semi�open�

(4) If A is a semi�� �open set� then it is ��semi�open�

(5) If A is a ��semi�open set� then it is semi�open�

Proof� (1) and (2) are shown in Propositions 2.2 and 2.3 of [12].

(3) Let A be a semi-regular set. Then since A is semi-open and semi-
closed, we have Int(Cl(A)) � A � Cl(Int(A)). Since Int(Cl(A)) is regular
open, we obtain Int(Cl(A)) � Int� (A) and hence

A � Cl(Int(A)) � Cl(Int(Cl(A))) � Cl(Int� (A))	

This shows that A is �-semi-open.

(4): Let A be a semi-� -open set. For each x � A, there exists Ux �
� SO(X ) such that x � Ux � sCl(Ux ) � A. By (1), sCl(Ux ) is semi-regular
and hence �-semi-open by (3). Therefore, A =

S
x�A sCl(Ux ) is �-semi-open

by Theorem 3 of [42].

(5) Let A be a �-semi-open set. Since Int� (A) � Int(A), A � Cl(Int� (A))
implies A � Cl(Int(A)). This shows that A is semi-open.
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By Lemma 7.1, we have the following diagram in which the converses
of implications need not be true as shown by the examples stated below.

Diagram I

� -open � �-open � open � preopen � �-preopen

� � � � j

semi-� -open � �-semi-open � semi-open � b-open � semi-preopen

Example 	��� Let X = fa� b� cg and � = fX� �� fag� fbg� fa� bgg. Then
fa� bg is a �-open set of (X� �) which is not � -open. The subset fa� cg is a
semi-� -open set which is not �-preopen.

Example 	��� (Park et al. [42]) Let X = fa� b� c� dg and � = fX , �,
fag, fcg, fa� bg, fa� cg, fa� b� cg, fa� c� dgg. Then fa� c� dg is an open set of
(X� �) which is not �-semi-open.

Example 	��� Let X = fa� b� c� dg and � = fX� �� fcg� fa� dg� fa� c� dgg.
Then fa� b� cg is a preopen set of (X� �) which is not semi-open.

Example 	��� Let X = fa� b� c� dg and � = fX� �� fa� bg� fa� b� cgg.
Then fdg is a �-preopen set of (X� �) which is not �-open.

Lemma 	��� Let (X� �) be a topological space and A be a subset of X �

(1) If A is open� then Cl� (A) = Cl(A)�

(2) If A is closed� then Int� (A) = Int(A)�

Proof� (1) is known in [64] and (2) follows obviously from (1).

For a topological space (X� �), the family of all �-open sets of (X� �)
forms a topology for X , which is weaker than � . This topology has a
base consisting of all regular open sets in (X� �). It is usually called the
semi�regularization of � and is denoted by �s . Now, we have the following
interesting lemma.

Lemma 	��� Let (X� �) be a topological space and A be a subset of X �

(1) A is ��semi�open in (X� �) if and only if A is semi�open in (X� �s )�

(2) A is ��preopen in (X� �) if and only if A is preopen in (X� �s )�

Proof� This folllows from Lemma 7.2 and the next facts:

(1) Cl(Int� (A)) = Cl� (Int� (A)) = �s - Cl(�s - Int(A)),

(2) Int(Cl� (A)) = Int� (Cl� (A)) = �s - Int(�s - Cl(A)).
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Definition 	��� A function f : (X� �) � (Y� �) is said to be contra

strongly � �continuous (resp. contra strongly semi�� �continuous, contra b�
continuous, contra ��precontinuous, contra ��semi�continuous) if for every

open set V of (Y� �), f �1(V ) is � -closed (resp. semi-� -closed, b-closed,
�-preclosed, �-semi-closed) in (X� �).

Remark 	��� Let f : (X� �) � (Y� �) be a function and mX = ��
(resp. S � O(X ), BO(X ), � SO(X ), � PO(X )). Then a contra m-continuous
function f : (X�mX ) � (Y� �) is contra strongly � -continuous (resp. contra
strongly semi-� -continuous, contra b-continuous, contra �-semi-continuous,
contra �-precontinuous).

All the families �� , S�O(X ), BO(X ), � SO(X ), � PO(X ) have the prop-
erty (B). Especially, �� is a topology for X . Therefore, we can apply
all results obtained in Sections 3–6 to these new functions. The following
theorem is a typical characterization.

Theorem 	��� A function f : (X� �) � (Y� �) is a contra strongly � �
continuous �resp� contra strongly semi�� �continuous� contra b�continuous�
contra ��semi�continuous� contra ��precontinuous� function if and only if if

for every closed set F of Y � f �1(F ) is � �open �resp� semi�� �open� b�open�
��preopen� ��semi�open� in X �

Proof� The proof is obvious from the definition.

By Theorem 7.1 and DIAGRAM I, we obtain the following diagram:

Diagram II�

contra st.� -C � contra-super-C � contra-C � contra-p-C � contra �-p-C

� � � � j

contra st. s-� -C � contra �-s-C � contra-s-C � contra b-C � contra-�-C

In the diagram above, we abbreviate as follows: C = continuous, st. = strongly,
p = pre and s = semi.

Theorem 	��� For a function f : (X� �) � (Y� �)� the following proper�

ties are equivalent�

(1) f is contra strongly � �continuous�

(2) For each point x � X and each closed set F of Y containing f (x )�
there exists a � �open set U of X containing x such that f (U ) � F �

(3) For each point x � X and each closed set F of Y containing f (x )�
there exists an open set U of X containing x such that f (Cl(U )) � F �
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(4) f : (X� �� ) � (Y� �) is contra�continuous�

Proof� By Theorem 7.1, (1) is equivalent to (4). We prove only the
implication : (3) � (1), the other proofs being obvious. Let F be any closed

set of Y and x � f �1(F ). Then f (x ) � F and by (3) there exists an open
set U of X containing x such that f (Cl(U )) � F . Therefore, we have

x � U � Cl(U ) � f �1(F ) and hence f �1(F ) is � -open in X . It follows
from Theorem 7.1 that f is contra strongly � -continuous.

Theorem 	��� A function f : (X� �) � (Y� �) is contra ��semi�continu�

ous �resp� contra ��precontinuous� if and only if f : (X� �s ) � (Y� �) is

contra�semi�continuous �resp� contra�precontinuous��

Proof� This is an immediate consequence of Lemma 7.3.

Theorem 	��� For a function f : (X� �) � (Y� �)� the following proper�

ties are equivalent�

(1) f is contra strongly semi�� �continuous�

(2) For each point x � X and each closed set F of Y containing f (x )�
there exists a semi�� �open set U of X containing x such that f (U ) � F �

(3) For each point x � X and each closed set F of Y containing f (x )�
there exists a semi�regular set U of X containing x such that f (U ) � F �

Proof� (1) � (2): this is obvious.

(2) � (3): For any semi-� -open set G and each x � G , there exists a
semi-open set H such that x � H � sCl(H ) � G . By Lemma 7.1, sCl(H ) is
a semi-regular set. Set U = sCl(H ), then (3) holds.

(3) � (1): Let F be any closed set of Y and x � f �1(F ). Then there
exists a semi-regular set U of X containing x such that f (U ) � F . Then we

have x � U � f �1(F ). This shows by Lemma 7.1 that f �1(F ) is semi-� -open
in X .

Finally, we deal with the preservation theorem of compact-like spaces
under new types of contra-continuous surjections.

Definition 	��� A topological space (X� �) is said to be

(1) s�closed [12] if for every semi-open cover fV� : � � Δg of X , there
exists a finite subset Δ0 of Δ such that X =

S
fsCl(V� ) : � � Δ0g,

(2) b�compact (resp. �s �compact� �p�compact) if every b-open (resp.
�-semi-open, �-preopen) cover of X has a finite subcover.
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Theorem 	��� Let f : (X� �) � (Y� �) be a surjective function� If one of

the following conditions holds� then (Y� �) is strongly S �closed�

(1) f is contra strongly � �continuous and (X� �) is quasi H �closed�

(2) f is contra strongly semi�� �continuous and (X� �) is s�closed�

(3) f is contra b�continuous and (X� �) is b�compact�

(4) f is contra ��semi�continuous and (X� �) is �s �compact�

(5) f is contra ��precontinuous� and (X� �) is �p�compact��

Proof� The proofs for the first and the second statements follow from
Theorems 7.2 and 7.4, respectively. The other are obvious.
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1. Introduction and main result

Let 0 �a1 �a2 ��� � �an be integers with gcd(a1; � � � ; an ) = 1� It is
well-known that the equation K =

Pn
i=1 xiai has a solution in non-negative

integers xi provided K is sufficiently large. Define G(a1� a2� � � � � an) as the
greatest integer K for which the preceding equation has no such solution and
g(n� t) by

g(n� t) = maxG(a1� a2� � � � � an)

where the max is taken over all ai satisfying 1 �a1 �a2 ��� � �an � t �
gcd(a1; � � � ; an) = 1� The investigation of G(a1� a2� � � � � an) and g(n� t) has
given rise to many papers, see e.g. [2], [5], [6].

Erd�os and Graham asked [3, p.86] “For what choice of n positive
integers 1 �a1 �a2 ��� � �an � t is the number of integers not of
the form

P
i

ciai maximal, where the ci range over all non-negative integers?

Is the choice ai = t � i + 1, 1 � i � n optimal for this?”

The aim of the present paper is to give a simple proof for this conjecture.
In addition we shall give further examples for optimal sets.

Let N (a1� a2� � � � � an) be the number of positive integers with no repre-
sentation by a1� a2� � � � � an � Analogously to g(n� t) we can define �(n� t) as

�(n� t) = maxN (a1� a2� � � � � an)

where the max is taken over all ai satisfying 1 �a1 �a2 ��� � �an � t �
gcd(a1; � � � ; an) = 1�

The statement of Erdős and Graham can be written in following form
with the new notation:
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Theorem �� Let n and t be positive integers such that 1 �n � t � Then

(1) �(n� t) = N (t � n + 1� t � n + 2� � � � � t)�

The proof of Theorem 1. uses the following result of Dixmier [1,
Thm.2]: For an � t and any k � at least min(t � kn � k + 1) integers can be
represented by a1� a2� � � � � an in the interval Ik = [(k � 1)t + 1� k t].

2. Proof of Theorem 1

We prove first the following lemma:

Lemma� Let n and t be positive integers such that 1 �n � t � Let the

integers q and r be de�ned by t = q(n � 1) + r � where 1 � r � n � 1� Then

N (t � n + 1� t � n + 2� � � � � t) =
(t � n + r � 1)q

2
�

Proof� Since the numbers ai = t � n + i are consecutive, all integers in
the intervals Jm = [m(t � n + 1)� mt] are representable m = 1� 2� � � � Hence
the integers without a representation are those situated before J1� between J1
and J2� � � � , between Jm�1 and Jm as long as these intervals are distinct, i.e.
(m � 1)t �m(t � n + 1)� or equivalently m(n � 1) �t� Hence the last value
is m = q� So the number of integers without representation is

qX

m=1

[m(t � n + 1)� (m � 1)t � 1] =
qX

m=1

(t � mn + m � 1) =

= qt �
q(q + 1)

2
(n � 1)� q =

q

2
[2t � (q + 1)(n � 1)� 2] =(2)

=
q

2
[t + q(n � 1) + r � (q + 1)(n � 1)� 2] =

(t � n + r � 1)q
2

�

Proof of Theorem �� Dixmier’s theorem mentioned in the introduction
claims that the intervals Ik contain at least

n; 2n � 1; 3n � 2; � � � ; k (n � 1) + 1; � � �

representable elements. So the number of elements in Ik without representa-
tion will be at most

t�n; t�2n +1; t�3n +2; � � � ; t�k (n�1)�1; � � � ; t�q(n�1)�1 = r�1�
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This is an arithmetical progression. Hence

N (a1� a2� � � � � an) �
qX

k=1

(t � k (n � 1)� 1)

which is the same as the second
P

in (2).

Thus �(n� t) = N (t � n + 1� t � n + 2� � � � � t) as claimed.

3. Optimal sets

We found that the set A = ft � n + 1� t � n + 2� � � � � tg is optimal in the
sense that �(n� t) = N (A)� Can we find other optimal sets, as well? In the
following theorem we show, that this is possible in many cases.

