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1. Introduction

It is well-known that multilinear operators have close connections with
many problems of analysis such as the Cauchy integral on Lipschitz curves,
and the compensated compactness in partial differential equations; see [15, 4]
and [16]. It is their applicability and usability that prompt many authors to
look into their boundedness in various spaces; see [5, 8, 9, 11, 10, 14, 17, 18]
and [19].

In this paper, we consider multilinear operators over certain Vilenkin
groups G. As applications, we obtain the factorization of Hardy spaces
and the boundedness of the commutators generated by BM O functions and
the Calderén—Zygmund operators or the fractional integral operators over G.
Before stating our results, we establish some notation.

Throughout this paper, G denotes a bounded locally compact Vilenkin
group, that is, G is a locally compact Abelian group containing a strictly

decreasing sequence of compact open subgroups { Gy },,2_ . such that

(a) oLj G, = G and ﬁ G, = {0}.

n=—o0 n=—oo
(b) sup{order(G,/G,41):n € Z} =B < .

Examples of such groups are described in ([7], §4.1.2). An additional
example is the additive group of a local field; see [24].

* Dachun Yang was partially supported by the NNSF and the SEDF of China.



6 T. S. QUEK, D. YANG

We choose Haar measures dx on G so that |Gy| = 1, where |A| denotes

the Haar measure of a measurable subset A of G. Let |G,| = (mn)_l for
each n € Z. Since 2m, < m, 1 < Bm, for each n € 7Z, it follows that
oo
(1.1) > (mp) ™4 < elmy) ™
n=k
and
k
(1.2) > (mp)* < cm)”
n=—oo

for any @ > 0, k € Z, where c is a constant independent of k. Throughout
this paper, ¢ will always denote a constant which is independent of the main
parameters, but may vary from line to line. We now define the function
d: GXxG — Rbydkx,y)=0ifx —y =0 and d(x,y) = (my)~ ! if
x —y € Gy \ G,41, then d defines a metric on G x G and the topology on G
induced by this metric is the same as the original topology on G. For x € G,
we set |x| = d(x,0). Then |x| = (m,)~" if and only if x € G, \ G,;. We now
briefly recall the definitions of the spaces &(G) of test functions and </(G)
of distributions; for more details, see [24]. A function @ : G — C belongs to
& (G) if there exist integers k, [, depending on @, so that supp® C G; and @
is constant on the cosets of some subgroup G; of G. A sequence {®, }{° of
functions in S(G) converges to ® € F(G) if there exist integers k, [ so that
every @, and ® have supports in G, and are constant on the cosets of G; in
G and if nlingo @, (x) = ®(n) uniformly on G. The space of all continuous

functionals on 4(G) is denoted by ¥/(G).

DEFINITION 1.1. Let T be a linear operator mapping all continuous func-
tions on G into measurable functions on G. We say that T is a Calderén—
Zygmund operator if

(i) T can be extended to a bounded linear operator on [%(G);
(i1) There is a kernel K(x) such that

Tf(x) = / K(x — y)f0)dy
suppf

for all continuous functions f with compact supports and for all x ¢ suppf.
Here K satisfies

(ii); |K )| < clx|~if x#0;
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(i [K(y) = KGo)| < elx —yl/|x[* if |x —y[ < [x]/2.
The smallest constant satisfying (ii);, and (ii); is called the Calderén—
Zygmund constant of 7. We denote it by c7.

We first consider bilinear operator of the form

N
B(f,9)x) =Y (L, )x)Tjg)x), x€G,
r=1
where N € N, T),1 and T),2 are Calderén—Zygmund operators on G. In
what follows, we will denote the kernels of Ty] and 7;/2, respectively, by Ky1
and Ig,z
The following results on the boundedness of Calderén—Zygmund opera-
tors on G can be found in [21] and [22]. We remark that the authors have

shown in [21] that (i) of Definition 1.1 can be replaced by five other equivalent
conditions.

LEMMA 1.1. Let T be a Calderén—Zygmund operator on G. Then,
(1) ([21]) If 1 < p < oo, then T is bounded on LP(G);

(ii) ([22]) If1/2 < p < 1, then T is bounded on HP(G).

Moreover, the operator norm of T in both (i) and (ii) depends only on B,
p and cT.

Let 1/r =1/p+1/q, and p, ¢ > r > 1. Then by Holder’s inequality and
the above lemma, we have

N N
B¢ ) ir) < DN T )6y < >Nl Tigliae) <
y=1 y=1
<cllflar gl )
Thus B continuously maps HY(G) x H4(G) into L' (G).

It is well-known that HP(G) = IP(G) if p > 1; see [12]. The main
purpose of this paper is to show that if

(1.3) /B(f,g)(X)dx=0
G

for all f, g € L*(G) with compact supports, then we even have B bounded
from HP(G) x H4(G) into H"(G) for r < 1.
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Here are our main theorems.

THEOREM 1.1. Letp,q > 1 and1/r = 1/p+1/q. Assume that B satisfies
(1.3). Then, if 1/2 < r < 1, B can be extended to a bounded linear operator
from IP(G) x L1(G) into H"(G).

THEOREM 1.2. Let 1/2 <p < 1,q > 1, and 1/r = 1/p +1/q. Assume
that B satisfies (1.3). Then, if 1/2 < r < 1, B can be extended to a bounded
linear operator from HP(G) x L1(G) into H" (G).

For 1/2 < r < 1 our theorems generalize Theorem 3 in [6]. We
remark that our proofs of Theorems 1.1 and 1.2 also work for general k-linear
operators of the same type. We acknowledge that some basic ideas on the
proofs of our theorems are from [9].

We now give a brief outline of this paper. The proofs of Theorems 1.1
and 1.2 are given in next section. In Section 3, we generalize Theorems 1.1
and 1.2 to bilinear operators generated by the fractional integral operators
and the Calderén—Zygmund operators; see Theorems 3.1, 3.2 and 3.3. The
last section is devoted to some applications of our results. We obtain in
Theorem 4.1 certain factorization of Hardy spaces. Theorem 1.1 enables
us to prove in Corollary 4.1 the boundedness of commutators formed by
the the Calderén—Zygmund operators and the BM O(G) function. We end
this section with Corollary 4.2 which characterises BM O(G) functions by
means of commutators generated by the fractional integral operators and the
BM O(G) function. Our results are R" -analogues of those in [1]; however,
the proofs are totally different: see also [3] for the analogues on the simple
martingales of the results in [1].

2. Proofs of Theorems 1.1 and 1.2

For ¢ € (0,1) and f € S(G), we define the fractional integral operator
I, of order o by

_J»

dy,
=y

L) =co [
G
where ¢ is a constant depending only on ¢.

The proofs of our theorems depend on the following two lemmas. Our
first lemma is in Corollary 2 of ([13], p. 470).
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LEMMA 2.1. Let0 < a < 1. Then I, is bounded from IP(G) into L1(G)
if1/g=1/p —a.

We also need the following Kolmogorov’s inequality; see [23].

LEMMA 2.2. Assume that there is a constant c(g) such that for eachA > 0,
[{x € G:[gx)| > A} < c(g)/A

Then for any coset I of G having finite measure and any 0 € (0, 1), we have

/ lg(0)|%dx < |I|1 “le(@)P.

We now give the proof of Theorem 1.1.
PROOF OF THEOREM 1.1. Let A, = |G, |_1XGn- For f € ¥/(G), we define

Mf (x) = sup [(An * f)(x)].
nez

Let f € I’(G) and g € L1(G). By the results in [18], we need to show that
M(B(f,g)) € L'(G),
where

M(B(f,g)) = sup / Anx — Y)B(F,9)0)dy .

nez
G

Write
B(f,8)y) = B(g,(x = (), 26,(x = )gNO)+
+B(f,(1 —xg,(x —)g()+ B((1 —xg,(x —)f(),8)—
—B((1 —xg,(x = Nf (), (1 —xG,(x —-))g()).
Consider B(f, (1 — g, (x — -)g(-)) first. We have

sur% /An(x =B, (1 —xG,(x —Ng(N)dy| <
ne
G

N

<edsup [ B0t = ITF I = 26,6 = De0)-
y=1 ne G

—T3((1 = %G, (x — Ng(NE)|dy+
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N

w0y sup [ 30 = DITF O = 26, = Dg Oy
y=I1 ne G

For simplicity, we write ¥ lGn 0 =1-xg,&x —y).
By (1.2), we have

@n sl | T2006, 280 — THUG, 8)X)| =
ne

= sup / (Kyz(y —2) - Kj(x — Z)) X6o(2)8(R)dz| <

nez
G

x =yl 1
< csup / X Gy (2)8(@)]dz <
nez |x - Z|2 "
lx—z|¢Gn
n—1

S ¢ Z ml’l VG[\GZ+1| |2|XG,1X(Z)g(Z)|dZ <

n—1
< cHL@)(m; ' >~ my < cHL(g)(x),
[=—c0

where H L is the Hardy-Littlewood maximal operator on G.

Therefore,

sup |/ (x YB( 16, 8)0)dy | <
ne

N
<HLEW Y [ sutr =T 0)ldy+
r=1gG

+e Z HI(T;f)(x) sup | T (x5, . 8)X)| <
y=1 nez

< cZHL(T f)(x)HL<g><x>+cZHL(T ) sup | T 06y 8.
y=1 y=1
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Obviously,

T2k, 2)00) = / K20 = y)(1 = 26,0 —y)g@)dy = (K2, % 2)(x),
G
where Ig,z,n(z) = Ig,z(z)(l — %G, (). It is easy to see that Ig,z,,,(z) satisfies
(i1)1, and (ii); of Definition 1.1 with the same Calderén—Zygmund constant
as K},2 for each n € 7Z. It now follows from this that
1/r

/su% |An(x —y)B(f,XGn,xg)(y)dy\r dx <
ne
G

N
< IHUTH o) <||HL(g)||Lq(G) + sup 1K, g“M(G)) <
y=1 ne

N
1
< Tl gl < clfllroligliee),
r=1
which is a desirable estimate.
The estimate for B((1 — ), (x — -)f(-),g) is similar and is omitted. For
the last term B((1 — g, (x — Nf (), (1 —xgG,(x — )g(-)), we write

B(X%;,l,x ,an,xg)(y> =

N
=3 [ 06O = T by, O] ¢ | TG 520 = TG, 2000 +
r=1

N N
) TG, f DT UGy )+ D TR0 Gy ) TGy (80—
y=1 y=1

N
> L 06, O TR G, 2 8)E) = AL+ Ay + Az + Ay
y=1
By (2.1), we have
Ay < cHL(f)(x)HL(g)(x)

for all x —y € G,,. Now Holder’s inequality gives the desired estimate for
Aj. It is easy to see that Ap, A3 and A4 can be estimated as in the case for

B(f’XIGn’xg)'
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We now turn to estimate B(y g, (x — )f (1), xG,(* — )g(-)(y). We have

sup /An(x =BG, (x = (s xG,(x —)g(NW)dy| =

nez
G

= sup /(An(x =) = A )BQG,x = O x G, (x =gy | =
G

nez

N
ez / S 26, = D OUTD [Anx — VT, (x — (DO @)}z |,
ne

G =l
where (T),l)* is the adjoint of Tyl.

Since 1/p+1/q =1/r <2, we can choose 1 <p; <pand1<gq; <gq
such that 1/p; +1/q; = 1+¢ for some 0 <& < 1. Let 1/py +1/p| = 1. Then

1p| =1/q, —&. We first show

N
ST [Mulx = )T, = g0 | <
y=1 Lpll(G)

< Cm;1+6 ||XGn (x — ')g(')“qu(G)'

In fact, (1.3) implies that

N
0 [ 3 T 0) g e — 9)0)dy =
G 7=l

N
=) / FONTH* [Tﬁ(xcn(x — -)g)} »)dy.
y=1l G

It follows from the usual density argument that

N
Z(Ti’l)* [T;(XGrz(x - )g)] (y) =0 ae.onG.
y=1

Consequently, we have

N
ST [Anr = TG, (x = 99)] (@) =
r=1
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N
= 130 [ Rh e =t =) = dulx = DI B 5 — Doy | <
G

|z =yl

N
1
<} / G = ) — Anx — )] | T2 (x — )0l
G

Note that if x —y ¢ G, or x —z ¢ G, then

v =zl = max(lx =yl |x —z]) > m, !

Thus, |An(x —y) — Ap(x — 2)| < m}*¢|z — y|°. Therefore,

N
SO [Anx = 9 TG, (6 = 99| @) <
y=1

e Z/ | T2 (G, (x — -)g)(y)|dy _

|z —y|l—¢

m ZI (|T oG, (x — )g)l) (2),

y=1

where I is the fractional integral of order ¢. By Lemma 2.1 and Lemma 1.1,
we have

N
> (T [An(x = VTG, x — )] <
7=l 16
m e HI 206, (x — - H <
Z (1T e =20) | oy o <
my* Z 177 GG & = )16y < emn™ G, & = gl a1 G-
y=1
Thus,

sup / An(x — Y)BUG, (5 — Vfsx6,(x — )9)3)dy| <
ne
G
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1

1+e—
<cm,

1/”1_1/‘11[HL([f|Pl(x)]1/1’1[HL(|g|‘11)(x)]1/ql <
< clHL(f PO PIH L g 1)1 /4.

Therefore, by the boundedness of H L, we have

su% /An(x —V)Bg,x — ), xG,(x — )g)(y)dy <
"G (G

< e|[lHL(f POIPHUHL( 1TV | 1) <
< c[lLHLAf POIYPY | 16y ITH LA |19 || g 6y <
<cllfllrelglra)-

This finishes the proof of Theorem 1.1. |

We now turn to the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Fix 1/2 < p < 1 and f € HP(G). By the results
in [18], we know that f = Y Araj, where Y |A7|P < oo and ag is a (p,o0)
1 1

atom supported by a coset /. That is,
(1) suppa C I;
(i) [|a | ooy < [1]71/P;
(iii) [a(x)dx =0,
G
Let

N
Bw = sup R SR
ne ‘}/=1

where g € I*(G) has a compact support. We shall show that

1/r

/ Exydx |  <clflmrelglme
G
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Suppose I =y + Gy,;. Let I" =y + Gy, -3- Fix I € (1, q). Notice that

N
E(x) < ) [Ag] sup / An(x = )Y (T} apo)(T;2)y)dy |+

rax  MEZ|G y=1
N
+ Y JArsup /An(x =9 (Tapo)T;e)p)dy| =
I*gx nez )’:1
= E1(x) + Bp(x).
We estimate Ej(x) first. Let 1/1 +1/1’ = 1. Then,
/El(x)’dx <

G

r

N
Z/(Z A1l SUP/SHP/An(x —WI(T apo) (ng)(y>dy)dy<

y=1¢ \I*3x neZJ, neZ

I*5x

r/q
x {/[HL(T%g’)(x)}qﬂdx} <
G

/ /ﬂ
<c|g’LqZ{Zizp/[HL<T;az’ >(x>]” dx}

y=1

r/p
’ 1!
{ > Wil [HL(Tarl o) m} x

r/p

By Lemma 2.2, we have

) p/l
/ (LT 0]”" ax < e/ (/ T#cu(x)"dx) <
I* G
p/l'
< el |-/ ( / a1<x>”dx> <,
G
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where c is a constant independent of I. Therefore,

r/p
/El (x)'dx < CHg“;,CI(G) {Z |}~I|p} .

G I
Thus,
/ B dx < cllf ooy
G

which is a desirable estimate for Ej (x).

Next, we estimate E>(x). We have

N
Eyx)< Y g sup / An(x =) D> (TyapO)(Tyg)(y)dy| +
T*Fx niy+Gn3x P y=1

N
£ Y e sw | [ 860 S (Tanox ey | =
I*Fx n:y+Gnox G y=1

= By (x) + Epp(x).
Let I =y;+G, ;—1- We further decompose E,;(x) into

By (x) < E) (x) + E3; (x),

where

N
Ey(x)= Y |A7] sup / An(x = )Y (T apO)( T g)(y)dy
T*%x n:y +Gn 3x 7 y=1

and

N
Ej(x)= Y |A7l  sup / An(x =) (Tjapo)(Ty)y)dy|.
I*yx II:XI+G71¥X G\j ),:1

We claim that E»;(x) = 0. In fact, for x ¢ I'* and A, (x —y)#0, we have
ly —xr| = max(|x —y|, |x —x7]) = |x —x7| > mn_ll_3 because x —x7 ¢ Gy, 3.

Thus, y ¢ T. Consequently, {y : Ay(x —y)#0} N T = ®, that is, Ezll(x) =0.
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To estimate E221 (x), we lety € G\ 1. We have

@) (Ganwl=| [ Ko - Dardz| -
I

- | [} =2 Klo — x| <
1

2
Z—X I12=1/p

< c/ | I|2|a1(z)|dz < c| | .
/ ly —xp| ly —xp|

Note that if A, (x —y)#0, then |y — x7| = max(|x — xg|,|x —y|) = |x — xp].
Therefore, we have

1!
N
Ef () <c> > Wl sup /An<x—y>|<T;aI><y>|’ dy | x

'J/Z] I*yx I’LIX['I-Gn?X _

\T
1/
X (/An(x y)(Tyzg)(y)’dy> <
G
N 2—1/p
I 1/1
<cY 3R 1|| = o [HL(T2gh0o0]
y=1 I*Z#x

It follows that

N
[Ewra<ey [
G

[2_1/17 ’ r/l
il | [rnmgelo] " ar <
y=1g \I*2x I
r/p
v -1\
<c) sl dx X
e — xg]?
v=1 \g \I*Z

IN

r/q
{ [ [Hrazote)” ¢ }
G
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r/p
r 717!
< cllgllreo) { ArlP mdx =
x XI¢ ny—3
ny—4 |7]27—2 g
= C||g“qu(G) Z / x _x1|2pdx =
I=7°G\ Gy
nj—4 r/p
=cg|zq<G){ AP ,2” Hlipts <

<clgllzace {Z MIV’}
I

where the last inequality follows from (1.2) and 2p — 1 > 0. Thus,
2
[1B o ax < clf el s oy
Next, we discuss Eyy(x). Let s € (0, 1). It follows from (1.3) that
Ey(x) =

= > gl sup / (An(x = y)—An(x — xmZ(Tlan(y)(Tz(g)(y)dy)

I*Fx n:y+Gnox y=1

N
<ed > gl sup / 2By = 1 (T apo)(Tg)()ldy =

’y=] I*yx I’LIX['I-GnBX G

N
=c) > gl sup my™ / y = 7B apG)(TEg)()ldy+

,}/:1 I*yx I’lZX[+Gn9X

+cZ Z Arl sup  my* / y = 1 (T apO)(Trg)(»)ldy =
,y 1[* n XI+G’19'X
G\I

= E3,(x) + E5(x).
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We note that in E212(x), we have |x —y| = max(|y — x|, |x —x7|) = |x —x7| <

<my ! because yeTandx ¢ xr+G, ;—3- Therefore, by Holder’s inequality,
we have

N
Q23 Ep()<cd > Wl sup /{m H |y—xI|S||(T;aI><y>|}><

y=1 I*%x ny+GnOx 7

< Amy (T2)0)|}y <

III .
!/
< cz > |/1,| eyl /|(Ty1a)(y>|’ dy X
y=1I*3x *1] G
1/
X sug / mn|(Ty28)()’)|ldy <
ny r+Gn>x
y—x|<my !
|I|s—1 +ll ) 11/1
chZ|I| |s+1/u[ L(Tghen|
y=1 I*%x

Since r > 1/2, we can choose s € (0, 1) such that (s + 1/I")p > 1. It is now
easy to see that

[ 1LY dx < el Pyl Vs o

Finally, we come to the estimate of E 2(x) Using (2.2), we easily obtain

Ezzz(x) <

N _ I2 1/p
=1 I*yx I’LIX['I-GnBX _‘x1|
r= G\I

al I4s p=ee
<o Ywl s om0 Ty

y= n:xr+Gnox .
LI 3x yeG\I
y€x+Gn71
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al 145 2= _
+c> > Wl sup omy, ml(Tyg)(y)dy =

_1 7% n:y+Gnox .
y=1 I*Fx yeG\I
)’¢X+Gn71

= F(x)+ Fx).

For Fj(x), we first have

112-1/p
my** / |y||7l(Ty2g)(y)dy§

~ — x>~

)’GG\I

yExX+G,

VL _ 1
<my e ———dy | X |ma [ [(To)0l'dy | <

|y — x7|@=) ’
\I x+G,_1

[12=1/p+1/1' 1/1

<o [HLgreh)]

R xI|s+1/l’
Then, by a computation similar to (2.3), we obtain an estimate of F}(x) similar
to that of E212(x). For F,(x), note that |y —xj| = max(|y —x|, |x —xz|) > |y —x|.
By Hoélder’s inequality, we have

11 , l 1/1
) / (T78)() dy

ly —x[>=s

|I|2—1/pm’1+s / dy
Cy =g
\I VG

|[|1—1/p+l/l+s/l,] - S
= Zxy [IFUS T HUIT; | Xx)}

Note that (1+ 1/l +s/1")p =(2—s)/l +s+1/")p > (s + 1/1")p > 2. From
this, we easily deduce a desirable estimate for F,(x).

This finishes the proof of Theorem 1.2. |

11
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3. Some generalizations

In this section, I, denote the standard fractional integral operator if
0 < a <1 and the Calder6n—Zygmund operators if @ = 0. For x € G, let

N
3.1) Bu(f,8)(x) = chlaly(f)(x)lag(g)(w,

r=1
where ¢, ’s are constants, :a%/+ag and 0 < a’l/, ag <lforye{l,...,N}
and N € N.

Theorem 1.1 and Theorem 1.2 have the following generalizations whose
proofs are omitted as they involve only arguments similar to those of Theorem
1.1 and Theorem 1.2; see also [17].

THEOREM 3.1. Letp,q > 1,1/r = 1/p+1/q—a,a =al+a}.0< 6 <1,
0 gai/ < 1/p and 0 <ag <1/q fory =1,...,N. Assume that

(3.2) /Ba(f,g)(X)dx =0
G

for all f, g € L*(G) with compact supports. Then, for a + < 1 and
1/(1+0) < r <1, By can be extended to a bounded linear operator from
IP(G) x L1(G) into H'(G).

THEOREM32. LetO<p <1, g >1,1/r=1/p+1/q—a,a =al +a},

1/2<r <1and0 < ag < 1/q fory =1,...,N. Assume that B, (f,g)
satisfies (3.2). Then By can be extended to a bounded linear operator from
HP(G) x L1(G) into H'(G), if0 <a < 1/q or1/2 <p < 1.

Our next theorem is more interesting.

THEOREM 3.3. Let0 < p, g < 1, 1/r = 1/p+1/q —a,a =a] +a}
and 0 < a < 1. Assume that B, (f,g) satisfies (3.2). Then, for1/2 <r <1,

By, can be extended to a bounded linear operator from HP (G) x H1(G) into
H"(G).

PROOF. We consider the case a)l/, a’z/ > 0 only. The other cases are

similar. Let f € HP(G) and g € H1(G). By the results in [18], we can write
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f=> Arar and g = > uyby, where Ay, uy > 0, ar’s are (p, oc)-atoms and
1 J

bj’s are (g, oc)-atoms. Define

Sa(ar,by)(x) = sup / An(x = y)Ba(ar,by)(y)dy| .

neZ
G
Then
M(Bu(f,8))x) <> AjuySalar,by)x) =
IJ
= D> DY s Y e Y =
I.J I.J I.J I.J
I*5x,J%5x I*5x,J%%x I*Fx,J*5x I*3x,J* 3x

EA1+A2+A3+A4,

where I*, J* have the same meanings as in Section 2.

We first estimate Aj(x). Let l/ri/ =1/p — ai’ and l/r%/ =1/q — ag.
Since 0 < o < 1 implies 1/(1 — 0‘)2/) < 1/0571/, we can choose /, satisfying
1/(1—a)) <1, < 1/al Let 1/L+1/l, =1,1/r] =1/p = —a} = 1/l;—1/p}
and 1/r;’ —1/q = —ag =1/l, - 1/q71/. It is easy to see thatpull, qi’ > 1 and
Ly > r%/, Ly > r%/ . From Holder’s inequality, we deduce

N
Se(ar. b)) < e sup 3 [ 0 = DLgaro b0y | <
ne

r=l|G
/
N , l/l),
<c sup Z /An(x —y)|[aya1(y)|lydy X
nEZy:l 1
G
1/ly

X /An(x —y)|Iagb](y)|lde <

G

N
< ¢ STIHLAL yar )61 5 HLAL by 7)oV
- 1 2
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Therefore, by Holder’s inequality and Minkowski’s inequality, we have

/[A1<x>] dx <c2/ > AL a0

y=1 1,J
G I*NJ*>x

X [HL(|Ia§bJ|’V>(x>]1/’V dx <

I:I*>x

N
<Y [$S mtHLiLga e |
G

r

> wglHL(Lyby | G0/ b dx <
J.J*¥>x

X

4

N
<e), / > MIHL(IL, VaII’U(x)]]/’V dx|
y=1 G I:I*>x

rg ] r/r%/
% / > wIHLL, VaI|l")(X)] /4 <
G \JJ*ox ]
N p/r{ r/p
<) ZIMI” /[HL(|IVaI|ly)(X)]1/lydx «
y=1 FA
r/q

q/ry

> lusl / [HL(|Ia§b]|ly)(x)]rg/lydx
J *

By Lemma 2.1, we have

i rV/l/
(3.3) /[HL(|IayaI|?’)(x)] 177dx <
1
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A

Yol /
< C|I*|1—r1 /ly /|aya[(X)|lde <
1
G

— v
<) ag, <

[ b

’1(6)

where c is independent of /. Similarly, we have

I ry/l
/[HL(|Iayb]|V)(x)] 2/ gy < e
2
J*

Thus,

r/p r/q
/[Al(xn’dx <c {ZIMI’”} {Z |m|q} :
J

G 1

Therefore,

J1aieoras < el g s
G
For Ay(x), let J =y j+ Gp,. Then we have

Sa(ar,bp)(x) < sup /Ax(x —y)Ba(ar, by)(y)dy |+
ny y+Gn 3x G

+ sup /An(x = y)By(ar,by)(y)dy| = Dy(x) + Da(x).
n:yy+Gnox p

We consider D (x) first. We have

Div) < sup / An(x — y)Balag,by)(y)dy| +
nyy+Gn3x |/
J

v sup / Anx = y)Balag, by)(y)dy| = Dy1(x) + Da(x).
n:y y+Gn3x
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Similar to the proof of Ezll(x), we can show that Dj(x) = 0. For Dyy(x),
we first note that fory € G\ J,

by(x)
(3.4) Iayb](y):c/%dz =
? y -z 7%
1 1
= ¢ _ by(2)dz =

/LY_ZP_W y—ul =5

J
since |y —z| = max(|y — x|, |xy —z|) = |y — x7|. Thus, Dj»(x) = 0. Therefore
Dy(x)=0

For Dy(x), we let s > 0 and use (3.2) to obtain

Dr(x)=  sup / An(x —y)Bg(ar, by)(y)dy| <

n:yy+Gnox G
<c  sup / A0 = 3) = Balx = 2] ILyarO)] 1gbsldy <
n X_,+G713X

N
<c) sup / RVEETNI A Val(y)| I8 VbJ(y)|dy <
y=1 n:xy+Gnox G

N N
SCZ sup /"""CZ sup /...EDzl(x)+D22(x).

_1 nixy+Gndx _1 nixy+Gndx
r=l yEx+Gy, r=l yEx+Gy,

For D21(x) we note that y ¢ x + Gy, and x € xj + Gy, imply |y — xj| =
= | further implies that y ¢ J. Consequently we deduce

from (3. 4) that Dy (x) =
Now, we estimate D22(x). We further decompose D,5(x) into

N
Doy<eYs s [ mly g PiLyaro)l Lybso)ldy+

y=1" xj+Gnox
]ﬂ(x+ 2)

N
+e) s [ b bl b mldy =

—1 nixy+Gnox N

7=l ! (G\DNx+G,_5)

= D3,(x) + D3,(x).
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Similar to the estimate for Dj,(x), we can easily show that D222(x) =0
So, we only need to estimate Déz(x). Since y € J and x ¢ J*, we have
mp < c/ly —x|=c/max(ly —xjl,[x —xs))=c/x —x;].