Theorem �� Let d� n� k be integers such that 2 � d �n� 0 � k �n � d�
If n � k � 0 (mod d + 1) or n � k � �1 (mod d + 1) then for t = dn + k
there exist at least two optimal sets A� i�e� for which

N (A) = �(n� dn + k )�

Proof� We have to show that there exists an optimal set different from
ft�n + 1� t�n + 2� � � � � tg� We shall use the same sets as in [4] when proving
the exact value of g(n� dn + k ) for d� k and n satisfying the above conditions.

Case �i�� Let n � k � 0 (mod d + 1)� Write n = l (d + 1) + k , then

dn + k = l d(d + 1) + dk + k = (d + 1)(l d + k )�

Let A = fa1; a2; � � � ; ang consist of all multiples of (d + 1) and the l largest
elements of the residue class (�1) modulo (d + 1) up to t :

A = fd + 1; 2(d + 1); � � � ; (l d + k � 1)(d + 1); (l d + k )(d + 1);

dn+k�1; dn+k�1�(d+1); dn+k�1�2(d+1); � � � ; dn+k�1�(l�1)(d+1)g�

Let z = dn + k � 1� (l � 1)(d + 1) be the smallest element of A, which is not
a multiple of (d + 1)�

It is well-known (see e.g. Sylvester [7]), that N (b� c) = (b� 1)(c� 1)�2,
hence

N (A) = N (d + 1� z ) = (z � 1)
d

2
= [dn + k � l (d + 1) + d � 1]

d

2
=

= (dn + k � n + k + d � 1)
d

2
�
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This coincides with �(n� t) = N (t � n + 1� t � n + 2� � � � � t) since by the
notations and result of the Lemma now t = dn + k = d(n � 1) + k + d, so

d = q� r = k + d and dn + k � n + k + d � 1 = t � n + r � 1�

Case �ii�� Suppose n � k � �1 (mod d + 1)� Then n = l (d + 1) + k � 1
and

dn + k = (d + 1)dl + dk � d + k = (d + 1)(dl + k )� d�

So dn + k �1 = (d + 1)(dl + k �1) is a multiple of (d + 1)� Let A = fa1; a2; � � �
� � � ; ang consist of all multiples of (d + 1) and the l largest elements of the
residue class (1) modulo (d + 1) up to t :

A = fd + 1; 2(d + 1); � � � ; (l d + k � 1)(d + 1);

dn + k ; dn + k � (d + 1); dn + k � 2(d + 1); � � � ; dn + k � (l � 1)(d + 1)g�

We obtain N (A) = �(n� t) by similar calculations as in Case (i).

Acknowledgement� I am grateful to Professor Róbert Freud for many
suggestions and helpful collaboration.
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Introduction

In [3] W. Jäger and N. Kutev considered the following nonlinear trans-
mission (contact) problem for nonlinear elliptic equations:

nX
i=1

Di [ai (x � u� Du)] + b(x � u� Du) = 0 in Ω(0�1)

u = g on �Ω(0�2) �
nX
i=1

ai (x � u� Du)�i

�
jS = 0(0�3)

u1 = Φ(u2) on S(0�4)

where Ω � Rn is a bounded domain with sufficiently smooth boundary �Ω
which is divided into two subdomains Ω1, Ω2 by means of a smooth surface
S which has no intersection point with �Ω, the boundary of Ω1 is S and
the boundary of Ω2 is S � �Ω. Further, [f ]jS denotes the jump of f on S
in the direction of the normal � , Φ is a smooth strictly increasing function
and uj denotes the restriction of u to Ωj (j = 1� 2). The coefficients of the

equation are smooth in Ωj and satisfy standard conditions but they have jump
on the surface S . The problem was motivated e.g. by reaction-diffusion
phenomena in porous medium. The authors formulated conditions which

This work was supported by the Hungarian National Foundation for Scienific Research

under grant OTKA T 031807
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implied comparison principles, existence and uniqueness of the weak and the
classical solution, respectively.

The aim of this paper is to consider similar transmission problems for
nonlinear parabolic equations, including nonlocal transmission condition on
S and to formulate conditions which imply the existence of weak solutions. In
Section 1 we shall consider parabolic equations with a transmission condition
which is a bit more general than (0�3), (0�4) and in Section 2 we shall consider
equations with nonlocal transmission condition.

1. Nonlinear transmission conditions

Let Ω � Rn be a bounded domain having the uniform C 1 regularity
property (see [1]) which is divided into two subdomains Ω1, Ω2 by means of
a smooth surface S which has no intersection point with �Ω, the boundary of
Ω1 is S and the boundary of Ω2 is S � �Ω (such that Ω1 and Ω2 have the

C 1 regularity property).

In this section we shall consider weak solutions of the following problem:

Dtu �
nX
i=1

Di [ai (t � x � u� Du)] + b(t � x � u� Du) = 0�

t � (0� T )� x � Ω1 �Ω2

(1�5)

u = 0 on ΓT = [0� T ]� �Ω(1�6)
nX
i=1

ai (t � x � u1� Du1)�i jST = Φ�x (u2)
nX
i=1

ai (t � x � u2� Du2)�i jST(1�7)

u1 = �(x � u2) = Φx (u2) on ST = [0� T ]� S(1�8)

u(0� x ) = u0(x )� x � Ω1 �Ω2(1�9)

where � : Ω� R � R is a given function with the properties

� � C 2� Φ�x �0� Φx (0) = 0; lim
+�

Φx = +�� lim
��

Φx = ���

for each fixed x � Ω.

The assumptions on ai , b are in some sense more general then in [3].
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Let m 	 2 be a real number. For any domain Ω0 � Rn denote by

W 1�m (Ω0) the usual Sobolev space with the norm

k u k=

�
��Z

Ω0

(jDujm + jujm )

�
�	

1�m

�

Let V be a closed linear subspace of W 1�m(Ω0) and denote by Lm (0� T ;V )
the Banach space of the set of measurable functions u : (0� T ) � V such that
k u km is integrable and define the norm by

k u kmLm (0�T ;V )=

TZ
0

k u(t) kmV dt �

The dual space of Lm (0� T ;V ) is Lm̃ (0� T ;V�) where 1	m + 1	m̃ = 1
and V� is the dual space of V (see, e.g., [4], [5]).

In order to define the weak solution of (1�5)–(1�9) we define the function
U by

U = u
Ω1
+ �(x � u)
Ω2

where 
Ωj
is the characteristic function of Ωj . Since for x � Ω2

U = Φx (u)� DtU = Φ�x (u)Dtu� DU = Φ�x (u)Du + (DxΦx )(u)�

u = Φ�1
x (U )� Dtu =

1

Φ�x (Φ�1
x (U ))

DtU�

Du =
1

Φ�x (Φ�1
x (U ))

[DU � (DxΦx )(Φ�1
x (U ))]

thus u satisfies (1�5) for x � Ω2 (in classical sense) if and only if U satisfies

DtU�Φ�x (Φ�1
x (U ))

nX
i=1

Di

�
ai



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

��
+

+Φ�x (Φ�1
x (U ))b



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

�
= 0�

This equation can be written in the form

DtU �

nX
i=1

Di

�
Φ�x (Φ�1

x (U ))ai



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

��
+
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+
nX
i=1

Di [Φ
�
x (Φ�1

x (U ))]ai



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

�
+

+Φ�x (Φ�1
x (U ))b



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

�
= 0

where

Di [Φ
�
x (Φ�1

x (U ))] = Φx ”(Φ�1
x (U ))(Φ�1

x )�(U )DiU + (Dxi Φ
�
x )(Φ�1

x (U )) =

=
Φ”
x

Φ�x
(Φ�1

x (U ))DiU + (Dxi Φ
�
x )(Φ�1

x (U ))�

Further, for x � S we have
nX
i=1

a1(t � x � u1� Du1)�i = Φ�x (u2)
nX
i=1

ai (t � x � u2� Du2)�i =

=
nX
i=1

Φ�x (Φ�1
x (U ))ai



t � x �Φ�1

x (U )�
DU � (DxΦx )(Φ�1

x (U ))

Φ�x (Φ�1
x (U ))

�
�i �

u1 = U�

Consequently, u is a classical solution of (1�5)–(1�9) if and only if U = u
Ω1
+

+ �(x � u)
Ω2
is a classical solution of the problem

DtU �
nX
i=1

Di [Ai (t � x � U�DU )] + B(t � x � U�DU ) = 0�

t � (0� T )� x � Ω1 �Ω2

(1�10)

U = 0 on ΓT = [0� T ]� �Ω(1�11)
nX
i=1

Ai (t � x � U1� DU1)�i jST =
nX
i=1

Ai (t � x � U2� DU2)�i jST(1�12)

U1 = U2 on ST = [0� T ]� S(1�13)

U (0� x ) = Φx (u0(x )) = U0(x )� x � Ω1 �Ω2(1�14)

where

Ai (t � x � z � p) = ai (t � x � z � p) for x � Ω1

Ai (t � x � z � p) = Φ�x (Φ�1
x (z ))ai



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

�

for x � Ω2

(1�15)
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B(t � x � z � p) = b(t � x � z � p) for x � Ω1

B(t � x � z � p) = Φ�x (Φ�1
x (z ))b



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

�
+(1�16)

+
nX
i=1

�
Φx ”
Φ�x

[Φ�1
x (z )]pi + (Dxi Φ

�
x )[Φ�1

x (z )]







ai



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

�
for x � Ω2�

Therefore, it is natural the following

Definition ���� We shall say that u is a weak solution of (1�5)–(1�9) if
U = u
Ω1

+ Φx (u)
Ω2
is a weak solution of (1�10)–(1�14) in the following

sense:

U � Lm (0� T ;V ) with V = W
1�p
0 (Ω)� DtU � Lm̃ (0� T ;V�)�(1�17)

DtU �

nX
i=1

Di [Ai (t � x � U�DU )] + B(t � x � U�DU ) = 0(1�18)

in usual generalized sense (see below) and

U (0� x ) = U0(x )� x � Ω�(1�19)

Obviously, if U is a classical solution of (1�10)–(1�14) then it satisfies
(1�17)–(1�19), i.e. it is a weak solution.

It is well known the following result on the weak solution of (1�17)–
(1�19) (which is based on the theory of pseudo-monotone operators, see,
e.g. [2]).

Assume that

I. The functions Ai � B : QT � Rn+1 � R satisfy the Carathéodory
conditions, i.e. Ai (t � x � z � p), B(t � x � z � p) are measurable in (t � x ) � QT =

= (0� T )�Ω for each fixed (z � p) � Rn+1 and they are continuous in (z � p) �

� Rn+1 for a.e. (t � x ) � QT .

II. jAi (t � x � z � p)j � c1[jz jm�1 + jpjm�1] + k1(x ), for a.e. (t � x ) � QT ,

each (z � p) � Rn+1 with some constant c1 and a function k1 � Lm̃ (Ω),

jB(t � x � z � p)j � c1[jz jm�1 + jpjm�1] + k1(x ).

III.
nP
i=1

[Ai (t � x � z � p)�Ai (t � x � z � p
�)](pi � p�i ) �0 if p�p�.
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IV.
nP
i=1

Ai (t � x � z � p)pi+B(t � x � z � p)z 	 c2jpj
m�k2(x ) with some constant

c2 �0, k2 � L1(Ω).

Then we may define the operator G : Lm (0� T ;V ) � Lm̃ (0� T ;V�) by

[G(U )�W ] =
Z
QT

�
nX
i=1

Ai (t � x � U�DU )DiW + B(t � x � U�DU )W

�
�

U�W � Lm (0� T ;V )

which is bounded (i.e. it maps bounded sets of Lm (0� T ;V ) into bounded
sets of Lm̃ (0� T ;V�)) and it is demicontinuous (the strong convergence of a
sequence (Ul ) in Lm (0� T ;V ) implies the weak convergence of (G(Ul )) in
Lm̃ (0� T ;V�). Further, G is pseudomonotone with respect to

D(L) = fW � Lm (0� T ;V ) : DtW � Lm̃ (0� T ;V�)� W (0) = 0g�

i.e. if Ul � D(L), (Ul ) � U weakly in Lm (0� T ;V ), (DtUl ) � DtU weakly
in Lm̃ (0� T ;V �) and lim supl��[G(Ul )� Ul �U ] � 0 then

lim
l��

[G(Ul )� Ul �U ] = 0 and (G(Ul )) � G(U )

weakly in Lm̃ (0� T ;V�). Finally, G is coercive:

lim
kU k��

[G(U )� U ]
k U k

= +��

By Theorem 4. of [2] we have

Theorem ���� Assume I�IV� Then for any U0 � V there exists

U � Lm (0� T ;V ) such that DtU � Lm̃ (0� T ;V�)�(1�20)

DtU + G(U ) = 0�(1�21)

U jt=0 = U0�(1�22)

If U satisfies (1�20)–(1�22), we say that U is a weak solution of (1�17)–
(1�19).