From this and Lemma 2.1, we obtain

1/,
!
DZZ(X)<CZ|X l/ly 2 Sgpmn / |Ia71/a1(y)|l7/dy X
y=1 x+Gy_o
1/
— xS L vb v q <
Iy x7|7% Loy y by dy <
1/t
< cZ|f| x — xy| "1/l [HL(II yally)(x)] ||Ia§bf||L’V(G) =
y 1/
<SPk Ve Wil [Huualyamm] <

y=1

N /b —1/r! ! 7k
< SO 12 [HL(IIaTaII’U(x)]

r=1

Note that 1/r71/ + l/r%/ =1/r and

N Y Y
Z |J|(s+1/ly—l/r2 |x _x]|—(S+1/ly)F2 d.x S c,
yzlxgé]*

if s > 1/r] — 1/ Therefore,

1Dy, \12r 6y < cllf laroyllgllma (-
So far, we have obtained a desirable estimate for A,(x).

The estimate for A3 is similar to that for Ay. If s > 1/ rg — 1/l,, we can
obtain the desired conclusion for A3 just as we did for A,.

Finally, we estimate A4. Denote
neZ:xp+Gy Fx, cyj+ Gy Fx},
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nelZ: xi+G, #x, cy+ G, 3x},

neZ:xp+Gy,>x, cy+Gy Fx},

{neZ:xp+Gy,>x, cy+Gy >x},
respectively, by A, Ay, Az, and A4. Then we have

sup / Ap(x —y)By(ar, by)(y)dy| <
nez G

<sup|...|+sup|...|+sup|...|+sup]...| =
A Ay Ay Ay
= Hl(x)+H2(x)+H3(x)+H4(x).
We first estimate H;(x). By (3.4), we have

H(x) < sup / An(x—y>2cy rar)Lyby6)dy|.
A
U ling r=l
Note that H(x)#0 only when x —y € Gy. Thus, m;, < 1/|x —y| =1/|x —xj]|

and similarly m, < 1/|x —xy| sincey € TNJ and x ¢ I* N J*. When
, noting that A, (x — xy) = 0 and by Lemma 2.1, we have

Hi(2) < s / s — )~ Al ) Sy, a1 ybs 0y | <
y=1

N
< cZS/lllp / my ™y _xJ|s+l|Ia?1’aI(Y))| Ly bsldy <

1/1+s7+1 1/1 1
<czsup / 2o+ par )| my fyort Ly brldy <

7=l 1701
1/
N
—1/ly—s1—1 I (x+1) L

<) —xy T Fakass |Ia;1/a1(y)|?’dy x

y=1 7

1/ly
!
% |x _ x]|—]/ly—52—1 /|]|ly(S2+1)|Iayb](y)|lydy S
2

J
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N
/ Ve !/
S CZ |I|1/ly—1/r1 +Sl+1|x _xI|—1/ly—S1—1X
=1
Y
% |J|1/ly—]/r2+52+1|x _x]|—]/ly—52—1’

where /, and l; are as before and s =51 +s, + 1, 51 > 1/r71/ - 1/l7ﬁ — 1, and

sp > 1/ r%’ — 1/, — 1. From this, we easily obtain a desirable estimate for
H] (x)

If |J| > |I|, using Ap(x —xy) instead of A, (x —xy) in the above estimate,
we can obtain the same estimate for Hj(x); and therefore, we have finished
the estimate for Hj(x).

Now, we estimate Hy(x). First we suppose that |J| < |I|. By (3.2) and
(3.4), we obtain

N
Hio) < e D / (Bnlx =) = Al =X yar )by | <
Y= 1

< Czsup / mit*ly =" Ly ar 0Ly brldy <
A

<c ZSUP / my S|y — xy 5! |y arO)Lyby(y)ldy <

A
r=l Sy
!
e Y1~ S [ lpaoolfay | x
y=l1 G
1/l
<Pt -y et | [igbolay | <

N
/ /
<ec Z |I|1/ly—l/r1y+sl+l|x _ xl|—1/ly—sl—l «
r=1

y |J|l/ly—l/r72/+sz+l x _x]|_1/1y—s2—1’

which is the desired estimate.
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When |I| < |J|, the same estimates follow by symmetry. This finish the
estimate for Hy(x).

Since the estimate for Hp(x) and Hz(x) are similar, we only estimate
H,(x). By (3.2) and (3.4), we have

Hy(x)<c)y, sup / (An(x —y) = Aplx — XJ))IalyaI(y)Iang(y)dy <
=172 |G

N
2 1
X [l = xib g aro)gbsolay <

<c Z Sup / 2+s _ XJ|S+1|Ia7fa1(y)la)2,b](y)|dy'

= 2~
r=l 72107

We claim that if |J| < |I], then every I appearing in the last term satisfies
my ! > |I|; otherwise we would have

b =g = max(fe —xpl, ey —xp) = e x| 2mp Ly <m = (1] > my !

>
which contradicts the fact x € xy + G,. Thus, letting x; € I N J, we have
e —xp| < max(jx —x;|, |y —xp]) < max(x —xg], [y —x;|, |x; —x7]) < Bm,'!

If |I| < |J|, then x € x; + G, and x ¢ J* imply that |J| < m;; '/8. Thus,
v — x7| < max(lx — xg1, [y — x7)) < Bmy !

Therefore, in both cases, we have

!
Hz(x)<c2/{|y xS e — x| ™ l/ly—s1—1|Ia;1»aI(y)|}><

Iﬂf
% {|y _xJ|S2+1|x —xj|—1/ly—sz—1|Ia)2»b](y)|}dy <

1/,

IA

N
! !
<okl [y =t an)?

r=l InJ
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1/l

—1/ly—sr—1 1 ]

= [y by | <

ny
al 1L —1/r +5,+1 —1/L)—sp—1
< SIS sl

r=1
—1/+7 _ sy —

X|]|1/ly 1/r2+52+]|x_xj| l/ly ) 1’

which is what we want.
This finishes the proof of Theorem 3.3. |

4. Some applications

The following factorization of Hardy spaces is motivated by [6, 14]; see
also [3].

THEOREM 4.1. Let 0 < p, g < 1 and let 1/2 < r < 1 be such that
1/r=1/p+1/q —a for some 0 < a < 1. Then forf € H"(G), there exist
sequences {g;} € HP(G) and {h;} € HY(G) such that

o0
= (hilugi — gilahy)

i=1

and

(o.@) oo
1 llar ) = inf{z lgill e clihillgacay - f =Y (hilagi — giIahi)}
i=1 i=1

PROOF. It suffices to prove the result for f being an r-atom whose support
is contained in xo+ Gy for some xg € G and k € Z. Then [|f || foo(G) < cm,i/r.
Given N € N, choose yy and y; in G such that |yy — xo| > Nmk_1 and
ly1 — xo| > Nmk__ll. Define the function 2 on G by h(x) = Nl_a(XyOJer -
— Xy +Gy)- Then we have

()| = ca / LI N
2 lxg —z|1—@
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_ 1 1 _
=caN1 « / ﬁdz— / ﬁdz > cmy “,
lxo — z lxo — z|

’0+Gk y1+Gk

where ¢ is a constant depending only on «. Define the function g on G by
g(x) = —f(x)/Ih(xp). Routine calculations show that
- —1

1]l a6y < eN'"%my /e

and
1/r+a—1

lglmp (g < em!" 7.

Consequently we have

1—
12l a6 gl P (G) < eNTT%.
Following the argument given in ([14], p.443) we have

If —(hlzg — glah)||gr(G) <
<. (Hf(fah(xo) = IamH

I h(xp)

eN=2Ur o if12<r <1,

+ ||h1ag||H"(G)> <
H"(G)

<
cN~llogN, ifr=1.
The result now follows by noting that both N ~2+1/r and N~ log N tend to

zero as N tends to infinity. Using the atomic decomposition of H"(G), the
factorization is complete. The norm equivalence follows from Theorem 3.3. i

Theorem 1.1 can be used to reobtain the following boundedness result of
commutators on Vilenkin groups; see [6] and [21].

COROLLARY 4.1. Let b € BMO(G) and T be a Calderon-Zygmund
operator as in Section 1. Then the operator
(b, TI(f) = bT(f) — T(bf)
is bounded on I[P(G) for any p € (1,00), and

1D, TION r (o) < cllfllpa) bl BMOG)>
where c is independent of b and f .

PROOF. Let 1/g + 1/q = 1. Obviously, for any f € [P(G) and g €
€ L1(G), g(Tf) — f(T*g) satisfies (1.3). By Theroem 1.1, we know that
g(Tf) — f(T*g) € H{(G). Moreover,

18CTH) = f(T* D g1 () < cllf e ligllLaca)-
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Using the duality between H 1(G) and BM O(G) on the Vilenkin group (see
[2]), we obtain

/b(x)[g(x)(Tf)(x) = fO(T g)x)]dx| <
G

clibliBarooifllee)llg e G-

/ [b, TI()(x)g (r)dx
G

N

IN

From this, it follows that
16, TIOlzr () < cllf IDLP (Dbl Bmoc6)-
This finishes the proof of Corollary 4.1. |

A consequence of Theorem 4.1 and Theorem 3.1 is the following char-
acterization of BM O(G); see [14, 2, 1]. We leave the details of its proof to
the readers.

COROLLARY 4.2. Leta € (0,1)and let1/q = 1/p—a, where1<p<1/a.
Then b € BM O(G) if and only if the commutator |b, I;] is bounded from
LP(G) into L1(G). Moreover, we have ||[b, Io1l| 1p(G)—L1(G) = Pl BMO(G)-
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UNIFORM CONVERGENT DISCRETE PROCESSES ON THE
ROOTS OF FOUR KINDS OF CHEBYSHEV POLYNOMIALS
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1. Introduction

On an interval I C R one of the most natural discrete approximating
tools is the Lagrange interpolation. However, as it was proved by G. Faber
in 1914, there is no point system for which the corresponding sequence of
Lagrange interpolatory polynomials would converge uniformly for all contin-
uous functions. Then, it is natural to ask how to construct such processes
which are uniformly convergent in suitable spaces of continuous functions.

One possibility of achieving this aim is to loosen the strict condition on
degree of the interpolating polynomials, thus introducing free parameters to
be suitable determined for the uniform convergence (see [14, Ch. IL], [3],
[24], [19]). The success of a construction like this strongly depends on the
matrix of nodes.

Another possibility to obtain uniformly convergent discrete processes is
to replace the Lagrange interpolatory polynomials with suitable summations
(see [1], [71, [5], [22], [21], [16], [17D).

In this paper we shall construct a wide class of discrete processes using
summation and we shall investigate the uniform convergence of sequences of
such operators in a suitable Banach space of continuous functions. Several
interpolatory properties will also be investigated.

Many authors studied also the summability of different Fourier series
(see e.g. [2], [4], [13], [9], [10], [11], [20], [26]-[29], [30] and the references
therein.)

Research supported by the Hungarian National Scientific Research Foundation (OTKA)
under Grant Ns. T032719, T32872 and T37299.
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2. A general construction of discrete processes

Let I C R be a bounded or unbounded interval and fix the natural
numbers m and N. Consider a point system
XN ={XNN <XN_IN < <X N}

a discrete measure (or nonnegative weights)

UN = {UNNBUN—1N>--BINT @i N = 1N {5 N D)
and a basis in P, (the linear space of algebraic polynomials with real coeffi-
cients of degree not greater than m):

Pm = {POaPl,---,Pm} .

We investigate summation processes generated by a function © as defined
below. Let us denote by @ the set of summation functions © : [0,+0c) — R
satisfying the following requirements:

(1) supp© C [0, 1],

(i) lim O(t)=0(0):=1and lim O()=06(1):=0
1—0+ t—1—

(iii) the limits

Oy 0):= 1 Ot
(0=0:=, 1,00

exist and finite in every fty € (0, +00),

(iv) for all £ € R the function value ©(¢) lies in the closed interval determined
by O(t — 0) and O(¢ + 0).

The condition (iii) ensures that every ® € @ is Riemann integrable on
[0, 1] (see [16, p. 161]). Therefore © is continuous except at most countable
points of [0, 1].

If f : I — R is an arbitrary function then let

2.1
m
[
(S NI = S N XN Ny Py x) = O (;) aNIPi(x) (x €,
=0
where
N

22 N = N XN N P) =Y f Ok NIPL R NN -
k=1
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Using two arbitrary index sequences (m,,n € N := {1,2,...}) and (N,,n €
€ N) we have a sequence of polynomials

2.3) (Snf;’n,Nn fine N)

forall f: I — R

The following problem will be investigated: Choose the parameters
XNy, 1N, s Py, such that the sequence (2.3) tend uniformly to f in a suit-
able subspace of continuous functions for a fairly wide class of summation
functions O.

That special case when X is the roots of Jacobi polynomial pﬁ’ﬁ ), Un

is the corresponding Cotes numbers and the basis is the Jacobi basis were
investigated in [18].

In this paper we assume that I = [—1, 1] and we shall choose the above
parameters in other ways. Namely we shall construct point systems X using
the roots of the four kinds of Chebyshev polynomials supplemented with some
endpoints of [—1, 1]. The convergence will be considered in the Banach space
(C[-1,11,] - |lso), where C[—1,1] denotes the linear space of continuous
functions defined on [—1, 1] and

[flloo := max [fx)]  (f € Cl=1,1]).

x€[—1,1]

3. Processes on the roots of four kinds of Chebyshev polynomials

Fix N € N and consider a point system Xy C [—1, 1]. The index of the
point x € Xy is 1 if x € (=1,1) and is 1/2 if x € {—1,1}. The index of the
point system X is the sum of the indices of its points. It will be denoted by
Ix,, = IN. Itis clear that Iy = N,N — 1/2 or N — 1 for any Xy.

Let us define the measure u by

—, ifxy nye{-1,1}
2IN ’
G N =4 (k=1,2,...,N, N € N,

) lkaNE(_171>
IN ’

We will choose the basis in the following way
Py = {To,V2T1,V2Ds,...,V2T} C Py,

where Tj(x) := cos(l arccosx) (I € Ny :={0,1,2,...}) are the Chebyshev
polynomials of the first kind.
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For every m, N € N the point system X uniquely determines the
parameters (Xn, 4N, Py ) of the sequence (2.3). Therefore in the sequel if we
speak about an Xp-system then we think for the above defined parameters

(XN>UNs> Pn).
We shall consider the following four Xp-systems.

CASE 1. The system T :
Ty = = k=12,...,N
N {xk,N Cos 2N T ‘ > & H }7

Iy=Ity=N.uyyn=x k=1.2....N).

REMARK. T are the roots of T (the Chebyshev polynomial of the first
kind).

+ .
CASE 2. The system Uy,

Uﬁ = {xk,N ‘= COS N_— ln k = 1,2,...,N},
IN:IU%]:N—I, 1
m, ifk=1or N
Yk, N = |
N_1 ifk=2,...,N — 1.

REMARK. U]ﬂ\:, are the roots of Upn_, (the Chebyshev polynomial of the
second kind) supplemented with the endpoints —1 and 1.

CASE 3. The system V y;:

_ 2k — 1
Vy = {xk,N e |k=1,2,...,N},

In=I,_=N—-1/2,
N VN /

1

N T’ ifk=N

Uk,N =

sv g k=1 N -1

REMARK. V; are the roots of Vy_; (the Chebyshev polynomial of the
third kind) supplemented with —1.
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CASE 4. The system W :

2k — 1)
WA = k=12,...,N
N {ka cos2N_1 7 | },
Iy =yt =N —1/2, 1
N k=1
Uk,N = )
% ifk=2,...,N
2N —1

REMARK. W7, are the roots of Wyy_ (the Chebyshev polynomial of the
fourth kind) supplemented with 1.

The main goal of this paper is to give a sufficient condition with respect
to the summation function ©® which guarantees the uniform convergence of
(2.3) for the above four point systems (see Theorem 6.2). Moreover we shall
investigate the interpolatory properties of (2.3) (see Theorems 5.1 and 5.4).

In the trigonometric case (when the fundamental point system is the
equidistant one) similar results were proved in [16] and [17].

REMARK. In [8], J. C. Mason investigated some common (minimality)
properties of four kinds of Chebyshev polynomials.

4. Orthogonality relationships

Let us fix a natural number N € N and consider an Xp-system (see
Section 3). It is clear that the function

.1 (> 8) xnun) = F>8)N Zf(xk N8 Xk Nk N
k=1

(f,g € C[-1,1])

satisfies all properties of the scalar product but

D)y =0 = f&x)=0x €[-11]);
instead we have
o) xvun) =0 = foanN)=0k=1,2,...,N)
NAMN

therefore it will be called semi-scalar product. Obviously

(4.2) W llxy wn) = FIN = V)N (Zf (oK, N Mk N)

k=1

1/2

is a semi-norm on C[—1, 1].
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Next we shall show that the Chebyshev polynomials of the first kind

enjoy certain othogonality properties with respect to the semi scalar product
(4.1) (cf. [12, pp. 53 and 54]).

LEMMA 4.1. If X = Tn then

AL+ AT 3L))

(Ti, TN = (T, T )ty ) = 3 (i,j € No),
where
1, if(i+j)/(2N) is even
A*(i,j):=4 =1, if(i+j)/(2N) is odd
0, otherwise
and
1, if(i —j)/(2N) is even
AT(i,j) =4 —1, if(i —j)/2N) is odd
0, otherwise.
PROOF. From the identity
cosa +cos3a +---+cos2N — Da = s;nsfrll\;a (a eR N€eN)
we have
1 lx _ sinlx 0,  ifl#2pN
N 2082k — D7 = ONsin L {(-1)17 ifl=2pN
k=1 2N ’ P

(here p denotes an integer). Therefore the statement follows from the fact that
for every i,j € Ny the possible values of the scalar product

N
1
T; G N T; (e N MK N = N Z T; (e, N T (g N) =

N
2.
k=1 k=1
N
>

{cos(2k _ 1)% + cos(2k — 1)%}
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LEMMA 4.2. If Xy = U%; then
_ATEDHAT))

(Ti’ T}>N=<Tl’ T}>(U]%]’/'¢N)_ 2 (l’J ENO),
where
1, if(i+j)/(2N — 2) is integer
T L L
0, otherwise
and
o 1, if(i —j)/(2N — 2) is integer
AN (t,J):={ .
0, otherwise.
PROOF. It is easy to show that
N
ZMk,N cos(k — Da =
k=1
N-—1 .
1 1 1 sin(N — Da a
= N_1 {5 + kz_; cos(tk — Da + Ecos(N— l)a} = 72(]\]_ D ctga

for all @ € R and N € N. From it follows that

I {1, if 1 =2p(N — 1)

N
> i, cosk — 1)
k=1

N -1 10, otherwise

for all I € Ny. In this case the corresponding scalar product is

N
(Ti, T)n =Y T N) T (o Nt N =
k=1
N . .
_ (i +))m (i —j)m
_;ﬂk,N {cos(k 1) N1 +costk — 1) No1 [

Thus the possible values of (T;, Tj) N are 0, 1, % from which the statement
follows. i

LEMMA 4.3. If Xy =V then

_ AT+ ATGL))
NHN) 2

<Tla ]}>N=<Tla ]}>(V (i,j € Np),
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where
1, if(i+j)/2N —1)iseven
A*(i,j) =4 =1, if(i+j)/2N —1) is odd
0, otherwise
and
1, if(i—j)/2N —1)iseven
AT(,j):=q —1, if(i —j)/2N — 1) is odd

0, otherwise.

PROOF. A simple calculation shows that from the identity

in2(N — 1
cosa +cos3a +---+cos(2N — 3)a = Sm(,—)a (ad R, N€eN)
2sina
it follows that
N
;Mk N cos(2k — 1)2N —=
Z cos(2k — 1) — cos(2N 1) [ =
2N -1 2N —1 [
{(—l)p, ifl=C2N—1)p
- 0, otherwise
for all I € Ny. Thus for i,j € Ny the possible values of
N
(Ti, TN =Y Ti 0o, N) T (e MM N =
k=1
N
1 (i +j)m (i —jm
=_ 2k — 1 2
2;;1;( {cos( k ) 1+cos( k — )2N—1

are 0, 1, —1, %, —% from which the statement follows.
LEMMA 4.4. If X = W}, then

AY(i,j) + A7 (3L)) ..
<Ti7 ]}>N=<T T>(W ,,MN) 2 (i,J € Np),
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where

A¥GiL)) = { 1, if(i+j)/(2N — 1) is integer
0, otherwise.

and

1, if(i+j)/(2N — 1) is integer

0, otherwise.

N¥(i,)) = {

PROOF. Now we can use the identity

N . a
1 sin2N — )5
§+E COS(k—l)a=w (aE]R,NGN)
k=2
to show for all [ € N
21
E i N cos(k — DN d — =

k=1

N .
2 1 21 1, ifI=2N -1
= —+ Zcos(k -1 7 = { (. »
2N -1 ]2 P 2N -1 0, otherwise.

Therefore for i,j € Ny the values of

N
(Ti T)n = Ti (o, ) T o Nk N =
k=1
| Y 2i +j)m 2i —j)
=3 kZ {cos(k — 1)711 cos(k — 1)2]\,7_]1}
are 0, 1, % from which the statement follows. ]

From Lemmas 4.1-4.4 immediately follows that the polynomials Ty, T,
., Try_; are orthogonal with respect to the semi-scalar product (4.1), that
means, we have

THEOREM 4.5. Let N > 2 be an integer and
XNy =Ty, U » Vy orWN
Then fori,j =0,1,2,...,N — 1 we have
0, ifi#j

(4.3) (Ti T ) xy ) = { ifi=j,

1T 150
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where
ifi=0
, Ifi=1,2,...,N—1

-

Nl— =

for Xy =Ty, Vi or Wi, and

5 1, ifi=0o0ri=N-1
4.5 T; =
(4.5) | ’”(Uﬁw) L ifi=1,2,...,N-2.
The polynomials Ty, T, ..., Tory—1 also possess certain orthogonality

relations. Namely, we have

THEOREM 4.6. Let N > 2 be an integer and
Xn =Ty, Ux, Vy or Wk
Then for
i,j =0,1,2,...,2I =1, i#j and i+j#2ly
we have
0.

(T;, 7}>(XN,HN) =

PROOF. The statement is a direct consequence of Theorem 4.5 and the
following “symmetry properties”:

For every j,l € Z we have

4.6)  T:(x)= (=1 T n(x) (x € TN),
@D T = T (x € Uy,
48 T =EDTyon-nk) (€ V),
49 T = Tuen-1)® (x € WR),
where T_; :=T; if j € N.

2k—1

If x N = cos S =: costh v € Ty then

2k — 1

T; 121 N (X, N) = cos(j + 2LN) T =
= cos(jd v + (2k — D) = (= 1) T (xe n)

which proves (4.6).
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If x, v = cos %n =:costh N € Uji\, then
. k—1
T o1 (N—1)(Xk,N) = cos(j + 21(N — 1))N — 7 =

= cos(jiy N +20(k — D)m) = Tj (xx N)
which proves (4.7).
If x; N = cos 22]@—__1175 € Vj then
2k — 1
2N -1

7T +1(2k — 1)7[] = (=1)! cosj k=1 _ (=D T (g ).

TivieN-1)(xk,N) =cos(j +1(2ZN — 1)) =

2N -1

2
= cos [j N — 1

which proves (4.8).

If x; N = cos 22%—_11) € Wy, then

. 2(k — 1)
TivieN-1)(xk,N) =cos( +1(2ZN — 1)) SN 17
3 20k —1) 3 2k —1)
= cos |:j 2N_17r+2(k l)lrr] = COSj 2N_1”—7}(xk,N)-
which proves (4.9). |

5. Interpolatory properties

Fix a natural number N, consider an Xp-system (see Section 3) and a
summation function ® € ® (see Section 2). The polynomials 52@[N, NS (see

(2.1)) have degree < 2In (cf. (ii)). It is clear that among them there are
some which interpolate the function f at the points of Xp. Next we give a
necessary and sufficient condition for the summation function © satisfying
this requirement.

First we write the polynomials 52@[N, aJ in another form. From (2.1) we
have

l
(SgN,Nf) (x) = Z@ (m> c Npi(x) =
1=0
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20y

N
l
= ;f(xk,N) gg (m) pl(xk,N)pl(X) Mk,N'

For k =1,2,..., N let us introduce the notation:

21Ny
NG = N (XN, N, x) =) O (m) PO NP1 OO, N-
=0

Then
N

(5. (SNt ) )= Dk N2 N ).
k=1

Using a simple argument one can prove that the polynomials SZ%N NS (of
degree < 21Iy) interpolates the function f : [—1,1] — R at the points of Xp
if and only if

(5.2) ENGGN) =0k ok =1,2,...,N).

Moreover, we state

THEOREM 5.1. Let N > 2 be an integer, Xy be one of the point systems
Ty, U]ﬂ\:,, V]_\,, W}“\,, and let ® € ® be is a summation function. Then 52®IN Nf
interpolates the functionf : [—1,1] — R at the points of Xy if and only if
(5.3) C J +0 1—L =1 G=0,1,2,...,2IN)

2IN 2IN b 2 b 3

and ©(1/2) is arbitrary if X = Tn.

PROOF. It is enough to show that
5.4) 5.2) = (5.3).

First we write the fundamental polynomials of the Lagrange interpolation
with respect to the point system X} in the basis { 7; }. They will be denoted
by

fk,N(x) = fk,N(XN,x) (k=1,2,...,N).

These are the uniquely determined polynomials in P 5 _» for which

(5.5) (k,N(xj,N>:6k,j (j,k=1,2,...,N).
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Obviously there are uniquely determined real numbers a; ({ =0,1,...,N—1)
for which
N-1
GNO =Y aTi(x)  (x€[-11]).
=0
Fixi=0,1,...,N — 1. Using (5.5) and (4.1) we have
N

(s T i) = D e NG N T G NN = T G N i N -
1=1

On the other hand by (4.3) we obtain that

N-1
2
(N Ty = 2 @{T Ty ) = ail| Ti [ (xy gun)-
=0
Since py = Tp,p; = V2T (I € N) thus by (4.4) and (4.5) we get
N-1
Ty (xpe, N) Tp (x)
GNO) =Y ey N =
1=0 “TZH(X )
(5.6) = NAMN

-1

= 1O NP N — ENMI,N TN -1 e, N) T —1 (),
[=l

where

0, if XN=TN, V, or WH
(5.7) N = { NN

1, if Xy =U3.
Introduce ¢; = © (ﬁ) and consider the following transformation of

(k@N:

»

20y N—1
NG =D ap Ca NP N = Y PrGa NP MR N+
l=0 l:O
N—1
+ Z (a; — 1+ appy—Dpi Ok NIPL Ot N+
1=0
21y N—1

+ Zalpl(xk,N)Pl(x) - Z a2 1y —1P1 Xk NPI(X) p Uk N =
I=N 1=0
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N-1
= OGN+ Y (g — 1+ ag,—)pr (o NIPE O N+
1=0
20y
+ Z ap [Pl (X, NIP1(X) = Py —1 5k NIP2IN —1(X) | Uk N+
I=N

+eN(1 = 2an_1)TN—1 O, N TN—1 (0)pg, N =
= O N(X) + A N(X) + B N(xX) + G N(X).
From (4.6)—(4.9) it follows that
P NP N = Pary—1 5k, NIP21y —1 (X5, N)
(1 =0,1,....2IN, x¢ NoXj N € Xy = Tn, UY;, Viy or WR)
and thus
By Nn(xjN)=0  (k,j=12,...,N).

This means that
GonNGGN) =0k + ANy N+ GG N Gok=1,2,..,N),
ie. ¢2n0G.N) =0j for k,j=1,2,...,N if and only if

AN N+ G NG N) =0 (,k=1,2,...,N).

Therefore the polynomial Ay v + G n of degree at most (N — 1) has N
distinct roots. Consequently it is the zero polynomial. Since

P N)#0  (1=0,1,...,N -1, xy N € XN)

thus a; +appy—1 =1 (I =0,1,...,N — 1) which proves the statement. |

Our next aim to obtain Hermite—Fejér type interpolation polynomials by a
suitable summation function (see Theorem 5.4). We shall need the following
two lemmas.