Remark �� If Ai , B satisfy (the monotonicity condition)
nX
i=1

[Ai (t � x � z � p)�Ai (t � x � z
�� p�)](pi � p�i )+(1�23)

+[B(t � x � z � p)� B(t � x � z �� p�)](z � z�) 	 0
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then, obviously, the solution is unique.

Now we formulate conditions on ai , b which imply I–IV for Ai , B and
so the existence of weak solutions of (1�5)–(1�9).

Assume that

I’. The functions ai , b satisfy the Carathéodory conditions.

II’. For x � Ω2 jai (t � x � z̃ � p̃)j �

c1

Φ�x (z̃ )

h
jΦx (z̃ )jm�1 + [Φ�x (z̃ )]m�1jp̃jm�1 � j(DxΦx )(z̃ )jm�1

i
+
k1(x )
Φ�x (z̃ )

;�����b(t � x � z̃ � p̃)+
1

Φ�x (z̃ )

nX
i=1

�
Φx ”
Φ�x

(z̃ )[Φ�x (z̃ )p̃i+

+(Dxi Φx )(z̃ )] + (Dxi Φ
�
x )(z̃ )

�
ai (t � x � z̃ � p̃)

����� �
�

c1
Φ�x (z̃ )

n
jΦx (z̃ )jm�1 + [Φ�x (z̃ )]m�1jp̃jm�1 � j(DxΦx )(z̃ )jm�1

o
+
k1(x )
Φ�x (z̃ )

�

III’.
nP
i=1

[ai (t � x � z̃ � p̃)� ai (t � x � z̃ � p̃
�)](p̃i � p̃�i ) �0 if p̃�̃p�.

IV’. For x � Ω2

nX
i=1

�
1 +

Φx ”(z̃ )Φx (z̃ )

[Φ�x (z̃ )]2



ai (t � x � z̃ � p̃)p̃i +

1
Φ�x (z̃ )

b(t � x � z̃ � p̃)Φx (z̃ )+

+
nX
i=1

�
(Dxi Φx )(z̃ )

Φ�x (z̃ )
+

(Dxi Φx )(z̃ )Φx ”(z̃ )Φx (z̃ )

[Φ�x (z̃ )]3 +
(Dxi Φ

�
x )(z̃ )Φx (z̃ )

[Φ�x (z̃ )]2







ai (t � x � z̃ � p̃) 	 c2

�
[Φ�x (z̃ )]m�2jp̃jm +

j(DxΦx )(z̃ )jm

[Φ�x (z̃ )]2



�

k2(x )

[Φ�x (z̃ )]2 �

V’. For x � Ω1 we assume that ai , b satisfy the same conditions as Ai ,
B , respectively, in II–IV.

Theorem ���� Assume I��V�� Then the problem (1�5)�(1�9) has a weak

solution for any u0 with the property Φx (u0) � V �
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Proof� For x � Ω2, the assumption II has the form (according to (1�15),
(1�16)) �����Φ�x (Φ�1

x (z ))ai



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

������ �
� c1[jz jm�1 + jpjm�1] + k1(x ) and�����Φ�x (Φ�1

x (z ))b



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

�
+

+
nX
i=1

�
Φx ”
Φ�x

(Φ�1
x (z ))pi + (Dxi Φ

�
x )(Φ�1

x (z ))

�




ai



t � x �Φ�1

x (z )�
p � (DxΦx )(Φ�1

x (z ))

Φ�x (Φ�1
x (z ))

������ �
� c1[jz jm�1 + jpjm�1] + k1(x )�

By using the substitutions

z̃ = Φ�1
x (z )� p̃ =

p � (DxΦx )(Φ�1
x (z ))

Φ�x (Φ�1
x (z ))

�(1�24)

one gets: II’ implies that Ai , B satisfy assumption II.

Clearly, assumption III’ implies III. Finally, by using substitutions (1�24)
and (1�15), (1�16) one finds: IV’ implies that Ai , B satisfy IV.

Now we consider some special cases when one can check that I’–IV’ are
fulfilled.

If functions ai have the form

ai (t � x � z̃ � p̃) = f (t � x )jp̃jm�1 sign p̃i for x � Ω1�(1�25)

ai (t � x � z̃ � p̃) = f (t � x )[Φ�x (z̃ )]m�2jp̃jm�1 sign p̃i for x � Ω2

with some measurable function f satisfying c0 � f (t � x ) � c�0 for some

positive constants c0, c�0 then ai satisfies I’–III’ and for x � Ω2

nX
i=1

ai (t � x � z̃ � p̃)p̃i 	 c2[Φ�x (z̃ )]m�2jp̃jm with a constant c2 �0�(1�26)

We shall formulate conditions which imply I’–IV’ in two special cases.
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Theorem ���� Let Φx = Φ �i�e� it is not depending on x �� Further� assume

that ai satisfy I��III� and (1�26) �e�g� ai have the form (1�25)�� b satis	es I�

and

b(t � x � z̃ � p̃) = b�(t � x � z̃ � p̃)�
Φx ”(z̃ )
Φ�x (z̃ )

nX
i=1

ai (t � x � z̃ � p̃)p̃i(1�27)

where

jb�(t � x � z̃ � p̃)j �
c3

Φ�(z̃ )
jΦ(z̃ )jm�1 and(1�28)

b�(t � x � z̃ � p̃)z̃ 	 0�(1�29)

Then conditions I��IV� hold�

Remark �� (1�28), (1�29) are satisfied e.g. for

b�(t � x � z̃ � p̃) =
1

Φ�(z̃ )
jΦ(z̃ )jm�1 sign z̃ �

Let
Φx (z̃ ) = �(x )z̃ where � � C 1(Ω2)� � �0�(1�30)

Since then Φx ” = 0, it is not difficult to prove

Theorem ���� Assume (1�30)� I�� for x � Ω2

jai (t � x � z̃ � p̃)j � c1[jz̃ jm�1 + jp̃jm�1] + k1(x )�(1�31)

jb(t � x � z̃ � p̃)j � c1[jz̃ jm�1 + jp̃jm�1] + k1(x )�
nX
i=1

ai (t � x � z̃ � p̃)p̃i+(1�32)

+

�
b(t � x � z̃ � p̃) +

2
�(x )

nX
i=1

(Di�)(x )ai (t � x � z̃ � p̃)

�
z̃ 	

	 c2[jp̃jm + jz̃ jm ] with some constant c2 �0�

Then Ai � B satisfy II��IV��

Remark �� Clearly, the followig conditions imply (1�32):
nX
i=1

ai (t � x � z̃ � p̃)p̃i 	 constjp̃jm � b(t � x � z̃ � p̃)z̃ 	 constjz̃ jm �

����� 2
�(x )

nX
i=1

(Di�)(x )ai (t � x � z̃ � p̃)

����� � 1
2
jb(t � x � z̃ � p̃)j�
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According to Remark 1 it is easy to formulate sufficient conditions for
the uniquenss of the weak solution of (1�5)–(1�9). The condition (1�23) (the
condition of monotonicity) is satisfied e.g. if the functions ai are defined by
(1�25) and the function b is defined by

b(t � x � z̃ � p̃) =
g(t � x )
Φ�(z̃ )

jΦ(z̃ )jm�1 sign z̃ �
Φx ”(z̃ )
Φ�x (z̃ )

nX
i=1

ai (t � x � z̃ � p̃)p̃i

with some measurable function g , satisfying c0 � g(t � x ) � c�0 for some

positive constants c0, c�0 .

2. Nonlocal transmission conditions

In this section we shall consider weak solutions of the problem

Dtu �
nX
i=1

Dxi [ai (t � x � u� Du)] + b(t � x � u� Du) = F (t � x )�

t � (0� T )� x � Ω1 �Ω2�

(2�33)

u = 0 on ΓT = [0� T ]� �Ω�(2�34)

u1(t � x ) = �u2(
0(t)� 
 (x )) on ST = [0� T ]� S�(2�35)
nX
i=1

ai (t � x � u1(t � x )� Du1(t � x ))�i =(2�36)

= �
 �0(t)
nX
i=1

�
�ai (
0(t)� 
 (x )� u2(
0(t)� 
 (x ))� Du2(
0(t)� 
 (x ))





nX
j=1

(Di

�1
j )(
 (x ))�j

�
	 � u(0� x ) = u0(x )� x � Ω1 �Ω2(2�37)

where 
0 : [0� T ] � [0� T ] is a C 1 function, satisfying


 �0 �0� 0 � 
0(t) � t � 
0(T ) = T ;


 : Ω � Ω is a C 2 function such that 
�1 exists and 
�1 � C 2(Ω),

 (S ) = S , 
 (Ωj ) = Ωj ; � �0 is a given constant.

In order to define the weak solution of (2�33)–(2�37), we define the
function U by

U (�� �) = u(�� �)
Ω1
(�) + �u(
0(�)� 
 (�))
Ω2

(�)�
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Since in Ω2

U (�� �) = �u(
0(�)� 
 (�)) = �u(t � x )�

with t = 
0(�)� x = 
 (�)� � = 
�1
0 (t)� � = 
�1(x )� i.e.

u(t � x ) =
1
�
U (�� �) =

1
�
U (
�1

0 (t)� 
�1(x ))�

Dtu(t � x ) =
1
�
D�U (�� 
�1(x ))(
�1

0 )�(t) =
1

�
 �0(�)
D�U (�� �)�

Dx u(t � x ) =
1
�
D�U (�� �)(
�1)�(x )

where (
�1)�(x ) = (
 �)�1(
�1(x )) = [
 �(�)]�1�

thus u satisfies (2�33) in Ω2 if and only if U satisfies

1
�
 �0(�)

D�U (�� �)�

�
nX
i=1

Dxi

�
ai (
0(�)� 
 (�)�

1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1)



+

+b(
0(�)� 
 (�)�
1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1) = F (
0(�)� 
 (�))� i.e.