LEMMA 5.2. Let N > 2 be an integer and
Xy =Ty, Ux, Vy or Wi,
Then forl =1,2,...,N — 1 we have

QIN — Dpi(x)p;(y) = —lpsz—l(x)P'yN_l(y)

(5.8)
(x € XN, y € XnN(=1,1)).
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PROOF. From (4.6)—(4.9) we obtain that
—P21y-1x), ifx € Ty orVy
(5.9) pix) = L
pary—1(x),  if x € Uy or Wi
Now we prove that
I Pé[N_l(Y)y ify € Ty or V]_\I\{_l}
2N = U | =phy ), ity € Uy \ {£1} or W\ {1}.
Obviously (5.9) and (5.10) = (5.8).
To verify (5.10) let y := cosﬁj,N € Xy N(—=1,1). Then
P/21N_1()’) = \/iTﬁlN_,(y) = \/icos’[(ZIN — ) arccosy] =
Sin(le - l)ﬁj,N
sinﬁj,N

(5.10) p;(y) =

=V2QIy — 1)

(We remark that sinﬁj,thO because f)j,N € (0,m).)
A simple calculation shows that

sinld; n, ify € Ty or Vi \ {—1}

sinIy — D) N = , . + +
_Slnl’ﬂj,N’ lfy EUN\{:EI} or WN\{I}

Therefore
p’ZIN_l(y)z \/js(iig\.,_l) {sin'li)j,N, %fy ET;\] or Vi \ {—1} _
i.N —sinld; , if y € Uy \ {£1} or W\ {1}
C2Iy -1 [PIO),  ify €Ty or Vg \ {-1}
T {—p;<y>, ifx € U5\ {£1} or Wi\ {1}
which proves (5.10). ]

LEMMA 5.3. Let N > 2 be an integer and
Xy =Ty, U3, Vy or Wk
Then for a fixed x; ny € X the polynomial

20y —1

Re(x):= Y bip (e, NP (x)
=1
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satisfies the requirements

(5.11) Ri(x;n) =0 (Vx; N € Xy N(=11))
if and only if
(5.12) Iby = 2IN — Dbapy -1 (¢(=12,...,N—=1).

PROOF. Let Xy = Ty, V5 or W7, and consider the following
transformation of Ry:

N—1 2IN—1
Rex) = bipnpj@) + Y bipi(xe N (x) =
=1 [=N
—1 N—-1

= bipi (e NP + > bagy—1P21y—1 (5, NIPh Iy—1(0)-
I= 1=1

(Here we used that pn(x n) = 0 if xx & € Tn.) By (5.8) we get
N—-1
2In — 1
Re(xjn) =Y (bl - bsz—1>Pl (X, NP7 (%, N)
=1
for all x; y € XN N (—1,1). Therefore from (5.11) we obtain that the
polynomial

= 2y — 1
N —
Aex) =) (bz S bsz—1>P1(Xk,N)Pf(X)
[=1
of degree at most (N — 2) has at least (N — 1) distinct roots. Consequently
Ar(x)=0 (x € R). Since

i N)#0  (I=1,2,...,N -1, x Ny € XN)

thus

2y — 1
b,—Nl byy—1=0 (1=12...,N—1)

which proves (5.12) in these cases.

The proof is similar if Xy = U]i\,. In this case

Pf\f—l(xj,N)=0 (VXj,N € U]iv\{:lzl})
and thus for x; n € Uit, \ {£1} we have

N-2

2y — 1
Rk(xj,N> = Z (bl - ] bZIN—l> pl(xk,N)p;(xjaN>’
I=1
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i.e. the polynomial
N-2

20 — 1
> (bl - TbHN—l) P NP (X)
=1
of degree < N — 3 has at least (N — 2) distinct roots. So we get (5.12) in this
case, too. [ |

THEOREM 5.4. Let N > 2 be an integer,
XN = TN, U VN OTWN
and

— f0<t<
(5.13) @F(I):z{l t, if0<t<1

0, ift > 1.

Then for every function f : [—1,1] — R the polynomial SZG;; NS 1s the

unique element of P, Iy—1 satisfying the following Hermite—Fejér type inter-
polation conditions

(5.14) (Safi nf) i) =FEn) @iy € X,
/
(5.15) (SEaf) @A) =0 Gy € Xy N (=1,1).

PROOF. By (2.1) we have
20y

)
(Sof nf ) 0 = > or (2 ; ) el N (P (x) =
N 21N I
=Y fa N> © (2[ >Pz(xk NIPI(X) p Uk N-
k=1 1=0

Obviously the summation function O satisfies (5.3) therefore conditions
(5.14) hold.

Moreover

! 2y — 1
l@F(zl >_(21N—l)®F< e > (Il=1,2,...,N—1)

thus by Lemma 5.3 we have
2y

l
> OF (7> P10, NP5, N) =0
1=0 N

for all XjN € XN N (—1,1) which proves (5.15). ]
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6. Convergence

In this Section we shall show that if the Fourier transform of the summa-
tion function © is Lebesgue integrable on R* := [0, +00) then the sequence
(2.3) tends to f uniformly on [—1, 1] for all f € C[—1,1].

Denote by L!(R*) the ususal linear space of measurable functions g : R*
+ — R for which the Lebesgue integral [p+ |g| is finite. The function

+00
lell e = [ lelds (g € L'@)
0

is a norm on L' (R*) and (Ll (R"), || - “Ll(R+)) is a Banach space.

The Fourier transform of g € LI(R*) is defined by

+00

o1 .
g(x):= o /g(t)cos(tx)dt (x € R).

0

In general, the Fourier transform of a function from L!(R*) does not belong

to the space L!(R*). The verification of § € LI(R*) is not always easy, but
the following sufficient condition is known:

THEOREM 6.1 ([10, p. 176]). If g : RY — R is a continuous function
supported in [0,1] and g € LipB (B > 1/2) on [0, 1] then § € L}(R*).

We prove

THEOREM 6.2. Let X be one of the point systems Ty, Ujﬂ\:,, Vy- W}’\,
Suppose that

my, — +00 (n — +o0) and my < 2N, (n € N),
moreover © € ® js a summation function. If © € LY(R*) then the sequence
an,an (n € N) uniformly converges on [—1,1] tof for all f € C[—1,1].

PROOF. We shall use the Banach—Steinhaus Theorem. The polynomials

(6.1) po:=To, pr:=V2T (€N



DISCRETE PROCESSES 53

form a closed system for the space (C[—1,1],| - ||oc), therefore we have to
show that
(6.2) Hsn?n,anj —pJ-HOO 0 (n— +00)

for every fixed j € Ny, moreover the norms of the operators

S nn: (CI=L 1L lso) = Py C (CI=1L,1L ]|+ lloo) »
ysn,]vnf Sn?n ]an (f € C[_l’ 1])’

i.e. the sequence of real numbers

s© f‘ N
Nu
5O = sup ‘mnioo = sup (x)‘ =
H N oxreci—1a) W lloo xe[— 11];
N | mn
= sup Z EG)( >P1(Xk NP1 | Bk Ny,
x€[—1 l]k -1 17=0

is uniformly bounded; i.e. there exists ¢ > 0 independent of n such that

6.3) Haﬂg

mn,Nn

<c (n € N).

To verify (6.2), let us fix j € Ny and assume that n is so large that
min{my,, N, } > j. Then by Theorem 4.6 we have

mn

(Smn,anJ> (x) = Z C) ( > <pj 7pl>anl (x)=

—J
) (Pjs P21y, —j ) NuP21y, —j ()-

n

Jj 1
—o (—) 1971 p; () + © ( N
mp

Using Theorem 4.5 we obtain that

e J
Smn,anj _pj = <® <m_n> B 1>p]+

j 21N, — my
+0 <1 _ m—n + T) (PjaPZINn—j>an2INn_J"

Since © € ® (see Section 2) and m;, < 21y, (n € N) thus
© (’—) S 00)=1 (n— +00)

o

and
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20y, —
@(1—J—+M>—>®(1)=0 (n — 00)

nmy my
therefore (6.2) follows from the above relations.
Next we prove (6.3). Let x =: cos? (@ € [0,7]), xx Ny =: cosPy N

(k = 1,2,...,N). Since py = Ty, p; = V2T; (I = 1,2,...) thus for every
m, N € N we have

l
Z@ ( )p;(xk Np(x) =1 +2Z® (m) Ty (o, N T (%) =

m

= 1+22®( )coslﬁk,Ncoslﬁ =

m m

l 1 l
+ 2 C] <%> cos [(D + 0y N) + 3 +lz_g® <%> cos [(U — Ty ) =

1
2
= Dn(?(ﬁ +ﬁk,N) + m(ﬁ ﬁk N>

Therefore

O
Hym,NH alen[%);] Z ‘ m(ﬁ +ﬂk,N) + m(ﬁ ﬂk N)‘ILLk N =

< max Z‘D (ﬁ+ﬁkN)‘ukN+

max D (AR)) ‘
g% Z‘ ( k,N)| Mk N-

UASI(F 4

Since

aggﬁ]z ‘Dm(ﬁ + 0y N)‘ﬂkN <C (1+2 ﬂ) 1D 1,

where

IDE)) = / DC(0)|dt

(see [16, (26)]) and

2 sup HDmnHl H@“LI(R’f)
neN

(see [16, (27)]) thus condition © € LI (R*) ensures (6.3). ]
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7. Applications

7.1. Lagrange interpolation. On the interval [—1,1] one of the most
natural discrete approximating tools is the Lagrange interpolation.

Throughout this section we assume that the interpolatory point system is
(7.1) Xy =Ty, Uz, Vyor W§  (N€N)

(see Section 3). Denote, as usual,

N
(LNS) () = LN (f, XN>x) = D foan)GN®)  (x €[=1,1], NeN)
k=1

the Lagrange interpolatory polynomial of degree < N — 1 based on the nodes
(7.1), i.e.

e NG =G N XN, X)) (xe[-L1], k=12,....N, Ne N

are the fundamental polynomials of the Lagrange interpolation.
Using (5.6) and (2.2) we have

N
(Lnf) () =) f O N G N (x) =

N N—1 =
(7.2) = fO,N) { > P NIpIx) — %NpN_mxk,N)pN_](x)}uk,N =
! N-1 = N—1
=Y anpi) - STNCN—l,N(f)PN—l(X) = > nNpi ),
1=0 1=0
where
c,N()s ifl=0,1,...,N -2

7.3 =
(7.3) VZ’N(f) {CN—I,N(f){l - STN}7 ifl=N-—1.

The polynomials Lyf (N € N) can be obtained as special cases of (2.1).
Indeed, let

1, iftef0,1/2)

Orm =41, ifr=1
0

, if £ € (1/2,+00).
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Then
2y

C) l
(Szzﬁ,Nf) (x) = g Or (E) ci, NP (x) =

N N-1
= Zf (Xk,N) { z pi(xg NIPH(x) — STNPN—I(xk,N)PN—l(x)}Mk,N,
k=1 1=0

ie.

(N @) = Syl nf) @) (€111, N €.

It is known that (see Faber’s Theorem) that Lyf (N € N) generally does
not tend uniformly in [—1,1] to f for all f € C[—1,1].

Using Theorems 6.1 and 6.2 one can easily construct a lot of discrete
processes which are uniformly convergent in the whole interval [—1,1]. In
the following Parts we shall discuss only some of them. It is important to
note that the corresponding polynomials have very simple explicit forms.

7.2. Arithmetic means of Lagrange interpolation. Let

(7.4) (LinNF) ) = L N XNo) = Y 7 N(PI(6)
=0
xe[-1,1], m=0,1,....,.N—1, NeN)

(see (7.3)) and consider the following arithmetic means of the Lagrange in-
terpolation:
1 N—-1
(75) ONS) @) =N (f, X x) = = D (L nf) ()
m=0

(x €[-1,1], N €N).

THEOREM 7.1. Let X be one of the point systems Ty, U]i\,, Vy W}“\,
(N € N). Then for every f € C[—1,1] the sequence onf (N € N) tends to
f uniformly on the whole interval [—1,1].

PROOF. From (7.3) and (7.4) we have

(LmNf) )= npix)  (m=0,1,...,N -2)
1=0
N-1 .
(Ly—1,nf) () = z c,NFIpi(x) — TNCN—I,N(f)PN—l(x)-
1=0
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Let us define the summation function
1—1¢, ift €[0,1]
OF(t) = .
0, if t € (1,+00).
Then

N-1

l

ONHIX) =) (1 - N) LN EIPI) = SReen 1 N (PPN -1 () =
1=0

( f) (x) — 2NCN ILNOPN-1(x).
Since © F € LY(R*) (see Theorem 6.1) thus from Theorem 6.2 we obtain that
. (]
in_|j -5, -0

for all f € C[—1,1] which proves the statement if Xy = Ty, Vy or W}’\,
(see (5.7)).

If Xy = Uﬁ (i.e. ey =1) then
N

NI NG =D NIPN—1 (i N, N =
k=1

N N
V2 flan)coslk — Daluen = V2 Y (=D o v -
k=1 k=1

From it follows that
len—i NP Zclfllc (N EN),

ie.
im 2 |.=°
aim S EN- LN PN -1
which proves the statement for Xy = U N |

REMARK. Theorem 7.1 is a discrete version of the fundamental Fejér’s
theorem about (C, 1) summability of Fourier series. In the trigonometric case
the analogue result due to J. Marcinkiewicz [7] and to S. N. Bernstein [1]. If
Xy =Ty then Theorem 7.1 follows from the Theorem of [21].

CONJECTURE. If in Theorem 7.1 X}y is the roots of the orthogonal poly-
nomial Uy, Vv or Wy then the uniform convergence is true only on the
compact intervals of (—1, 1).
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COROLLARY 7.2. If Xy = Ty, Uy, Vi or WY, lim _=-+co and my <
n—+4+oo
21N, (n € N) then

. (]
lim HSmf,an —fHoo:O f € Cl-1,1)).

n—+oo

(C) . . . .
REMARK. SmnF No f can also be considered as certain arithmetic mean of

the Lagrange interpolation.

7.3. Griinwald—-Rogosinski type processes. Let us consider the summa-

tion function
costZ, ift €[0,1]
O4(t) = 2
0, if r € (1, +c0).

For its Fourier transform we obtain
A _sin(x —m/2)

e e S +
Ogx) = 22 (n/2)2) x eR")

and thus O € LI(RY).
Theorem 6.2 immediately yields

— + yv— + : —
COROLLARY 7.3. If X = Ty, Uy, Vy or Wi, nE»r-ll:loomn = +o0o and
my < 21N, (n € N) then

lim
n—+oo

Suind —f|| =0 ¢ ecr-1,m.

A simple calculation shows that

e 1 s T
(586, 07) ()= 2 {(fo) (a N 2HN]> + (Znf) (ﬁ -5 IN]) }

where

(£Nf) @) := (LnS) (cos D).
Therefore Corollary 7.3 contains the Griinwald’s theorem about the Rogosin-
ski type average of Lagrange interpolation based on the roots of T (see [5,
Theorem)).

REMARK. In [25] M. S. Webster obtained similar result for the roots of
Chebyshev polynomials of the second kind Up. He proved that the uni-
form convergence is true only in any closed subinterval of (—1,1). Later
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G. L. Natanson (see [15, p. 481]) and P. Vértesi [22] generalized these results
for Jacobi roots and for any inrterval [a,b] C (—1,1). Our Corollary 7.3
states that on the four point system X, the Griinwald—Rogosinski type av-
erage of the corresponding Lagrange interpolation polynomials are uniformly
convergent on the whole interval [—1, 1].

7.4. Hermite—Fejér type interpolation. Let N > 2 be an integer and
XN = TN,U ,V or W7,. Theorem 5.4 states that for every function
f e Cl[-1,1] there exists a uniquely determined polynomial Hp (f, Xpr,x)
of degree < 21y — 1 such that

HN(f, XnsxjN) =f (x5 N) (x5, N € XN)
H(f, XN, xj,N) =0 (xj N € XnN(=1,1).
Moreover
20y

l
Hy (. Xno) = (S nF ) @)= (1 T >Cl NP ),

where ¢; n(f) is given by (2.2). Since

: 2
Op(x) = L (SH;()/C2/2)> (x € R")

belongs to LY(R*) thus from Theorem 6.2 we have

COROLLARY 7.4. If X = TN,U VN or W, then
lim ||HN(f, Xn,) —fllo =0 (f € C[—1,1D).
N—+00

7.5. De la Vellée Poussin—Erdos type interpolation. Fix a number o €
€ (0,1) and let

1, if t € [0,15%]
Ou(1) =4 —2(x — 1), ifr e [15¢, 132
0, if t € (132, +00).

An easy calculation shows that

1 sinz(x/2) — sin®(1 + a)x
2l —a)w (x/2)?

Oy (x) = (x € RM).
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Consequently ©, € L'(R*). Moreover
Out)+0,(1 —1)=1 (r € 10,1).

Thus from Theorem 5.1 and 6.2 we have

COROLLARY 7.5. Fix a number a € (0,1) and let X = TN,U]j\:,,V]_\,
or W},. Then the degree of the polynomial 52617‘\,, N is < In(1+a) and it
interpolates the function f at the points of X . Moreover

lim Hsgfv,Nf_fHofo f € C[—1,1]).

N —+o0

We also have the following Erdds type result:

COROLLARY 7.6. If X = TN,U]j\:,,V]_\, or W, then to every f €
€ C[—1,1] and o > O there exists a sequence of polynomials Qn (N € N)
such that

(i) the degree of Qn is < N(1+a) (N € N),

(ii) QN interpolates f at the points of Xy,

(iii) (Qn, N € N) tends to f uniformly in [—1,1].

In 1943, P. Erd6s [3, Theorem 1] proved the above statement if the
interpolatory point system is such that the fundamental polynomials of La-
grange interpolation are uniformly bounded. For our four point systems Xp
the polynomials Qp have very simple explicit forms. Namely

One) = (S5 ) ) (x€l-1,1] N e,
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DISCRETE CROUZEIX-VELTE DECOMPOSITIONS ON
NON-EQUIDISTANT RECTANGULAR GRIDS

By
GYORGYI STRAUBER

The difference approximation of the Stokes problem on staggered non-
equidistant grids and for finite difference and finite volume schemes is investi-
gated in two dimensions. A full description of the discrete Crouzeix—Velte de-
composition is given in the case of a non-equidistant grid for Shortley—Weller
approximation and in the case of second order difference approximation and
homogeneous Dirichlet boundary conditions.

1. Introduction

The Crouzeix—Velte decomposition, introduced in [3], and, independently
in [14] (see also [4]), can be regarded as an (Hol)” equivalent of the well-
known Helmbholtz decomposition for vector functions in (L,)". This decom-
position contains, besides the subspaces of rotation-free and divergence-free
vector functions, a third orthogonal subspace consisting of biharmonic (HO1 "
functions, which are neither rotation-free nor divergence-free. This decompo-
sition can be used to determine the optimal constant in the so-called inf-sup
condition for the Stokes problem. It is known that the eigenvalues of the Schur
complement operator S = — div(A)~! grad lie in [0, 1], and the eigenvectors
to eigenvalues in (0, 1) span the third Velte subspace. The inf-sup constant
is the square root of the smallest among these latter eigenvalues, that is this
optimal constant can be characterized by the third subspace alone [11].
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For the numerical solution of the Stokes problem and its connection to
the inf-sup problem, see [1], [7], [2]. If using finite difference methods for ap-
proximating the Stokes equations and if the discrete scheme admits a discrete
Crouzeix—Velte decomposition, then the same conclusions as in the continu-
ous case can be drawn. In this case both discrete rotation-free and discrete
divergence-free functions exist and their subspaces are in similar relation as

the corresponding subspaces of (HO1 )™ and there is a third orthogonal subspace
consisting of discrete biharmonic vector functions (or harmonic functions, for
the pressure space, respectively). The optimal constant of the discrete inf-sup
condition can hence be computed on this much smaller third space (see [11]).
The optimal inf-sup constant is useful not only in error estimates for the nu-
merical schemes but in the determination of the optimal iteration parameters
of some numerical methods for solving the corresponding linear systems. In
[13] the Uzawa and Arrow—Hurwitz iterations are investigated and are shown
to reach the third Crouzeix—Velte subspace after at most 2 steps in the sense
that then the error of the iterative solution belongs to that subspace. Using the
fact that in the harmonic Crouzeix—Velte pressure subspace the spectrum of
the Schur complement is closer and can be bounded through estimates of the
inf-sup constant, new optimal iteration parameters for both methods have been
calculated. Also in [13] an improved convergence estimate is derived for the
conjugate gradient method using the estimates of the inf-sup constant. This
method can be also restricted to the third Crouzeix—Velte subspace. Then, the
dimension of the latter subspace is an upper bound on the maximal number of
steps. This dimension is connected to the number of boundary points that is
usually lower (by one power) than the full number of unknowns. For iterative
methods based on space decomposition see also [15].

The aim of the present paper is to investigate the well-known staggered
grid approximation of the Stokes-problem and to prove the existence of the
discrete Crouzeix—Velte decomposition in the case of a non-equidistant grid
for the Shortley—Weller approximation, for a finite volume scheme and in
the case of second order approximation and homogeneous Dirichlet boundary
conditions. The first order staggered grid approximation in a special case was
investigated in [11]. This result has been generalized in [6] to general two-
and three-dimensional domains.

The outline of the paper is as follows. In Section 2, the necessary
notations as well as the Crouzeix—Velte decomposition in the continuous case
are introduced and the discrete Stokes problem and discrete Crouzeix—Velte
decompositions are described. In Section 3, the case of a non-equidistant grid
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is investigated and it is shown that the discrete Crouzeix—Velte decomposi-
tion exists for the Shortley—Weller approximation only if the grid spacing is
changing linearly (Section 3.1). It is also shown that using the finite volume
method on a rectangular grid, the discrete Crouzeix—Velte decomposition
exists without any condition on the grid spacing (Section 3.2). In Section 4,
all details of the discrete Crouzeix—Velte decomposition are given using the
second order finite difference method. Finally, in Section 5 we show some
computational results. Here it becomes visible that — from the point of view
of the convergence rate of Uzawa- and conjugate gradient-like methods for
the iterative solution of the corresponding discrete Stokes problems — it is
worth using non-equidistant grids.

2. The Stokes problem and the Crouzeix—Velte decomposition

Let Q be a bounded, simply-connected open domain in R*, n =2, 3, and
denote by V = (HO1 (Q))" the Sobolev space of vector functions

w(x) = (g (), ... un ()T

defined for x = (xq,...,x,) € Q, with generalized derivatives in (L,(Q))" and
with zero boundary values in the sense of traces on the Lipschitz-continuous
boundary 9€2 of Q.

For a given f € (Lp(€2))" and denoting by L, ((Q) the subspace of
L,(Q) of square integrable functions with zero integral over €2, consider the
following first-kind Stokes problem in variational formulation:

(1) a(u,v)+bv,p)=(f,v)y, forallv eV,
2) b(u,q)=0, forall g € Ly (£2).
where
3) G0 = Yo = [ S ficomitrd,

i=1 o i=l

~ aui avl-

(4) a(u,v) ::/_Z Fl

Q iJ=1 7
%) b(u,p) = —(divu,p).

The problem consists in finding a velocity vector u € V and a pressure
p € Lz,o(Q). It is well known (see [7], [2]) that this problem is solvable
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and its solution depends in stable way on the data since the so-called inf-sup
condition is satisfied:

6) sup b>(u,p)/a(u,u) > ﬁ(%||p||2 for all 0=p € Ly o; Po = const > 0.
u#0

The following identity is well-known for any w, v € V in both the two-or

three-dimensional case:

(7) a(w,v) :=(divw,divu) + (rotw,rotv).

In the three-dimensional case rot wa is de%ned as usual and in two-dimensional
case rotw is defined as the scalar lez — szl often also denoted by curlw. On

the basis of (7), the following orthogonal decomposition of V was derived
in [14]:

®) (Hy(Q))'=V =Vyd Vi@ Vp,

where

©) Vo =kerdiv={w € V, divw =0},
(10) Vi =kerrot={w € V, rotw =0}.

The third orthogonal subspace Vg has been characterized in [14] and in

Lemma 1 in [11] as consisting of the solutions u = u(p) of the variational
problem

(11) a(u,v) :=bv,p) forallv € V

for harmonic p € L, . The space L, is decomposed similarly (see [11]) into
three orthogonal subspaces:

(12) L, =P=Py® P D Fg,
where
(13) Py :=kergrad, P} =divkerrot=div Vy, P = div V.

Here P, is the one-dimensional space of functions constant on €2, P consists

of harmonic functions (see [14]). Both decomposition (8) and (12) are called
Crouzeix—Velte decomposition.

After discretization by finite element or finite difference methods, the
Stokes problem (1) takes the following form:

s (G 5)()-6)
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Here A; corresponds to the vector Laplace operator and is a symmetric
positive definite matrix of dimension ny, X n;, where n;, denotes the number of
velocity degrees of freedom; the O block is of dimension my, x my, with the
number my, of pressure degrees of freedom; Bj, corresponds to the negative
divergence operator and is of dimension my, X nj,. Further, u, p and f denote
the coefficient vectors of velocities and pressure and of the projection of the
force vector, respectively.

3. The staggered grid approximation on a nonequidistant grid

Now we consider the well-known staggered-grid approximation where €2
is the unit square subdivided by a non-equidistant grid. The cell midpoints
are pressure nodes, the pressure vector is denoted by p;, and its components
by pjj, with i, j =1,..., n — 1. The area of the cell of pjj is hy ;1120 j41 -
The sides of the cells contain as their midpoints the velocity nodes: nodes
of the u-components of the velocity are on the east-west sides, nodes of the
v-components are on the north-south sides, and there are (n — 1)n such nodes
of each velocity component (including the boundary nodes). The velocity
components are denoted by u;;, i = 1,...,n,j = 1,...,n — 1, and by v;;,
i=1,...,n—-1j =1,..,n Here the u;; withi =1 and i = n are the
boundary values of uy; the v;; with j =1 and j = n are the boundary values
of v,. For the approximation of the Stokes problem we need the discrete
divergence operator and the discrete vector Laplace operator. Moreover, we
will define also the discrete rotation operator.

3.1. The finite difference approximation on a staggered grid
First we use the finite difference method to approximate the Stokes prob-
lem. To simplify the expressions, the following notations will be introduced:

- i 2Ry iy ga s
hiv12 = )

- it 20tz
hyji1y2 = 4

- hap g
hy; = 5

- i apthjap
hyj = )
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For pressure vectors py,, g, and velocity vectors u;, = (uh,vh)T, wy =

(rn, ST the following discrete scalar products and the corresponding norms
are introduced:

n—1
a5 @r-qn)opn = ZpijQijhl,i+l/2h2J+l/2’
ij=I
2 .
1Pnllo, = ®@nsPron,

n—2 n
(16)  (Pn>qn)yj; = Z Zpiqu'jfll,i+1flz,j+
i=1 j=1
n—1 n—1
+ ZPOJ‘]OJhI,IhZJ + an—IJQIz—IJhl,rthJa
j=2 j=2

HPhHagi=(Ph,Ph)Qﬁ,

n—1n—1

A7) G Wpdog = D, D uijrijhyify jog o+
i=2 j=1

n—1ln—1

0D vigsihy aphag,

i=1 j=2
—- 2 o —- —-
lunllop = Cupsundop-

The space R™: with the scalar product (15) and corresponding norm will be

called the pressure space and denoted by P}, ; similarly, the velocity space ‘7/1
is the space R , nj, := 2(n — 2)(n — 1), with the scalar product (17) and the
corresponding norm — taking into account that the boundary values of the
velocity components are zero.

The divergence is approximated as follows:

Uil = Uij |, Vig+l = Vij
hiiv1)2 hyj+1/2

(18) (divp, up);j ==

b

where ), = (up,vp)T and i = 1,...,n —1,j = 1,..,n — 1. The matrix
corresponding to the mapping — div A from the velocity space into the pres-
sure space is denoted by Bj,. For the approximation of the discrete Laplace
operator we continue the grid by two lines for #-nodes: one above the square
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at a distance hy | /2/2 and one below the square at a distance h, /2 /2.

Further we continue the grid by two lines for v-nodes: one left to the square
at a distance hy ; /2 and one right to the square at a distance A /2/2.

Putting zero values into the u- or v-nodes on these lines and using the usual
Shortley—Weller approximation for the discrete Laplace operator (see, e.g.
[10]) in all inner velocity nodes, we get the following first order approxima-
tion:
- T
Apup, = (Apup, Apvp)

b

L1y — Wy W — Uiy
(Apup)ij == ( - +

hii \ i1 hiizi)2
N 1 (”iJH —Wij Wij — ”iJ—l)
hyj1)2 hj+1 ha j ’
(19) 2<i<n—1, 1<j<n-—1,
(Ahvh)ij - _ z+l,] ijo_ T T 1,j +
hiiv1)2 hyiv1 hy ;

N [ Viger T Vi Vij T Vil
haj \ hajs1)2 hyj_1p )7
1<i<n-1, 2<j<n-—1.

The matrix corresponding to the mapping —A; from the velocity space into
itself is denoted by Ay, and is positive definite. Finally, we define the discrete

rotation as follows:
~ Vitlj —Vij Uil — Uitlj—1
(20) (roty, up)jj = -

hyiv1 hy

K

and we introduce the following notation: (j, for the matrix of the operator
roth.