1
�
 �0(�)

D�U (�� �)�
nX
j=1

�
nX
i=1

��j
�xi

(
 (�))D�j

(2�38)




�
ai (
0(�)� 
 (�)�

1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1)

��
+

+b(
0(�)� 
 (�)�
1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1) = F (
0(�)� 
 (�))

where we used the notation

��j
�xi

(
 (�)) = (Di

�1
j )(
 (�))�

The equation (2�38) can be written in the form

D�U (�� �)�
nX
j=1

D�j

�
�
 �0(�)
(2�39)
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nX
i=1

��j
�xi

(
 (�))ai (
0(�)� 
 (�)�
1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1)

�
+

+
nX
j=1

nX
i=1

�
 �0(�)D�j

�
��j
�xi

(
 (�))

�




ai (
0(�)� 
 (�)�
1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1)+

+�
 �0(�)b(
0(�)� 
 (�)�
1
�
U (�� �)�

1
�
D�U (�� �)[
 �(�)]�1) =

= �
 �0(�)F (
0(�)� 
 (�)) = F1(�� �)

where

D�j

�
��j
�xi

(
 (�))

�
=

nX
k=1

(Dik

�1
j )(
 (�))(Dj
k )(�)�

Further, for � � S we have
nX
i=1

ai (�� �� u1(�� �)� (D�u1)(�� �))�i = �
 �0(�)




nX
i=1

�
�ai�
0(�)� 
 (�)� u2(
0(�)� 
 (�)� Du2(
0(�)� 
 (�))

� nX
j=1

(Di

�1
j )(
 (�))�j

�
	=

=
nX
j=1

�
�
 �0(�)

nX
i=1

�
ai (
0(�)� 
 (�)�

1
�
U (�� �)�

1
�
DU (�� �)[
 �(�)]�1) 



 (Di

�1
j )(
 (�))

i
�j

�
�

Consequently, u is a classical solution of (2�33)–(2�37) if and only if

U (�� �) = u(�� �)
Ω1
(�) + �u(
0(�)� 
 (�))
Ω2

(�)�

is a solution of the problem

D�U �

nX
j=1

D�j
[Aj (�� �� U (�� �)� (D�U )(�� �))]+(2�40)

B(�� �� U (�� �)� (D�U )(�� �)) = F1(�� �)� � � (0� T )� � � Ω1 �Ω2�
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U = 0 on ΓT �(2�41)

U1 = U2 on ST �(2�42)
nX
j=1

Aj (�� �� U1� DU1)�j jST =
nX
j=1

Aj (�� �� U2� DU2)�j jST �(2�43)

U (0� �) = u0(
 (�)) = U0(�)� � � Ω1 �Ω2(2�44)

where

Aj (�� �� z � p) = aj (�� �� z � p) for � � Ω1�

Aj (�� �� z � p) =(2�45)

= �
 �0(�)
nX
i=1

ai (
0(�)� 
 (�)�
1
�
z �

1
�
p[
 �(�)]�1)(Di


�1
j )(
 (�));

for � � Ω2;

B(�� �� z � p) = b(�� �� z � p) for � � Ω1�

B(�� �� z � p) = �
 �0(�)b(
0(�)� 
 (�)�
1
�
z �

1
�
p[
 �(�)]�1)+(2�46)

+�
 �0(�)
nX
i=1

��
�ai (
0(�)� 
 (�)�

1
�
z �

1
�
p[
 �(�)]�1) 





nX
j�k=1

(Dik

�1
j )(
 (�))(Dj
k )(�)

��
�

for � � Ω2.

Definition ���� We shall say that u is a weak solution of (2�33)–(2�37)
if U is a weak solution of (1�17)–(1�19) with F1 on the right hand side of
(1�18) (i.e. U satisfies (1�20)–(1�22) with F1 on the right hand side of (1�21)).

Now we formulate conditions on ai , b which imply I–IV for Aj , B (and
so the existence of weak solutins to (2�33)–(2�37)).

Assume that

II”. For x � Ω2

jai (t � x � z̃ � p̃)j � c1[jz̃ jm�1 + jp̃jm�1] + k1(x )�

jb(t � x � z̃ � p̃)j � c1[jz̃ jm�1 + jp̃jm�1] + k1(x )� k1 � Lm̃ (Ω2)�
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III”. For x � Ω2 ai (t � x � z̃ � p̃) is continuously differentiable with respect
to p̃ and the matrix �

�ai
�p̃l

(t � x � z̃ � p̃)

�n

i�l=1

is positive definite for each (t � x � z̃ � p̃).

IV”.
nX
i=1

ai (t � x � z̃ � p̃)p̃i 	 c2jp̃j
m � k2(x )� k2 � L

1(Ω2)�

��
�b(t � x � z̃ � p̃) +

nX
i=1

�
�ai (t � x � z̃ � p̃)

nX
j�k=1

(Dik

�1
j )(x )(Dj
k )(
�1(x ))

�
	
��
� z̃ 	 0�

Theorem ���� Assume I�� II
�IV
 and V�� Then Aj � B satisfy I�IV� thus

the problem (2�33)�(2�37) has a weak solution for any F � Lm̃ (QT )� u0 � V �

Proof� Since 
�
�1 � C 2(Ω), from formulas (2�45), (2�46) and II”, V’
immediately follows that Aj , B satisfy II. Further, it is easy to show that if
the matrix �

�Aj

�p̃k
(�� �� z � p)

�n

j�k=1

is positive definite for each (�� �� z � p) then condition III is satisfied. According

to (2�45) and [
 �(�)]�1 = (
�1)�(
 (�)),

�Aj

�pk
(�� �� z � p) = �
 �0(�)

nX
i=1

�
nX
l=1

�ai
�p̃l

�

0(�)� 
 (�)�

1
�
z �

1
�
p(
�1)�(
 (�))

�





1
�

(Dk

�1
l )(
 (�))(Di


�1
j )(
 (�))

�
�

i.e.

�
�Aj

�pk

�n

j�k=1
= 
 �0(�)[(
�1)�(
 (�))]T

�
�ai
�p̃l

�n

i�l=1
(
�1)�(
 (�))

which implies by III” that
�
�Aj
�pk

�n
j�k=1

is positive definite.

Finally, by using the notations

x = 
 (�)� t = 
0(�)� z̃ =
1
�
z � p̃ =

1
�
p(
�1)�(
 (�))�
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nX
j=1

Aj (�� �� z � p)pj = �
 �0(�)





nX
j=1

�
nX
i=1

ai

�

0(�)� 
 (�)�

1
�
z �

1
�
p[
�1]�(
 (�))

�
(Di


�1
j )(
 (�))

�
pj =

=
�

(
�1
0 )�(t)

nX
i=1

ai (t � x � z̃ � p̃)
nX
j=1

(Di

�1
j )(x )pj =

=
�2

(
�1
0 )�(t)

nX
i=1

ai (t � x � z̃ � p̃)p̃i 	
�2

(
�1
0 )�(t)

c2jp̃j
m � k2(x ) 	 c3jpj

m � k2(x )

with some constant c3 �0. Similarly, by (2�46), IV”

B(�� �� z � p)z = �
 �0(�)b(t � x � z̃ � p̃)z+

+�
 �0(�)
nX
i=1

�
�ai (t � x � z̃ � p̃)

nX
j�k=1

(Di

�1
j )(x )(Dj
k )(
�1(x ))

�
	 z 	 0�

Remark �� A simple sufficient condition for the second part of IV” is:

b(t � x � z̃ � p̃)z̃ 	 0 and������
nX
i=1

�
�ai (t � x � z̃ � p̃)

nX
j �k=1

(Di

�1
j )(x )(Dj
k )(
�1(x ))

�
	
������ � jb(t � x � z̃ � p̃)j�

By using Remark 1, it is easy to formulate sufficient conditions for the
uniqueness of the weak solution. The condition, formulated in Remark 1 is
satisfied if the matrix �

�Aj

�pk
(�� �� p0� p)

�n

j�k=0

is positive semidefinite for each fixed (�� �� p0� p), where we used the notations
A0 = B , p0 = z .
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1. Introduction

Let Xk, k � N
d , be a multiindex sequence of independent, identically

distributed (i.i.d.) random variables having zero mean and unit variance. Let

Yn(t) =
1p
jnj

X
k�[nt]

Xk� t � [0� 1]d �

n � N
d , be the usual random field defined by the partial sums.

Consider also the multidimensional empirical process

Zn(t) =
1p
jnj
X
i�n

(�fUi � tg � jtj)� t � [0� 1]d �

n � N
k , where Ui, i � N

h , are independent random vectors having uniform

distribution on [0� 1]d .

The behaviour of the multiindex random fields Yn(t) and Zn(t) are usu-
ally investigated in the Skorohod space D([0� 1]d). The limit of Yn(t) is the
d-parameter Wiener process W (t), while the limit of Zn(t) is the d-parameter
Brownian bridge B(t). However, to study some statistics, one can consider
these random fields as random elements in the space Lp (see Oliveira and
Suquet [11]). Actually, using Ivanov’s [8] general theorems, one can easily

prove limit theorems for Yn(t) and Zn(t) in Lp([0� 1]d).

The main topic of this note is the study of almost sure (a.s.) versions of
the above mentioned usual limit theorems (see Berkes [2] for an overview
of a.s. limit theorems). There are several methods to prove a.s. (central) limit
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theorems (see Major [9], Berkes and Csáki [3], Fazekas and Rychlik [6],
Móri [10]). Fazekas and Rychlik [7] described a general method to prove a.s.
versions of multiindex limit theorems in metric spaces. We shall apply that

method to obtain a.s. limit theorems for Yn(t) and Zn(t) in Lp([0� 1]d), see
Theorem 2.1 and Theorem 3.1, respectively. The proofs are simple, because
in Lp we do not need maximal inequalities. The one-dimensional version of
the above threorems were presented in Túri [13].

2. The almost sure version of Donsker’s theorem in Lp([0� 1]d)

Throughout the paper let 1 � p�� and d � N be fixed. Let k = (k1� � � �

� � � � kd), n = (n1� � � � � nd)� � � � � N
d , 1 = (1� � � � � 1) � N

d . Relations �, min,
max, �� are defined coordinatewise. I.e. n �� means that ni � �, for
each i = 1� � � � � d. Let log+ x = log x , if x � e and log+ x = 1, if x �e. Let

jnj =
dQ
i=1

ni and j log nj =
dQ
i=1

log+ ni , n � N
d .

Denote the usual integer part by [�], moreover for n � N
d and t � [0� 1]d

denote the vector ([n1t1]� � � � � [nd td]) � N
d also by [nt].

Denote � the convergence in distribution. (Ω� A�P) is the underlying
probability space, � � Ω is an elementary event.

Throughout this section Xi, i � N
d , will be i.i.d. real random variables

with EX1 = 0, D 2X1 = 1 and E jX1 jp ��. Let Sk =
P

i�kXi.

In this part we consider the random field

(1) Yn(t) =
1p
jnjS[nt]� t � [0� 1]d �

We will use the next result of Ivanov [8].

Remark ���� Let Yn(t), n � N
d , and Y (t) be random elements in

Lp([0� 1]d), p � 1. Assume that

(i) The finite dimensional distributions of Yn converge weakly to those
of Y ;

(ii) E jYn (t)jp � E jY (t)jp, as n ��, for each t � [0� 1]d ;

(iii) sup
n

sup
t�[0�1]d

E jYn (t)jp ��.
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Then f (Yn) � f (Y ), as n � �, for every continuous functional f on

Lp([0� 1]d).

We need the next result due the Rosenthal (see [1], p. 205).

Remark ���� Let Yi, i � n, be independent centered random variables
with E jYi jp ��, p � 2. Then there exist a constant Kp �0 depending only
on p such that

�
�E
������
X
i�n

Yi

������
p�
A

1�p

� Kp max

���
�	

�
�X

i�n

E jYi jp
�
A

1�p

�

�
�X

i�n

E jYi j2
�
A

1�2

��
�� �

We also need the next result (see [1], p. 136).

Remark ���� Let Xi, i � N
d , be centered i.i.d. random variables such

that 1p
jnj

P
i�nXi �N(0� 1). If E jX1 jp ��, p � 1, then

E

������
1p
jnj
X
i�n

Xi

������
p

� E jX jp � as n ���

where X has normal distribution with mean 0 and variance 1.

For the sake of completeness we give a proof for the Donsker theorem

in Lp([0� 1]d).

Proposition ���� The multiindex sequence Yn� n � N
d � of processes

de�ned by (1) converges weakly to the d�parameter standard Wiener process

W in Lp([0� 1]d)� where 1 � p���

Proof� We shall prove that the conditions of Remark 2.1 are fulfilled.

Condition (i), that is the convergence of the finite dimensional distribu-
tions to those of the Wiener process is an elementary fact.

Apply Remark 2.3 to obtain that condition (ii) is fulfilled.

Now, we will show that condition (iii) of Remark 2.1 is satisfied.
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We will distinguish two cases. In the first case 1 � p � 2.

E jYn (t)jp = E

������
1p
jnj

X
i�[nt]

Xi

������
p

� 1

(jnj)p�2

�
B�E
������
X

i�[nt]

Xi

������
2
�
CA
p�2

�

� (jnj)p�2

(jnj)p�2
= 1 ���

In the second case 2 �p��. Here we use Remark 2.2. If

X
i�[nt]

E jXi jp �
�
� X

i�[nt]

E jXi j2
�
A
p�2

�

then

E jYn (t)jp = E

������
1p
jnj

X
i�[nt]

Xi

������
p

�

� Kp

(jnj)p�2

X
i�[nt]

E jXi jp � C
jnj

(jnj)p�2
� C � ���

If

X
i�[nt]

E jXi jp �
�
� X

i�[nt]

E jXi j2
�
A
p�2

�

then

E jYn (t)jp = E

������
1p
jnj

X
i�[nt]

Xi

������
p

� Kp

(jnj)p�2

�
� X

i�[nt]

E jXi j2
�
A
p�2

� Kp
(jnj)p�2

(jnj)p�2
= Kp ���

The proof of Proposition 2.1 is complete.