THEOREM 1.
(21) (Ahﬁha Jh)O,h = HBhlIh“(z),h + “Chﬁh Hgﬁ
holds for all vectors iy, := (up,,v;)! € ‘7;, if and only if

hyi—12+hiie3)2
his1y2 = >

and
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hyj 12+ hoji3)2
hyjr1y2 = 5 -

PROOF. We apply partial summation to (Apuy,up)o, and then con-
tinue the grid functions u;, and v; by zero onto the grid of the whole two-
dimensional plane and extend the summation in all expressions to all integer
i, j. Then we get:

2
I Wivlj — Ujj -
(Apup,uplon = Z Thoo hyiv12ho 12+
lJ 1,l+1/2
2
Wiivl —Uii \ -~ -
+Yy° % hy,ihojv1+
2
v.+1 Pyp— v.. - ~
+Yy° lfl’]ilj hyivihoj+
lx] 1,i+1
2
Vij+l — Vij -
+> ) hjsiphiiag =
h .
J+1/2 2 1,i 2
= Wik - wij)™ + =——; j41 — uij)"+
i7 \"i+1/2 haj+1
hy hy
J 2 Li+1/2 2
+=——=Vir1j = Vij)"+ Vi j+1 = Vij)

1i+1 hyj+1/2

| B up, H%,h may be written as follows:

2
L0 Wislj — Uij  Vij+l = Vij B
[ETATEDS e o hiv12h 12 =
i 1Li+1/2 2j+1/2
hy ; .
J+1/2 2 Li+1/2
= h_i(“iﬂ,j —ujj)" + e (Vij+1 —Vij)™+
lx] 1,l+1/2 2J+1/2

+2(uiy1j — wij)(Vije1 = Vij)
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| Crup, H% 7 can be written as

2
L —iy1j —wiz1j—1)  Vielj —Vij \ -~
[[TAEDS — e hiis1ho,j
lJ ZJ 1,i+1
hiivi hy,j
- ) 2 2 2
= Z T(”Hl,} —Ujyyj—1)" + 7 Vis1j —Vij) —
i 2, 1,i+1

= 2(uj1j — Uig1j—D Wil — Vij)

Performing some index shifts we get:

2Z(Mi+1,j — uij)Vij1 — Vi) =
i
=2) (i1 Vil — Uinl jVij — UijVijel +WijVij) =
Ly
= 22(”[+1J—1Vij = Ujt] jVij = Uikl j—1Vielj +UisljVielj) =
Ly

=2 Z(Mmu — Uit j—1DWir1j — Vij)-
i
Namely, to get from the second to the third line in the above formulae, in the
fourth term we have replaced i by i + 1, in the first term j by j — 1, and in
the third term both indices have been shifted. Applying both shifts also to the

expression Y (u; j41 — Ujj )2 in (A iy, up)o,h> we find
iy

(A i), — | Brin |3, — 1Ghiin |13 7 =

2
(Wjv1,j — wij)™+

-y hyj—172 =2hyjr1 2+ i3 2
” 4hy i1 /2

.\ hii—12 =20 012 + 1y a3 2
4hy 12

2
Vij+1 = vij)
Using the assumptions on the step lengths, we get

.o -0 P
(Antinundo = | Brunllon = l[Cuttnllg ; = 0- I
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REMARK 1. It can be shown that dim(Vj,g) = (n — 2)%, dim(V},;) =
=(n — 3)2 and dim( Vh,ﬁ) = 4n — 9, where n denotes the number of grid

points (including corner points) along a side of the square. Namely, to
compute dim(V},) = dimkerdiv;, we count the number of conditions to get

|| divy, L?h||(2),h = 0. Excluding the very last cell (which is depending on the
other cells) we have to require divy, u;, = 0 in all remaining cells, that is, in
n—12-1 points. Then dim kerdivy, = n; — ((n — 12— 1) = (n —2)* where
ny = 2(n — 1)(n — 2) denotes the number of velocity degrees of freedom.
Similarly, to compute dim(V}) = dimkerrot;, we count the number of

conditions to get || roty, uy, H% » = 0, starting from the boundary of the grid and

proceeding to the center. Excluding the corners of the square and the very last
cell corner in the center of the grid, in all other cell corners we have to require

roty, uy, = 0, thatis in n2-5 points. Then dim ker rot;, = ny, —(n%-5) = (n—-3)2.
Therefore dim(V}, g) = nj, — (n —2)* — (n —3)* = 4n — 9.

(We remark that basis functions for kerrot; and kerdiv; have been
described in [8], and for kerdiv;, also in [5] and [2].)

REMARK 2. Although Ay is not a symmetric matrix, it is symmetric in
the sense of the scalar product (17). This means that (21) can be described in
matrix terms as follows:

(DaApup, up) = (D Byup, Byup) + (De Gy, Cyup) =
(22) = (Bj, DByt tiy) + (Cy DcCtiy, t)-
where (., .) is the Euclidean scalar product and Dy, Dg, D¢ are diagonal
matrices corresponding to (17), (15) and (16):
(D) ke = tijh iy i1 /2
k=(n—1DGi-2)+j, 2<i<n—1,1<j<n-1,
(Davidk k = Vijhy i1 2025
k=(n—2)i-D+j—1, 1<i<n-1,2<j<n-1,
(DBPkk = Pijhiis1/2h241 /25
k=n—1G-D+j, 1<ij<n—1
(Depndi k :PiJﬁl,i+1fl2J7
k=n—-2+n(i—-1)+j, 1<i<n-2,1<j<n;
k=j—1, i=0,2<j<n-1;
k=n—-2n+D)+j—-1, i=n-1,2<j<n-1
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From (22) we get:
(23) DaA;, = BI DBy, + GI' DG,

It follows that D4 A, is a symmetric matrix and can be written in the follow-
ing form:

(24) DsA, = A=B+C,

where B = BT B and C = CT C with the notation B = Dllg/th, C= ch/zch.

Using the staggered grid approximation based on the finite volume
method (see the following subsection) we get similarly:

(25) DaAj, = Bl DgB), + Gl DGy,

where the diagonal matrix D4 corresponds to the scalar product (32).

Let us mention that using finite element methods — if the discrete
Crouzeix—Velte decomposition exists — we can get the following:

(26) An=BIM B, + M G,
where M, is the mass matrix (See [6]).

REMARK 3. Remark 1 and 2 mean that a proper Crouzeix—Velte decom-
position of the velocity and the pressure space into three nontrivial parts
exists, if n > 3 (see [12]).

3.2. The staggered grid approximation based on the finite volume
method

Now we use the finite volume method (sometimes also called box
method) to approximate the Stokes problem ([9]). For this approximation
€ is subdivided into € = UL);; rectangular cells. For the approximation of
(Apup)ij we choose the subdivision where the midpoint of €;; is u;;. The
expression (Au) is integrated over €2;; and the Gauss—Ostrogradskij formula
is used for transformation of the second order derivatives:

4
27) / div(grad u)dxdx, = /(gradu)f[ds = Zfik /(grad u)ds,
Yk

Q) I k=1
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where n is the normal vector of I';;. Using suitable low order quadraturc
formulae for approximation of the integrals in (27), (Ajuy,);; may be written
as follows:

—(uj; —uj 1) - Wipl i — Uji
(%)@WMU:< ”g N hu+l;J Fhy a1 /2t
2, Li+1/2
Ui j+1 — Uij » Ujj — Ui—1 1 1
t i a7 =
hyj+1 1,i—1/2 2j+1/2 M

(Ui — Wi Wi — Ui,
= - +
hii \ Piv1)2 hyi—1)2

1 Uij+1 — Wij  Ujj — Ujj—|
+ = - = »
hyjs1/2 hoj+1 hyj

(29) 2<i<n—1, 1<j<n-1.

For approximation of (A,vy);; the domain €2 is subdivided in a different way.
In this case the midpoint of €;; sub-domain is v;;. Similar to (28) we get:

1 Vitlj —Vij  Vij —Vi—l,
30 A o= = — = +
G0 By hiiv1)2 ( hyis1 hy

’

L[ Vije1 —Vij  Vij —Vij—1
+— - ,
hyj \ Mj+1)2 hyj—1/2

1<i<n—-1, 2<j<n—-1

and

(€1)) Aﬁﬁh = (Alluh,Alth)T

is the discrete vector Laplace operator. For approximation of (divy, uy,); i we
use the subdivision of € which is determined by the original grid and for

(roty, up); ; another subdivision where the midpoint of €;; is a grid point of
the original grid. Integrating the corresponding equations over €2;; and using

suitable quadrature formulae we get the same approximation for (divy, uy,); j

and (roty, ﬁh)ij as in (18) and (20). Instead of (17) we introduce the scalar
product and corresponding norm as follows:

n—1ln—1

(32) Gl Wi = D > i rijhy ity g o+
i=2 j=1
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n—Iln—1
+ 3> vijsijhyien phog,
i=1 j=2
—- 2 —- —
(33) “”h”o,h* = (up, uh)O,h*'

Using the scalar products and norms (15), (16) and (32), and the approxima-
tions (28), (30), (18) and (20), we obtain:

THEOREM 2.
(Antins i) = |1 Brtin 1§ 5 + | CutinIg
hUhs> Up)o,h* U 110, it llg -
where let Ay, be defined as —Ay, and By, C), are the same as in Theorem 1.

PROOF. Similarly to the proof of Theorem 1 we apply partial summation
to (Ap up,, ﬁh)o,h* and then continue the grid functions u; and v; by zero onto
the whole plane. Then there follows:

2
Lo Wil — Ujj
(Aptip, ipopx = Y (7 hiv1y2h0 412+

hy
lJ 1,l+1/2
2
u; 1 — ~ ~
+Z e B hyihyjv1+
2J+1

lz+1

2
Vielj — Vii ~ ~
+ Z ( A U) hyivihoj+
2
Vij+l — Vij
+y (7) hyjr12hiv1)2 =

hA -
hy B
J+1/2 2 1,i 2
= Z (h_i(um,j —ujj)” + r(”uﬂ — ujj) T+
ij Li+1/2 2,j+1
h
2 Li+1/2
+= (vl+l,1 vlj) + A (vi,j+1 vlj)
Li+1 2j+1/2

The further steps of the proof are the same as in the proof of Theorem 1. 1
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4. Second order staggered grid approximation

Now we consider the staggered grid approximation on an equidistant grid.
That is, Q is the unit square subdivided by a square grid into my, := (n — 1)2
cells of area h2 each, h := 1 /(n — 1). For approximation of the Laplace
operator with first order, in [11], as usual for staggered grids, the grid has
been supplemented by four lines at a distance /2 from the boundary of the
square, and fictitious zero values have been put into the u or v nodes on these
lines, and then the standard five-point approximation of the Laplace operator
has been used near the boundary as well. (The supplementary values are
needed also for the standard approximation of rot.)

To get a second order approximation, we take the usual five-point ap-
proximation in the inner cells. The corresponding formulae can be obtained
by simplifying (19) to our present case of an equidistant grid:

- T
Ajup = (Ajup, Agvp) ™,

Wiplj — 2ujj +uj_y R 2ujj +ujj—

(Aqup)ij =

h? h? ’
(34) 2<i<n-1, 2<j<n-2,
_ Vielj T2V AVic1j Vijel = 2V + Vi
(A]?vh)ij = h2 + h2 )

2<i<n-2, 2<j<n-1.

For the boundary cells, to get a second order approximation, we put now zero
values into additional # or v nodes on the original boundary. These additional
points are at a distance of 4 /2 from the nearest u or v point. Therefore, the
approximation in the boundary cells will be different from that in the inner
cells, but both are of Shortley—Weller type:

Uipl,] — 2w +ui—11 1 (ujo—ui1  wpg —u
(A/_uh)“:: i+1, 12, i—11 2 i, Ll i,0 :
L n h h h/2
Uitln—1 — 2Ujp—1 +Ui_1 1
(Apup)in—1 = n2 +
1 (uj, —uj,— Uj y_1 — Uj p—
= in in—1 “in—1 in—2 L 2<i<n-—1,
h h/2 h

o =vi v = vo ) Vi+l — 2V Vi
(Avh)y = E’( w2 )7t n2 ’
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(Av,) . 1 Vnj — V-1, Vn—1,j — Vn-2, +
hvl’l I’l—ld T h h/2 h

L Vn—Lj+l — P S
h? ’

2<j<n—1.

Here u; o, uj y, voj» vn,j are the additional zero values on the boundary. The
discrete divergence is the same as in (18):

Uivj —Wij | Vij+l = Vij

A N , 1<i,j<n—1,

(leﬁ I’_[h)ij =

and the discrete rotation is:
Vielj —Vij  Hitlj T Uitl,j—1
h h ’
1<i<n-2,2<j<n—1,

Vitel,l ~ Vil Uigl,] ~ Uit1,0

(I'Otﬁ I’_[h)ij :

(roty-up); 1

h nj2
(rot—ﬁ Vi g o= Vitl,n — Vin . Uitin — Uit+ln—1
n4hlin h h/2 >
(35 1<i<n-2,
” Vij —Vo,; U1, T U1,ji-1
rot:-u .= _
( h h>0J h/2 A 5
. an _vn—lj u,w- —unJ_l
rot-u 1= —
( h hn 1,7 h/2 A 5
2<j<n-—-1.