To prove a.s. Donsker’s theorem we shall need the next result due to
Fazekas and Rychlik [7].

Let �x denote the unit mass at point x . Let 	X denote the distribution
of X .
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Remark ���� Let (B� 
) be a complete separable metric space and Xn,

n � N
d , be a multiindex sequence of random elements in B . Assume that for

any pair h� l � N
d , h � l, there exists a B-valued random element Xh�l with

the following properties. Xh�l = 0 if h = l. If k� l � N
d , then for h = minfk� lg

the following random elements are independent: Xk and Xh�l; Xl and Xh�k;
Xh�k and Xh�l.

Assume that there exist C �0, � �0, and increasing sequences fc(i)
n g of

positive numbers with limn�� c(i)
n = �, c(i)

n+1�c
(i)
n = O(1) for each i = 1� � � �

� � � � d, such that

E minf
2(Xl� Xh�l)� 1g � C
dY

i=1

�
�c

(i)
hi

c(i)
li

�
A
�

for h � l. Let 0 � d(i)
k � log(c(i)

k+1�c
(i)
k ), assume that

P�
k=1 d

(i)
k = � for

i = 1� � � � � d. Let dk =
dQ
i=1

d(i)
ki

and Dn =
P

k�n dk.

Then for any probability distribution 	 on the Borel 
-algebra of B the
following two statements are equivalent

1
Dn

X
k�n

dk�Xk(� ) � 	� as n ��� for almost every � � Ω;

1
Dn

X
k�n

dk	Xk
� 	� as n ���

The almost sure version of Donsker’s theorem in Lp([0� 1]d) is the fol-
lowing.

Theorem ���� Let 1 � p ��� Let the multiindex sequence of �elds

Yk(t� � ) = Yk(t) be de�ned in ���� Then

1
j log nj

X
k�n

1
jkj�Yk(��� ) � 	W �

in Lp([0� 1]d)� as n ��� for almost every � � Ω� where W is the standard

d�parameter Wiener process�

Proof� We shall prove that the conditions of Remark 2.4 are fulfilled.

The separability and completeness of space Lp([0� 1]d), 1 � p ��, are
well-known facts.
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Let us define the process

Yk�n(t) =
1pjnj
n
S[nt] � Sminfk�[nt]g

o
� k � n� t � [0� 1]d �

Then the independence conditions of Remark 2.4 are satisfied.

We will distinguish two cases.

In the first case 2 � p��. Applying Jensen’s inequality we get

E (
2 (Yn� Yk�n)) = E

�
B�
Z

[0�1]d

jYn(t)�Yk�n(t)jp dt

�
CA

2�p

=

= E

�
B�
Z

[0�1]d

�����
1p
jnjSminfk�[nt]g

�����
p

dt

�
CA

2�p

�

� 1
jnj

�
B�
Z

[0�1]d

E

���Sminfk�[nt]g

���p dt

�
CA

2�p

= A�

We distinguish again two cases and use Remark 2.2. If

X
i�minfk�[nt]g

E jXi jp �
�
� X

i�minfk�[nt]g

E jXi j2
�
A
p�2

then

A � 1
jnj

�
B�
Z

[0�1]d

Kp

X
i�minfk�[nt]g

E jXi jp dt

�
CA

2�p

�

� 1
jnj

�
B�
Z

[0�1]d

Kp

X
i�k

E jXi jp dt

�
CA

2�p

� K
2�p
p

jnj (C � jkj)2�p � C � jkj
jnj �

If

X
i�minfk�[nt]g

E jXi jp �
�
� X

i�minfk�[nt]g

E jXi j2
�
A
p�2
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then

A � 1
jnj

�
B�
Z

[0�1]d

Kp

�
� X

i�minfk�[nt]g

E jXi j2
�
A
p�2

dt

�
CA

2�p

�

� 1
jnj

�
B�
Z

[0�1]d

Kp

�
�X

i�k

E jXi j2
�
A
p�2

dt

�
CA

2�p

= C � jkj
jnj �

In the second case 1 � p�2. By Jensen’s inequality

E (
2 (Yn� Yk�n)) = E

�
B�
Z

[0�1]d

�����
1p
jnjSminfk�[nt]g

�����
p

dt

�
CA

2�p

�

� 1
jnj

Z

[0�1]d

E

���Sminfk�[nt]g

���2 dt =
1
jnj

Z

[0�1]d

E

������
X

i�minfk�[nt]g

Xi

������
2

dt � C
jkj
jnj �

Therefore we can apply Remark 2.3 with c(i)
k = k , k = 1� 2� � � � � i = 1� � � � � d.

The proof of Theorem 2.1 is complete.

3. The multidimensional empirical process in Lp([0� 1]d)

Let 1 � p �� and d� h � N be fixed. In this section, we consider the
multidimensional empirical process

(2) Zn(t) =
1p
jnj
X
i�n

(�fUi � tg � jtj)� t � [0� 1]d �

where Ui, i � N
h , are independent random variables uniformly distributed on

[0� 1]d .

Proposition ���� The multiindex sequence Zn(t)� n � N
d � weakly con�

verges to the d�parameter Brownian bridge B in space Lp(]0� 1[d)� where

1 � p���

Proof� We shall prove that the conditions of Remark 2.1 are fulfilled.



2019. május 4. –22:54
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Condition (i), the convergence of the finite dimensional distributions to
those of the Brownian bridge is an elementary fact.

Apply Remark 2.3 to obtain that condition (ii) is fulfilled.

Now, we will show that condition (iii) of Remark 2.1 is satisfied.

We will distinguish two cases. In the first case 1 � p � 2.

E jZn (t)jp � 1

(jnj)p�2

�
B�E
������
X
i�n

(�fUi � tg � jtj)
������
2
�
CA
p�2

=

=
1

(jnj)p�2


jnj jtj(1� jtj)�p�2 � 1 ���

In the second case 2 �p��. Here we distinguish again two cases.

If

X
i�n

E j�fUi � tg � jtjjp �
�
�X

i�n

E j�fUi � tg � jtjj2
�
A
p�2

�

then by Rosenthal’s inequality

E jZn (t)jp � Kp

(jnj)p�2

X
i�n

E j�fUi � tg � jtjjp � Kp

(jnj)p�2
� C jnj�C � ���

If

X
i�n

E j�fUi � tg � jtjjp �
�
�X

i�n

E j�(Xi � t)� jtjj2
�
A
p�2

�

then

E jZn (t)jp � (Kp)p

(jnj)p�2
(jnj jtj(1� jtj))p�2 � K

p�2
p ���

The proof of Proposition 3.1 is complete.

The almost sure version of the limit theorem for the empirical process in

Lp([0� 1]d) is the following.
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Theorem ���� Let 1 � p��� Let Zk(t) be the empirical process de�ned

in (2)� Then

1
j log nj

X
k�n

1
jkj�Zk(��� ) � 	B �

in Lp(]0� 1[d)� as n � �� for almost every � � Ω� where B is the d�

parameter Brownian bridge�

Proof� We shall prove that the conditions of Remark 2.4 are fulfilled.

Let us define the process

Zk�n(t) =
1p
jnj
X
i�n

(�fUi � tg � jtj)� 1p
jnj
X
i�k

(�fUi � t)g � jtj)�

k � n, k�n � N
h , t � [0� 1]d .

Then the independence conditions of Remark 2.4 are satisfied.

In the first case let 2 �p��. Then

E (
2(Zn� Zk�n)) = E

�
B�
Z

[0�1]d

jZn � Zk�njp dt

�
CA

2�p

=

= E

�
B�
Z

[0�1]d

������
1p
jnj
X
i�k

(�fUi � tg � jtj)
������
p

dt

�
CA

2�p

�

� 1
jnj

�
B�
Z

[0�1]d

E

������
X
i�k

(�fUi � tg � jtj)
������
p

dt

�
CA

2�p

= A�

We will distinguish again two cases. If

X
i�k

E j�fUi � tg � jtjjp �
�
�X

i�n

E j�fUi � tg � jtjj2
�
A
p�2

�
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then by the Rosenthal inequality

A � 1
jnj

�
B�
Z

[0�1]d

Kp

X
i�k

E j�fUi � tg � jtjjp dt

�
CA

2�p

� K
2�p
p

jkj2�p
jnj � C � jkj

jnj �

If

X
i�k

E j�fUi � tg � jtjjp �
�
�X

i�k

E j�fUi � tg � jtjj2
�
A
p�2

�

then

A � 1
jnj

�
B�
Z

[0�1]d

Kp

�
�X

i�k

E j�fUi � tg � jtjj2
�
A
p�2

dt

�
CA

2�p

=

=
1
jnj

�
B�
Z

[0�1]d

Kp(jkj � jtj(1� jtj))p�2 dt

�
CA

2�p

� Kp
jkj
jnj �

In the second case 1 � p � 2.

E (
2 (Zn� Zk�n)) � E

Z

[0�1]d

jZn � Zk�nj2 dt =

= E

Z

[0�1]d

������
1p
jnj
X
i�k

(�fUi � tg � jtj)
������
2

dt =

=
1
jnj

Z

[0�1]d

E

�
�X

i�k

(�fUi � tg � jtj))
�
A

2

dt =

=
1
jnj

Z

[0�1]d

jkj jtj(1� jtj) dt � jkj
jnj �

The proof of Theorem 3.1 is complete.
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0. Introduction

Let R be an associative ring with 1�0, and I be an infinite linearly
ordered set of indices. The I � I matrix over R is a function a : I � I � R.
All rings considered here are Dedekind-finite, which guarantee that inverse
matrix of triangular one is always triangular.

Let Tf (I � R) be a group of all invertible upper triangular matrices with
only finite number of entries different from the unit matrix e. By Df (I � R)
and UTf (I � R) we denote its diagonal and unitriangular subgroups. The group
UTf (I � R) is normal in Tf (I � R) as a kernel of a, homomorphism which sends
triangular matrix to a diagonal one with the same main diagonal. Tf (I � R) is
generated by diagonal and unitriangular matrices. So we have Tf (I � R) =
= Df (I � R)iUTf (I � R).

The group UTf (I � R) is called (generalized) McLain group. The group
UTf (Q � Fp ) is infinite locally finite perfect p-group, which is characteristi-
cally simple — in contrast to finite p-groups [11]. Its automorphisms were
described in [16]. The group UTf (N� Fp ) is the simplest example of infinite
p-group which does not satisfy a normalizer condition [12]. McLain groups
serve as a source of examples and show limitations of many results in group
theory: see [13]–[15], [8] for counterexamples to some problems concerning
groups with chain condition for subgroups, [18], [19] for examples of large
families of characteristically simple groups, [1]–[3] for explicit constructions
of some acyclic groups with prescribed properties and some extensions of
groups, [5]–[7] for recognizing McLain groups from their automorphism
groups and applications to Hahn groups.
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In this paper we investigate a normal structure of McLain groups. In our
results we use a notion of net subgroups, which was successfully applied to
other infinite dimensional groups: for description of parabolic subgroups of
Vershik–Kerov’s group [10] and subgroups of triangular matrices containing
finitary diagonal matrices for a large class of rings [9].

1. Nets of ideals and net, subgroups

A system � = (�i j ) (i , j � I ) of two sided ideals �i j of R is called at
net� if

�ir � �r j � �i j for all i , j , r � I �
If the set I is finite we have a finite net.

It is clear that if � , � are nets, then a system � � � = (�i j � �i j ) is a net
too. The relation � � � if �i j � �i j ’ defines a partial order on the set of all
nets. Here, we consider only upper nets � for which �i j is trivial for i � j .
We say that � is nontrivial if �i j�0 for at least one pair of indexes (i � j ).

Let the set G(�) consist of all matrices a � UTf (I � R) such that ai j � �i j
for all i �j . Since � is a net, G(�) is closed under multiplication of matrices.

In fact, we can show more

Proposition �� If � is a net� then G(�) is a subgroup of UTf (I � R)�

Proof� It suffices to prove that, a � G(�) implies a�1 = (a �i j ) � G(�).

We define the support of a � UTf (I � R) as sup(a) = fi � I : ai j�0 or ai j�0
for some j�ig. By use of the homomorphism UTf (I � R) � UT (m�R) which
forgets all entries out of sup(a) � sup(a) we can restrict our considerations

to finite dimensional unitriangular group and a finite net. Since a�1 � a = e,
we have a �12 = a12 = 0 which means that a �12 � �12. Now since a �1�j+1 =

= 	a �12a2j 	 � � � 	 a �1�j�1aj�1�j 	 a1j by induction we have a �1�j+1 � �1�j+1.

Similarly we have ai j � �i j for all i �j , which finishes the proof.

The map � � G(�) is a bijection and ��� � HG(���) = G(�)�G(�).
So we have the following

Proposition �� The lattice of nets of ideals of ring R indexed by I is

isomorphic to the lattice of net subgroups of UTf (I � R)�

Not all subgroups of UTf (I � R) are net subgroups as shows
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Example �� Fix i �k �l from I . Let � be a net with the only nontrivial
entries �ik = �i l = �kl = R. By G we denote a subgroup of G(�) consisting
of all matrices for which aik = akl . It is easy to show that G is not a net
subgroup.

It is an interesting question for which � the net subgroup G(�) is abelian.
We characterize below maximal abelian net subgroups.

Example �� Let i0 � L, then we define nets: � such that �kl = R if
k � i0 and l �i0 and �kl = 0 otherwise, and � such that �kl = R if k �i0
and l � i0 and �kl = 0 otherwise. It is easy to verify that G(�) and G(�) are
maximal abelian subgroups [11], [5]. However, in the case of I = Q we have

a net � such that skl = R if k �
p

2 and l �
p

2 (and 0 otherwise). For this
net G(�) is also maximal abelian subgroup.

These examples show that detailed analysis of net subgroups in McLain
groups depends on assumptions on the order properties of I which will appear
elsewhere.

2. Normal, subgroups of McLain groups

The net � is called normal net if for all i �r �j , i , j , r � I we have
�ir � �i j and �r j � �i j .

Our main result here is

Theorem �� Let R be an associative ring with 1 additively generated� by

invertible elements and such that 1 is a sum of two invertible elements� Let H

be a subgroup of UTf (I � R)� The group H is a normal subgroup of Tf (I � R)
if and only if H = G(�) for some normal net � �

Proof� If � is a normal net, then straightforward calculations show that

for any g � G(�) and v � Tf (I � R) we have v � g � v�1 � G(�).

Now let H CTf (I � R) and H 
 UTf (I � R). We put �i j = f	 � R :

ti j (	) � H g for i �j and �i j = 0 otherwise. In view of formulas for

conjugations of transvections di (

�1) � ti j (	) � di (
 ) = ti j (	
 ), di (
 ) � ti j (	) �

�di (
�1) = ti j (	
 ), and assumptions on R the sets �i j are two-sided ideals of
R. From equalities [tir (	)� tt j (1)] = ti j (	) � d(
 ) = ti j (	
 ), [tir (a)� tr j (	)] =
= ti j (	) valid for distinct i , j , r , the net � is a normal net. Clearly G(�) � H .
We prove now that if a � H , then ti j (ai j ) � H for all i �j . We have

b = [a�1� di (
 )] � H and bi j = ai i (
 	 1)ai j . If we put c = [b�1� dj (

�1)]
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we will have [di (
 )� c] = ti j ((
 	 1)ci j ) � H . Since ci j = b�i ibi j (
 	 1), by
conjugations formulas it follows that ti j (ai j ) � H . It means that H � G(�)
and Theorem is proved.

In particular case I = N our result can be deduced also from results of
[4] for finite dimensional unitriangular group, because UTf (N� R) is a direct
limit of finite dimensional groups under natural embeddings.

Since the property of net of ideals ‘to be normal’ is invariant under lattice
operations we have

Theorem �� Under assumptions of Theorem 1� the net subgroups G(�)
corresponding to normal nets form a sublattice � of the lattice of normal

subgroups of McLain groups�

We note here that if R has an infinite lattice of two-sided ideals, then �
is uncountable. (In view of the above result it is an interesting question which
normal subgroups of UTf (I � R) are not normal in Tf (I � R).

Now we give examples of large families of net subgroups G(�) which
are not normal in McLain group.

Example �� Let � be an equivalence relation on I . We define a net �̃
putting �̃i j = R if i � j and �̃i j = 0 otherwise. The net subgroup G(�̃) is
called an equi-group (see [12]). We say that equivalence classes C , D form a
mini-max pair if C�D , C has a minimal element, D has a maximal element
and minC �maxD . For example, if I = N then � has no mini-max pair if
and only if � has no finite equivalence class or has exactly one finite class
of the form f1, 2, � � � , ng. If �̃ has no mini-max pair of classes, then G(�̃)
coincides with its normalizer in UTf (I � R) (Thm. 3 of [12]). It means that
McLain group does not satisfy a normalizes condition for subgroups. We note
here that if has a mini-max pair of classes, then for all nontrivial net � 
 �̃

net subgroup G(�) does not coincide with its centralizes in UTf (I � R) (and
so a normalizes) (it is an easy consequence of Thm. 2 of [12]).

3. Monotonic functions and normal subgroups

Let R = K he a field (or simple ring) such that jK j �2. As usual, for
two linearly ordered sets A, B we extend the order to disjoint sum A t B

assuming a �b for all a � A and b � B . We made additional assumption
that for linearly ordered set I t f�g the following condition holds

(�) for all i � I every subset of interval [i ��] has a minimal element.
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As examples of a set I satisfying this condition can serve N , Z, N t N , Z t N

with natural order.

By MF (I ) we denote the set of all functions f : I � I 
f�g which are
monotonic, i.e. x �y implies f (x ) � f (y). For G(�) (�-normal) we define
f� �MF (I ) as follows: f� (i) = minimal j such that �i j�0 and � otherwise.
The function f� is well defined since normal net has the property: if �i j = K

then for all r �i , s �j we have �rs = K .

The following Lemma is obvious

Lemma �� If � is a normal net� then f� �MF (I )�

The set MF (I ) form a lattice under operations

(f� � f�)(i) = maxff� (i)� f�(i)g�
(f� � f�)(i) = minff� (i)� f�(i)g�

The functions fmax(i) = i + 1 and fmin = � for all i correspond to
UTf (I � R) and feg respectively. Clearly fmin � f� � fmax for all f� from
MF (I ). We have also G(�) �G(�) �� f� � f� and G(� � �) �� f� � f� .

So we obtain a generalization of the known result of Weir which states
that normal subgroups of UTn(K ) are partition subgroups corresponding
to some monotonic functions determined by ‘boundaries’ of these partition
subgroups ([17] Thm. 4).

Theorem �� If K is a �eld� jK j�2� and I satis�es condition (�)� then
the correspondence G(�) �� f� de�nes a lattice isomorphism between the

lattice � = fG(�) � UTf (I � K ) : ��normal netg and the lattice MF (I )�

4. Subgroups of triangular matrices containing diagonal

The methods and results of previous sections can be used to describe
subgroups of Tf (I � R) containing Df (I � R). By D-net � = (�i j ) of two-sided
ideals of R we mean a net � such that �kk = R and �i j = 0 for all i , j , k
(i �j ). By G(�) we denote the set of all matrices a � Tf (I � R) such that
ai j � �i j for all i � j . Similar proof as in Proposition 1 shows that G(�) is
a subgroup of Tf (I � R). Small changes in the proof of Theorem 1 give the
following
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Theorem �� Let R be an associative ring with 1 additively generated by

invertible elements and such that 1 is a sum of two invertible elements� Let

H be a subgroup of Tf (I � R) containing Df (I � R)� Then there exists a unique

upper D�net � = (�i j ) of two�sided ideals of R� such that H = G(�)�

This result can he easily generalized to the greater group T (I � R) of
triangular matrices with finite number of nonzero elements in every column.
For details of the proof in the special case I = N see [9].
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IRENA ČOMIĆ AND HIROAKI KAWAGUCHI

�Received April ��� �����

1. Adapted basis in T (OsckM ) and T �(OsckM )

Here OsckM will be defined as a C� manifold in which the transfor-
mations of form (1.1) are allowed. It is formed as a tangent space of higher
order of the base manifold M .

Let E = OsckM be a (k + 1)n dimensional C� manifold. In some local
chart (U��) a point u � E has coordinates

(xay1a � y2a � � � � � yka) = (y0a � y1a � y2a � � � � � yka) = (y�a)�

where xa = y0a and

a� b� c� d� e� � � � = 1� 2� � � �� n� �� �� �� �� 	� � � � = 0� 1� 2� � � � � k �

The following abbreviations will be used:


�a =




y�a � � = 1� 2� � � �� k � 
a = 
0a =




xa
=





y0a
�

If in some other chart (U �� � �) the point u � E has coordinates

(xa
�

� y1a �

� y2a �

� � � � � yka
�

), then in U � U � the allowable coordinate transfor-
mations are given by:

xa
�

= xa
�

(x1� x2� � � � � xn )(1�1)

y1a �

= (
ax
a �

)y1a = (
0ay
0a �

)y1a

y2a �

= (
0ay
1a �

)y1a + (
1ay
1a �

)y2a

This research was partly supported by Sciences Fund of Serbia, grant number 1262.
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180 IRENA ČOMIĆ, HIROAKI KAWAGUCHI

y3a �

= (
0ay
2a �

)y1a + (
1ay
2a �

) + (
2ay
2a �

)y3a � � � � �

yka
�

= (
0ay
(k�1)a)y1a + (
1ay

(k�1)a)y2a + � � � + (
(k�1)ay
(k�1)a)yka �

Theorem ���� The transformations of type (1�1) on the common domain

form a group�

Some nice example of the space E can be obtained if the points (xa) �
� M , dimM = n are considered as the points of the curve xa = xa (t), t � I
and y�a a = 1� 2� � � �� k are determined by

(1�2) ya = d�t x
a � d�t =

d�

dt�
� dt =

t

dt
�

If in U �U � the equation xa
�

= xa
�

(x1(t)� x2(t)� � � �� xn(t)) is valid, then it is
easy to see that

(1�3) y1a �

= d1
t x

a �

� y2a �

= d2
t = d2

t x
a �

� � � � � yka
�

= dkt x
a �

satisfy (1.1). In [19] y�a = 1
�!d

�
t x

a and it results that the structure group is
different from (1.1). As from (1.2) and (1.3) it follows

y1a �

= y1a �

(x � y1a)� y2a �

= y2a �

(x � y1a � y2a)� � � � �(1�4)

yka
�

= yka
�

(x � y1a � � � � � yka )

and from the above equation we get (1.1).

Let us introduce the notations:

(1�5) (0)Aa �

a = 
ax
a �

� (�)Aa �

a = d
�(0)
t Aa �

a =
d�(0)Aa �

a

dt�
� � = 1� 2� � � � � k �

The natural basis B̄� of T �(E ) is

B̄� = fdy0a � dy1a � � � �� dykag�

The elements of B̄� are not transformed as tensors ([19], [9]).

The adapted basis B� of T �(E ) is given by

(1�6) B� = f�y0a � �y1a � �y2a � � � � � �ykag�

where,

�y0a = dxa = dy0a �(1�7)

�y1a = dy1a + M 1a
0b dy

0b�

�y2a = dy2a + M 2a
1b dy

1b + M 2a
0b dy

0b� � � � �

�yka = dyka + M ka
(k�1)bdy

(k�1)b + M ka
(k�2)bdy

(k�2)b + � � � + M ka
0b dy

0b�
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Theorem ���� The necessary and su�cient conditions that �y�a are

transformed as d�tensor �eld� i�e�


y�a �

=

xa

�


xa
�y�a � � = 0� 1� � � � � k

are the following equations�

M
(�+�)a
�b (
axb

�

) = M
(�+�)b�

�c�

�by

�c� + M (�+�)b�

(�+1)c�

�by

(�+1)c� + � � �(1�8)

� � � + M (�+�)b�

(�+��1)c�
�by
(�+��1)c� + 
�by

(�+�)b�

1 � �� � + � � k �

The proof is given in [9].

From (1.8) after some calculation we get

M
(�+�)a
�b

(0)Ab�

a =

�
�

�

�
M

(�+�)b�

�c�
(0)Ac�

b +

�
� + 1
�

�
M

(�+�)b�

(�+1)c�
(1)Ac�

b + � � �

� � � +

�
� + � � 1

�

�
M

(�+�)b�

(�+��1)c�
(��1)Ac�

b +

�
� + �
�

�
(�)Ab�

b �

The natural basis B̄ of T (E ) is

B̄ = f
0a � 
1a � � � �� 
kag�

The transformation law of its elements are given in [19].

Let us denote the adapted basis of T (E ) by B , where

(1�9) B = f�0a � �1a � �2a � � � � � �kag = f��ag

and

(1�10)

�0a = 
0a � N 1b
0a 
1b � N 2b

0a 
2b � � � � � N kb
0a 
kb�

�1a = 
1a � N 2b
1a 
2b � N kb

1a 
kb�
...

�ka = 
ka �

Theorem ���� ([9]) The necessary and su�cient conditions that B be

dual to B� �(1�6) and (1�10)	 when B̄ is dual to B̄� i�e�

h��a�
�bi = �

�
��

b
a
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are the following relations�

N
(�+�)b
�a = M

(�+�)b
�a �M

(�+�)b
(�+1)c N

(�+1)c
�a �(1�11)

�M
(�+�)b
(�+2)c N

(�+2)c
�a � � � ��M

(�+�)b
(�+��1)cN

(�+��1)c
�a �

Theorem ���� ([9]) The necessary and su�cient conditions that ��a with

respect to (1�1) are transformed as d�tensors are the following formulae

N
(�+�)b�

�a �
(
ax

a �

) = N
(�+�)c
�a 
(�+�)cy

(�+�)b�+(1�12)

+ N (�+��1)c
�a 
(�+��1)cy

(�+�)b� + � � �

� � � + N (�+1)c
�a 
(�+1)cy

(�+�)b� � 
�ay
(�+�)b� �

2. Liouville vector fields

Definition ���� The fields Γ(1), Γ(2), � � � , Γ(k ), which in the basis B̄

T (OsckM ) have the form:

Γ(1) =

�
k

0

�
y1a
ka �(2�1)

Γ(2) =

�
k � 1

0

�
y1a
(k�1)a +

�
k

1

�
y2a
ka �

...

Γ(i) =

�
k � (i � 1)

0

�
y1a
(k�(i�1))a +

�
k � (i � 2)

1

�
y2a
(k�(i�2))a+

+ � � � +

�
k � 1
i � 2

�
y (i�1)a
(k�1)a +

�
k

i � 1

�
y ia
ka �

...

Γ(k ) =

�
1
0

�
y1a
1a +

�
2
1

�
y2a
2a +

�
3
2

�
y3a
3a + � � � +

�
k

k � 1

�
yka
ka

are the Liouville fields in T (OsckM ).

Theorem ���� The Liouville �elds determined by (2�1) are d�vector �elds
of type (1� 0)�
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It can be proved that (k � (i � 1))!Γ(i) (determined by (2.1)) are exactly

the Liouville vector fields Γ(i) given by R� Miron and Ch� Atanasiu in [16],
[17].

For k = 3 (2.1) has the form

Γ(1) = y1a
3a � Γ(2) = y1a
2a + 3y2a
3a �

Γ(3) = y1a
1a + 2y2a
2a + 3y3a
3a �

these vector fields were obtained in [8].

Theorem ���� The Liouville vector �elds in the basis B have the form

Γ(1) = z ka1 �ka �(2�2)

Γ(2) = z
(k�1)a
2 �(k�1)a + z ka2 �ka �

Γ(3) = z
(k�2)a
3 �(k�2)a + z (k�1)a

3 �(k�1)a + z ka3 �ka �

���

Γ(i) = z
(k�(i�1))a
i �(k�(i�1))a + z (k�(i�2))a

i �(k�(i�2))a + � � � + z kai �ka �

���

Γ(k ) = z1a
k �1a + z2a

k �2a + � � � + z kak �ka �

where

z ka1 = z
(k�1)a
2 = z

(k�2)a
3 = � � � = z

(k�(i�1))a
i = � � � = z1a

k = y1a(2�3)

z ka2 =

�
k

1

�
y2a +

�
k � 1

0

�
M ka

(k�1)by
1b

z
(k�1)a
3 =

�
k � 1

1

�
y2a +

�
k � 2

0

�
M

(k�1)a
(k�2)b y

1b

z ka3 =

�
k

2

�
y3a +

�
k � 1

1

�
M ka

(k�1)by
2b +

�
k � 2

0

�
M ka

(k�2)by
1b�

���

z
(k�j )a
i =

�
k � j

i � j � 1

�
y (i�j )a +

�
k � j � 1
i � j � 2

�
M

(k�j )a
(k�j�1)by

(i�j�1)b+

+ � � � +

�
k � i + 1

0

�
M

(k�j )a
(k�i+1)by

1b� (j �i)�
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For k = 3 in [8] we get

z3a
1 = z2a

2 = z1a
3 = y1a �

z3a
2 = 3y2a + M 3a

2b y
1b� z2a

3 = 2y2a + M 2a
1b y

1b

z3a
3 = 3y3a + 2M 3a

2b y
2b + M 3a

1b y
1b�

which coincide with (2.3).

3. Zermello’s conditions in OsckM

Definition ���� A differentiable Lagrangian of order k on a C� mani-

fold is a function L : E � R differentiable on Ẽ (where rank [y1a] = 1) and

continuous in those points of E where y1a are equal to zero.

Let L : E � R be a differentiable Lagrangian of order k and c : t �
� [0� 1] � fxa (t)g � M a smooth parametrized curve, such that Imc � U ,
U being the domain of a local chart at the differentiable manifold M . The
extension c� (of c) to k is given by:

c� : t � [0� 1] � xa(t)
a + d1
t x

a (t)
1a + � � � + dkt x
a(t)
ka �

The integral of action Ic� is

Ic� =

1Z
0

L(x � y1� y2� � � � � yk )dt �

The integral of action Ic� does not depend on the parametrization of the
curve c�:

(3�1) xa = xa(t) = y0a � y�a = d�t x
a =

d�x

dt�
� � = 1� 2� � � �� k �

if

(3�2)

1Z
0

L(x � y1� y2� � � � � yk )dt =

1Z
0

L(x � y1� � y2� � � � � � yk
�

)ds�

where s = s(t) is at least C k function, s �(t) �0 for t � [0� 1], s(0) = 0,
s(1) = 1 and

(3�3) y�a �

= d�s x
a =

d�xa

ds�
� � = 1� 2� � � �� k �
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The equations which give the conditions when (3.2) is satisfied are called
Zermello’s conditions.

(3.2) will be satisfied if along the c�

(3�4) L(x �y1� y2� � � � � yk ) = L(x � y1� � y2� � � � � � yk
�

)s ��

where s � = ds
dt . We shall use the notation s(�) = d� s

dt� .

From (3.1) and (3.3) we get (for s = s(t)):

y1a =
dxa

ds
s ��(3�5)

y2a =

y1a


s
s � +


y1a


s �
s ���

y3a =

y2a


s
s � +


y2a


s �
s �� +


y2a


s ��
s ����

...

yka =

y (k�1)a


s
s � +


y (k�1)a


s �
s �� + � � � +


y (k�1)a


s(k�1)
s(k )�

The above equations follows from the relations:

y1a = y1a(s� s �)� y2a = y2a(s� s �� s ��)� � � � � y (k�1)a = y (k�1)a(s� s �� � � � � s(k�1))�

Using the notations:

(3�6) Aa
0 =

dxa

ds
� Aa

� = d�t A
a
0 � � = 1� 2� � � � � k

and the Leibniz rule we have

Theorem ���� y�a and s(�)� � = 1� 2� � � � � k are connected by formulae�

y1a = Aa
0s
�(3�7)

y2a =

�
1
0

�
Aa

1s
� +

�
1
1

�
Aa

0s
���

y3a =

�
2
0

�
Aa

2s
� +

�
2
1

�
Aa

1s
�� +

�
2
2

�
Aa

0s
����

y4a =

�
3
0

�
Aa

3s
� +

�
3
1

�
Aa

2s
�� +

�
3
2

�
A2

1s
��� +

�
3
3

�
Aa

0s
(4)�

���
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yka =

�
k � 1

0

�
Aa

k�1s
� +

�
k � 1

1

�
Aa

k�2s
�� + � � � +

�
k � 1
k � 1

�
Aa

0s
(k )�

The explicit form of (3.7) is the following:

y1a = y1a �

s �(3�8)

y2a = y2a �

(s �)2 + y1a �

s ��

y3a = y3a �

(s �)3 + y2a �

3s �s �� + y1a �

s ���

y4a = y4a �

(s �)4 + y3a �

6(s �)2s �� + y2a �

(3(s ��)2 + 4s �s ���) + y1a �

s(iv )�

...

From (3.7) it follows:

Aa
1 =

�




s
Aa

0

�
s ��

Aa
2 =

�




s
Aa

1

�
s � +

�




s
Aa

0

�
s ���(3�9)

Aa
3 =

�




s
Aa

2

�
s � +

�
2
1

��




s
Aa

1

�
s �� +

�
2
2

��




s
Aa

0

�
s ����

...

Theorem ���� Aa
� and s(�)� � = 1� 2� � � �� k are connected by the formula�

Aa
� =

�
� � 1

0

�

Aa

��1

s

s � +

�
� � 1

1

�

Aa

��2

s

s �� + � � � +

�
� � 1
� � 1

�

Aa

0

s

s(�)�

Theorem ���� The following relations are valid�


y1a


s �
=

y2a


s ��
= � � � =


yka


s(k ) =
dy0a

ds
= y1a �

�(3�10)


y (�+�)a


s(�) =
� + �
�


y (�+��1)a


s(��1) = � � � =

�
� + �
�

�

y�a


s�
(3�11)

0 �� + � � k �

Relations (3.10) and (3.11) are crucial by the determination of Zermello’s
conditions.
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If we take the partial derivatives of (3.4) with respect to s �, s”, � � �, s(k )

we get:
(3�12)

(
1aL)

y1a


s �
+ (
2aL)


y2a


s �
+ � � � + (
kaL)


yka


s �
= L(x � y1� � y2� � � � � � yk

�

)�

(
2aL)

y2a


s ��
+ � � � + (
ka)


yka


s ��
= 0�

...

(
kaL)

yka


s(k ) = 0�

On the left hand side in (3.12) L = L(x � y1� y2� yk ). If we multiply the

first equation of (3.12) with s �, the second with 2s”, � � � , the last with ks(k )

and add all these equations and use (3.4) we get:

(
1aL)

y1a


s �
s � + (
2aL)

�

y2a


s �
s � + 2


y2a


s ��
s ��

�
+ � � �(3�13)

� � � + (
kaL)

�

yka


s �
s � + 2


yka


s ��
s �� + � � � + k


yka


s(k ) s
(k )

�
=

= L(x � y1� � y2� � � � � � yk
�

)s � = L(x � y1� y2� � � � � yk )�

From (3.11) and (3.5) we obtain:


y1a


s �
s � =

dxa

ds
s � = y1a �


y2a


s �
s � + 2


y2a


s ��
s �� =

2
1

y1a


s
s � + 2


y1a


s �
s �� = 2y2a �

...


yka


s �
s � + 2


yka


s ��
s �� + � � � + k


yka


s(k ) =

=
k

1

y (k�1)a


s
s � + 2

k

2

y (k�1)a


s �
s �� + � � � + k

k

k


y (k�1)a


s(k�1) s
(k ) = kyka �

The substitution of the above equations into (3.13) results

(3�14) (
1aL)y1a + 2(
2aL)y2a + � � � + k (
kaL)yka = L�
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If we multiply the second equation of (3.12) with
�2

2

�
s � and the following

with
�3

2

�
s”,

�4
2

�
s ���, � � � ,

�k
2

�
s(k�1) respectively and add all these equations we

get

(
2aL)

�

y2a


s ��
s �

�
+ (
3aL)

�

y3a


s ��
s � +

�
3
2

�

y3a


s ���
s ��

�
+ � � �

� � � + (
kaL)

�

yka


s ��
s � +

�
3
2

�

yka


s ���
s �� + � � � +

�
k

2

�

yka


s(k ) s
(k�1)

�
= 0�

If we use (3.11) and (3.5) the above equation takes the form

(3�15)

�
2
2

�
(
2aL)y1a +

�
3
2

�
(
3aL)y2a + � � � +

�
k

2

�
(
kaL)y (k�1)a = 0�

If we multiply the third equation of (3.12) with
�3

3

�
s” and the following with�4

3

�
s ���,

�5
3

�
s(iv ), � � � ,

�k
3

�
s(k ) respectively we get

(3�16)

�
3
3

�
(
3aL)y1a +

�
4
3

�
(
4aL)y2a + � � � +

�
k

3

�
(
kaL)y (k�2)a = 0�

On the similar way we obtain (for 4 � i � k ):�
i

i

�
(
iaL)y1a +

�
i + 1
i

�
(
(i+1)aL)y2a + � � � +

�
k

i

�
(
kaL)y (k�i+1)a= 0�(3�17)

We shall use the notations:

I1 =

�
k

k

�
y1a
ka �(3�18)

I2 =

�
k � 1
k � 1

�
y1a
(k�1)a +

�
k

k � 1

�
y2a
ka �

I3 =

�
k � 2
k � 2

�
y1a
(k�2)a +

�
k � 1
k � 2

�
y2a
(k�1)a +

�
k

k � 2

�
y3a
ka �

...

Ik =

�
1
1

�
y1a
1a +

�
2
1

�
y2a
2a + � � � +

�
k

1

�
yka
ka �

From (3.14)–(3.18) it follows
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Theorem ���� The necessary conditions that the integral of action does

not depend on the parametrization of the curve are�

(3�19) I1(L) = 0� I2(L) = 0� � � � � I(k�1)(L) = 0� Ik (L) = L�

Equations (3.19) are Zermello’s conditions. A comparison of (3.18) with
(2.1) gives

Theorem ���� The Liouville vector �elds Γ(�) and I� are equal for � =
= 1� 2� � � �� k � i�e�

(3�20) I� = Γ(�)�

so I� are vector �elds�

Theorem ���� The Zermello
s conditions can be written in the form

(3�21) Γ(1)(L) = 0� Γ(2)(L) = 0� � � � � Γ(k�1)(L) = 0� Γ(k )(L) = L�

4. Energies of higher order

Definition ���� We call 
� (L) energies of order � , � = 1� 2� � � �� k of the

Lagrangian L(x � y1� � � �� yk ). They are defined along a curve c by the invariants
I� in the following form:

(4�1)


k (L) = [Ik � d1
t Ik�1 + d2

t Ik�2 � � � � + (�1)k�1dk�1
t I1] (L) � L�


k�1(L) = [�Ik�1 + d1
t Ik�2 � � � � + (�1)k�1dk�2

t I1] (L)�


k�2(L) = [Ik�2 � � � � + (�1)k�1dk�3
t I1] (L)�

...

2(L) = [(�1)k�2I2 + (�1)k�1d1

t I1] (L)�


1(L) = [(�1)k�1I1] (L)�

Proposition ���� The following identities hold�

(
k � d1
t 
k�1)(L) = Ik (L) � L�(4�2)

(
k�1 � d1
t 
k�2)(L) = �Ik�1(L)�

���

(
2 � d1
t 
1)(L) = (�1)k�2I2(L)�

From (3.19), (4.1) and (4.2) it follows
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Theorem ���� For the Lagrangian L(x � y1� � � �� yk )� for which the Zer�

mello
s conditions are satis�ed� the higher order energies are equal to zero�

i�e�


1(L) = 0� 
2(L) = 0� � � � � 
k (L) = 0�

Proposition ���� For any di�erentiable Lagrangian L(x � y1� y2� � � �� yk )
and any di�erentiable function F = F (t) de�ned along the curve c : [0� 1] �
� M we have

(d1
t F )L� [(d1

t F )Ik + (d2
t F )Ik�1 + � � � + (dkt F )I1](L) = F (d1

t 
k )L+(4�3)

+d1
t [�F
k + (d1

t F )
k�1 � (d2
t F )
k�2 + � � � + (�1)k (dk�1

t F )
1](L)�

Proof� The right hand side of the above equation can be written in the
form

[�(d1
t F )(
k � d1

t 
k�1) + (d2
t F )(
k�1 � d1

t 
k�2) � � � �

� � � + (�1)k�1(dk�1
t F )(
2 � d2

t 
1) + (�1)k (dkt F )
1](L) =

= �(d1
t F )(Ik (L)�L)�[(d2

t F )Ik�1+(d3
t F )Ik�2+� � �+(dk�2

t F )I2+(dkt F )I1](L) =

= (d1
t F )L� [(d1

t F )Ik + (d2
t F )Ik�1 + � � � + (dkt F )I1](L)�

The above equation is involved in the Noether theory of symmetries of
the higher order Lagrangians [19].

Theorem ���� For any di�erentiable function F (x (t)� y1(t)� � � �� yk (t)) the

operators d1
t � E

0
a and I1� I2� � � � � Ik are connected by formula�

d1
t (F ) = [y1a
0a + y2a
1a + y3a
2a + � � � + d1

t y
ka
ka ]F =(4�4)

= [y1aE0
a + d1

t Ik � d2
t Ik�1 + d3

t Ik�2 + � � � + (�1)kdkt I1]F�

Theorem ���� For any di�erentiable Lagrangian along the smooth curve

c : [0� 1] � xa (t) �M we have [19]

(4�5) d1
t (
k (L)) = �y1aE0

a (L)�

where

E0
a = 
0a � d1

t 
1a + d2
t 
2a + � � � + (�1)dkt 
ka �

Proof� Let us introduce the notation

(4�6) B = Ik � d1
t Ik�1 + d2

t Ik�1 � � � � + (�1)kdk�1
t I1�
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From (4.1) we have


k (L) = B(L) � L�

d1
t (
k (L)) = (d1

t B)L� d1
t L�(4�7)

From (4.4) and (4.6) we have

(4�8) d1
t L = y1aE0

a (L) + (d1
t B)L�

If we substitute (d1
t B)L from (4.8) into (4.7) we obtain (4.5).
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THE RESULT OF EVEN ALLOCATION OF FUNDS FOR
POSTGRADUATE TRAINING

By

M. FARKAS

�April �� �����

Introduction

A simple competitive system of ODEs is constructed and analysed along
with its implications modeling the dynamics of staff in a large institute which
trains its own would be staff in postgraduate courses. A certain field of science
is considered with competing branches. The model shows that more popular
branches increase their number related to less popular ones faster than linear.

1. The model

Suppose that in a large institute or university in a certain field of science,
mathematics say, there is a fixed amount of funds available in unit time (a
year or three years) for postgraduate training and the funds are distributed
according to the respective numbers of postgraduate, say PhD, students among
the different branches of the given field. Students are admitted by their merits,
by an entrance examination, say, and then they choose the branch freely.
The training of a student in unit time (tuition and scholarship provided by
the institute or the state) costs a certain amount of money. We use this
amount as the unit of funds and assume that the total amount of funds in
unit time is K units. Different branches have different popularities depending
on the hardships, on how fast may one get to the point of working on some
research problem and being able to publish, on the quality and personality of

Research partially supported by the Hungarian National Foundation for Scientific Re-

search, grant numbers T029893, T031716, and by a Proyecto de la Universidad de Antioquia,

Medellı́n, Colombia.
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the possible supervisors etc. We denote the popularity of the i-th branch by
ai . This may be measured by the average number of postgraduate students
of a researcher in the i-th field. The number of staff (possible supervisors,
PhD title holders, say) in branch i at time t will be denoted by Ni (t). We
assume also that successful students at the end of their training enter the
staff of the given branch at the same institute and that the institute does not
recruit staff from outside. This condition may be relaxed assuming that the
students having obtained their degree enter other institutes in the country as
well, provided that popularities and funds have the same values at the different
institutes. Under these assumptions if branch i were the only existing branch
then the simplest assumption is that Ni follows the logistic dynamics, i.e.

dNi

dt
= riNi (1� aiNi�K )

where ri = ai � m is the intrinsic growth rate of the branch, m being the
rate of reaching pension age of the staff, considered to be independent of the
branch and small compared to ai .

If there are n branches then the dynamics is governed by the system

(1�1)
dNi

dt
= riNi

�
�1�

nX
j=1

ajNj �K

�
A � i = 1� 2� � � � � n�

2. Implications of the model

System (1.1) is a simple degenerate Lotka-Volterra system (see e.g.
Farkas[2001]). According to our assumptions all the parameters are positive.
The equilibria, apart from those on the coordinate hyperplanes, i.e. those that
represent the absence of some of the branches, are the points of the open
simplex

S =

��
�N � �

n
��� nX

j=1

ajNj �K = 1� Ni �0� i = 1� 2� � � � � n

�	

 �

According as
Pn

j=1 ajNj �K is larger or less than one, the quantity of staff is

decreasing (by lay off, say), resp. increasing in all the branches. Denoting an
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arbitrary point of S by N = (N 1� N 2� � � � � N n ) the characteristic polynomial
at this point is

D(�) =

���������
�

r1N 1a1
K � � �

r1N 1a2
K � � � �

r1N 1an
K

�
r2N 2a1

K �
r2N 2a2

K � � � � � �
r2N 2an

K
� � � � � �

�
rnN na1

K �
rnN na2

K � � � �
rnN nan

K � �

���������
�

Simple row and column operations yield

D(�) = �n�1

�
� +

nX
i=1

ai riN i�K

�
�

i.e. 0 is an (n � 1)-tuple root and the n-th root is

�n = �
nX
i=1

ai riN i�K ) �0�

This means that the simplex S is the center manifold of each equilibrium
N on it and each equilibrium has a one dimensional stable manifold. As
a consequence, the simplex is a global attractor of the system with respect
to the open positive orthant of �n , i.e. every solution with positive initial
conditions tends towards a point on S as t tends to infinity. This means that
in the long run the distribution of the staff by branches will settle at a point
of the simplex. Which point will it be, depends on the initial conditions. It is
also easy to determine the equation of the trajectories. We may divide each
equation of system (1.1) by the first one obtaining

dNi

dN1
=
riNi

r1N1
� i = 1� 2� � � �� n�

Thus the equation of the trajectory corresponding to the initial point
(N10� N20� � � �� Nn0) in the interior of the positive orthant parametrized by the
first coordinate is

Ni =
Ni0

N
ri�r1
10

N
ri�r1
1 � i = 1� 2� � � �� n�

These results may be used several ways.

If the initial distribution of staff among the branches, the popularity of
the branches and the funds available for postgraduate training are known we
may forecast the long run distribution of staff.
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If we want to fix the long run overall quantity of staff we may control
the funding accordingly.

If we want to achieve a certain relative distribution among the branches
we may try to find methods that increase the popularity of some branches and
decrease that of some others.

What is important, we don’t have to fix the aimed situation at the start.
We may fix the parameters and the initial values appropriately and leave it to
the dynamics to sort out.

3. The case n = 2

We illustrate the results of the previous Section in case there are only two
branches. In this case the simplex of equilibria is the straight line segment

a1N1�K + a2N2�K = 1�

(in the positive quadrant of the plane N1� N2) and the equation of the trajec-
tories is

N2 =
N20

N
r2�r1
10

N
r2�r1
1 �

i.e. they are parts of parabolae that pass through the origin. We may assume
without loss of generality that r1 �r2 implying that these are parabolae
convex down. The Figure (produced by Maple-V) shows the phase portrait
when a1 = 0�31, a2 = 0�61, r1 = 0�3, r2 = 0�6, K = 10 and the initial
conditions are given in the Table.

Table� Initial values with corresponding equilibria

(N10� N20) (N1� N2)
(1� 2) (2�85� 14�47)
(2� 2) (5�47� 13�13)
(3� 2) (7�87� 11�91)
(4� 2) (10�05� 10�81)
(5� 2) (12�03� 9�82)
(6� 2) (13�83� 8�92)

As we see, trajectories end up at points of the straight line segment

N1�32�26 +N2�16�39 = 1�

The second branch is twice as popular as the first one. While the number of
staff in the first branch grows 2-3 fold in the long run, in the second branch
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Fig� 	

it grows 7-5 fold. If we want to have 10 staff in each branch in the long run,
say, then we have to start with 4 in the first one and 2 in the second one.
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