The discrete L, scalar products (15) and (17) simplify to

n—1
(36) ®n>4qn)on = ZPij‘lijhz,
ij=1
n—1n—1 n—1n—1
37 (“hywh)Oh = Z Z“Uruh +Z Zvljslj >
i=2 j=1 i=1 j=2

and the corresponding norms are now

2 - .
lPnllop = ®nspidon, — Nunlon = n, wndop-



78 GYORGYI STRAUBER

THEOREM 3. For the staggered grid approximation with second order
approximation,

. -0 -0
(Agtn, updon — | Brunllo p — |Gy o, =
n—1

n—1
(38) == 2P +ul, )= Y 208 vy )
— —

where B,; = — d1v,7 and Cﬁ = 1oty

PROOF. Similarly to the proof of Theorem 1 we apply partial summation
to (Aﬁﬁh, uy, )o,» and then continue the grid functions uj;, and v;, by zero onto
the grid of the whole two-dimensional plane. Taking into account that

Ui 0> Uins V0,i> Vn,j> Uljs Unyj> Vil> Vin
are zero if 1 <i, j <n — 1, we may write:
. 2 2
(Agtin tip)op = Y ((“i+1J — uj)” + (U jy1 — i)+
iy
2 2
+ Vierj —Vij)” + Wije1 — vij) ) +
n—1 n—1
2 .2 2 .2
+ ) i tup, )+ Z(VIJ V1)
i=2 =2
-2 2 2
[EAATEDS ((ui+1J —uij) + (Vi j41 — Vi) T+
iy
+2(ujs1j — wij)Vije1 = Vij)) s
-0 2 2
ICriin G = ((”i+1J —Uig1j— D)+ Wip1j —vij) -
iy
—2uis1j — Uir1j—DWis1j — Vij)) +

n—2 n—1

p p 2 2
Y Bupyy g 3y )+ Y Bv+3vr ),
i=1 j=2

Performing the same index shifts as during the proof of Theorem 1, we get
the result of Theorem 3. |
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REMARK 1. Introducing the notation A,;, where

n—1 n—1
G . S 202, +u? S 202, 40
(Aﬁ“ha up)on = (Aﬁ“h’ up)o,n + 2(’/‘,',1 + ”‘i,n—l) + 2(V1J + V”—IJ)'
i=2 =

AE is a symmetric positive definite matrix, together with Aj;.  Since
dim(Vyo) = (n — 2)%, dim(Vj,1) = (n — 3)* and dim(V}, 3) = 4n — 9, a
proper Crouzeix—Velte decomposition exists in this case as well, for n > 3.
In this case the algebraic decomposition (see [12]) exists not for the matrices
Az, (BET Bp), (CET Cp), but for A, (BET Bp), (CET Cp). Let us mention that in

[3] there appears an analytical counterpart of (38). |

5. Numerical results

Below we show some computational results for the Stokes problem using
the staggered grid approximation based on the finite volume method (28)-
(31), (18), (20), on a non-equidistant grid in the unit square. Choosing differ-
ent nonequidistant grid spacings we have maximized the rate-of convergence

for Uzawa-like methods, that is minimized gy, := (An —Ay)/ @y, +Ay,), where
Aj, and Ay, are the smallest and the largest of the eigenvalues different from
0 and 1 of the discrete inf-sup problem, i.e. of S; = BhA,:IBhT. (Then

[Aj,,A,] contains the eigenvalues corresponding to Vg and B, = \/4y, is the
discrete inf-sup constant.) We used the Matlab eig function to calculate the
eigenvalues and the Matlab fmins function for minimization.

We found that the optimal grid is not an equidistant one, but a grid which
is condensing in the center and coarser near the boundary of the unit square.
Based on preliminary numerical experiments with arbitrary non-equidistant
grids we chose a symmetrical grid with the same non-equidistant grid spacing
in both directions. From the experimental results we found that the more
condensed the grid is in the center, the smaller g, is. For the optimal grid

we chose the grid spacing in the center as follows: hy , /5 := n%llo_z. In

Table 1 we show the optimal 4, and A; denoted by Ap s and /Th,* in the
case of n = 11, 17, 23. Because of the huge computational time for the
grid optimization in the case of n = 31, 51 the optimal 4;, and A, were not

calculated. In these cases /lh,* and Ih,* were calculated on a grid which is
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obtained by interpolating the optimal grid for the case of n = 23. We give
also the smallest and the largest eigenvalues different from 0 and 1 in the case
of an equidistant grid, denoted by 4, , q and Ih,eq and in the practically used
case when the grid is coarser in the center and condensing near the boundary
of the unit square, denoted by /_lh,p, and /Th,p,. In this case the grid spacings
are determined by the following expression:

hyi—12=
=0.111737 — 0.006259i (1 — i) — 0.000289(i (1 — i))*> — 0.000011¢i (1 — i))?,
where 2 < i < % The grid here is symmetrical also with the same

nonequidistant grid spacing in both directions. In the table, n denotes the
number of grid points — including corner points — along a side of the square.

Table 1
n 11 17 23 31 51
A 0.6667 0.6667 0.6667 0.6667 0.6667
. 0.9999 0.9999 0.9999 0.9999 0.9999
Ger. | 02 02 02 02 02
Gece | 0101 0.101  0.101  0.101  0.101
Mg 0.4016 03489 03226 03022 0.2766
Mheq 0.8538 0.8545 0.8549 0.8552 0.8555

Geq,Us 0.3602 0.4202 0.4521 04778 0.5114
deq,cc | 0.1864 02203 0.239  0.2544 0.275
Ay 0.3507 0.2497 0.2168 0.2031 0.1933
Anpr 0.8429 0.8463 0.8469 0.847  0.847
dpr,U; 0.4124 0.5443 0.5923 0.6132 0.6284
dpr,CG 0.2158 0.296  0.328  0.3426 0.3534

From these experimental results we can conclude that compared with
the equidistant grid the use of such non-equidistant grids can economize
between 58 and 140 percent of the computational work when iterating with an
Uzawa-type method and between 36 and 78 percent for conjugate gradient-
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type methods, where

Compared with the practically used grid we can economize between 82 and
246 percent of the computational work for Uzawa-type methods and between
50 and 120 percent for conjugate gradient-type methods. Moreover, these
numbers of gain in percent are increasing together with n. Finally, according
to the table, the conjugate gradient-like methods are approximately one and a
half times faster than the Uzawa-like ones, on the optimized grids.
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1. Introduction

In [1] and [2] we established estimates for weighted Lebesgue functions
for a class of general exponential weights which includes non-even weights.
Here we use different methods to prove some new results on the weighted
Lebesgue constants.

Let I = (c,d), —o0 < ¢ <0 <d < oco. Let w := exp(—Q), where
Q : I — R is continuous and convex in I, and such that all moments

/x”wz(x)dx, n=0,1,2,...,
1

converge. Corresponding to w2(x) we form a sequence of orthonormal poly-
nomials

pn(x) = PII(W27X> = ann +..., >0
satisfying

/PanW2 =0mn, m,n=0,1,2,....
I
The zeros of p,(x) are denoted by

,_ 2
C<Ynn <Yn—-1n <---<Y2p <YIn < d Vkn =YknW?))
arranged in increasing order.
Let f : I — R be a continuous function such that

xli>ncl+ f()|wx)=0= lir[rll_ If () |w (x).



84 D. G. KUBAYI

Let L,[f] € P,_1 denote the Lagrange interpolation polynomial to f at the
zeros of p,(x). Here P,,_; denotes the set of all algebraic polynomials of
degree at most n — 1. Then

Ly [f10kn) =f QOkn)» 1 <k < n,
and it admits the representation

n

(1.1) Lulf16) = D f Oren)len (),
k=1
where
(12) o (x) 1= —— P <k<n,

plll k)X = Ykn) ’

are the fundamental polynomials associated with the zeros of p,(x). We
define the fundamental polynomials of weighted Lagrange interpolation by

(Paw)(x)
@aw) k)X = Yin)
We define the nth weighted Lebesgue function by

(1.3) Upy(X) = ukn(wz’x) =

N

w(x)
w(Vkn)

14) A, Uyw?),x) =Y |l ()]
k=1

where U,(w?) := {Vin 1 1 <k <n}.
Our main objective here is to estimate (1.4). In [1] and [2] we established

= |”kn(x)|
k=1

bounds for A, (w, U, (w2),x) using different methods. The methods we use
here are similar to those used by Vértesi [9] (for Freud type weights), Szili
and Vértesi [7], [8] (for Erdds type weights and for exponential weights on
[—1,1].

First, we introduce our class of weights. To do this we need the notion
of a quasi-increasing function on an interval I: we say that a function f :
(0,d) — R is quasi-increasing if there exists C > 0 such that

f&X) < Cf(y), 0<x <y<d.

Obviously, a monotone increasing function is quasi-increasing. Similarly, we
may define the notion of a quasi-decreasing function. Following is our class
of weights.

DEFINITION. Let I :=(c,d) (w00 < ¢ <0<d < o0)andw :=exp(—Q),
where Q : I — [0, co) satisfies the following properties:
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(a) Q' is continuous in I and Q(0) = 0;
(b) Q" exists and is positive in I \ {0};
(c) lim Q(t) = oo = tl_ijdn_ Q).
(d) The function

Q)
Ok

is quasi-increasing in (0, d) and quasi-decreasing in (c, 0), with T() > A > 1,
t €1\ {0}.
(e) There exists C; > 0 such that

/!
% < C|Q)|Qx), a.e.x €I\ {0}.

(1.5) T(t)

t€1\{0}

(f) There exists a compact subinterval J of the open interval I, and &, > 0
such that

Q' (x)
| Q' ()]

Then we write w € F(C2+).

> G|Q(x)|Qx), a.e.x €T\ J.

REMARK. The simplest example of the above definition is when I = R
and
x%,  if x €[0,00)

Q) = { X, ifx € (—o0,0)

where a,f8 > 1. Here it is easy to see that for the function T(x) defined by
(1.5) we have

fa, ifx €[0,00)
T(x) = {[3, if x € (—o0,0).

A more general example is

expy (x%) —expi (0), if x € [0, c0)

Q) = Qtaptx) = {expl(|x ) — exp;(0), if x € (—00,0)

where k,I > 0, a,f > 1. Here exp; denotes the kth iterated exponential:
expy(x) = x and expy(x) = exp(exp(...exp(x))), k > 1. See [3] for further

discussion of 9(C2+) and other examples.
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2. Notations

In the sequel, C, C, G c,cy,¢2,. .., will denote positive constants inde-
pendent of x,k and n. The same symbol does not necessarily represent the
same constant in different occurrences.

If (A;) and (B,) are real sequences, then we write A, ~ By, if there exist
C1,C, > 0 such that Cj < 42 < Gy, (n — 00).

For w € #(C%*+) and n € N we define the Mhaskar—Rahmanov—Saff
numbers a+,(w) =: a+, to be the roots of the system of equations

l 7 Q) dx =n
ﬂa \/(x —a—p)(an —x) -

1 / Q'(x) e =
w ] & —asp)an —x)

The significance of a+, lies partly in the identity
2.1 max |[(Pw)(x)|= max |[(Pw)(x)]
xel x€[ ]

a_p,an

valid for all polynomials P of degree at most n (cf. [3, Theorem 1.8]). For
more on a4+, see chapters 1 and 3 in [3].

For a fixed w € F(C%+) and for n € N we set

an +a— ap + |a—
(2.2) o= Stion s, Gntlal
—2/3
(2.3) Ntn = | nT(a+n) |ain| >
On
an *
(2.4) Dy, = T(a4pn)T—, Dn = maX{D—na Dl’l})
|a:l:n|

1 lx—a_s,| lx—ag,|
n s
2.5 = V(x—a—p|+Ha—nn—n)(x—an|+annn) )
(2.5) ¢n (x) onlan), 1f x € (ap,d)
Ppn(a—p), if x € (c,a—p).

if x € [a—p,an]

For our weights the restricted range inequality (2.1) can be sharpened
(see [3, Theorem 1.9(a) and (1.50)]). Let w € 9(C2+) and M > 0. Then
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there exist C > 0, ny € N independent of P and n such that for n > ng and
Pe?,

(2.6) max [(Pw)(x)| < C max |(Pw)(x)],
xel x€lpy

where

(2.7) Ing g = [a—n(1 — Mn_p),a,(1 — Mnp)].

The fundamental properties of orthonormal polynomials pn(wz,x) for

the weight w € F(C2+) were proved by Levin and Lubinsky in [3]. P.
Vértesi [12] supplemented results with respect to the distribution of the roots

of py (wz,x). Fix a weight w € 9(C2+) and let us define the linear transfor-
mations

X zant"'ﬂn’ X € [a—pn,an], r= xé_iﬁn’ re[-1,1]
n
t =cost, ¥ €[0,7].
For every n € N, let
(2.8) tp = yknéi_ﬂ” =icos,, 1<k<n
n
Vkn = ))kn(wz)a kn = tkn(W2>a ﬁkn = ﬁkn(Wz)yl <k <n,n €N).
tkn (k=1,2,...,n) are called normalized roots of p, (w2).
If
Yn+l,n = 8—n> YOn = an;
Int1n = — Lty = 1,9, :==0 and ﬁn+1,n =T

then we have

0=, (W?) <D, (W?) < ... < VW) <Dy uWH =,

3. Results

THEOREM 1. If w € F(C?+) then the weighted Lebesgue constants sat-
isty

3.1) max Ay (w, Up(w?), x) ~ mDHYS (e,
xe
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Let the points

— 2 . 2
Von = Vo, (W) and Va+ln = Vn+1,n(w )

satisfy

(3.2) Von — Yin = K+anMn, K+ > 0 fixed,
|(an)(X)| ~ |(an)l(y1n)||X _y1n| (X € [y1n7VOn])7

and

(3.3) Ynn = Vn+ln = K—|a—n|77_n, k— >0 fixed,

|(an)(x)| ~ |(an)/(ynn)||x - ynn| (x € [Vn+1,na)7nn])-
The existence of such k4, k— will be proved later (see Lemma 3).

THEOREM 2. Letw € F(C%+) and
Vi (Wz) = Un(Wz) U {vn+1,nav0n}'

Then we have
(3.4) max A, (w, Vaw?),x) ~logn  (n € N).
Xe

THEOREM 3. For every weightw € F(C?+) there esists C > 0 such that

n

(3.5) Hy(w,x) =Y ug,(w, Uy(w?),x) < C
k=1

forallx € I andn € N.

4. Proofs

Our main tool is the following lemma which supplements the results

with respect to the distribution of the roots of p,(w?2,x) proved by Levin
and Lubinsky in [3].

LEMMA 1. Letw € F(C2+). Then for any constants 0 < ¢; < /D, and
0<cy <vD_,, and forn € N, we have

(a) if Oy, € (0,%] then

£l <k <ci-L
(4.1 Dy ~ g”Dn> =R =YDy

-, otherwise
n
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(b) ifty, € [ ) then

1/3
K

< > , jf1§K§02
4 ﬁk ~

(4.2) nD—p s
K .
—, otherwise
n
©)
( ! if0 <k <cy—~
(nD,1)1/3(k + 1)2/3’ -5 =D
1 . Cll’l C2I’l
(4.3) ﬁk+1,n — Vgn ~ n’ If\/lTn <ks<n- /D—_p :
1
if1 <K< 4
\ (nD—n)l/3K2/3’ = _CZVD*"
(d)
Oy .
5 3 Tn’ Ifﬁkn’ﬁk+1,n € (07 %]
4.4) k+tn = Ykn ™~y g Vin

EE— ifﬁkn’ﬁk+l,n € [%a”)

Here K :==n —k + 1. Moreover,
(e) for every fixed A > 0

4
4.5) Vin ~ Otakin> Okn»Vakn € (0,5>,
and
(f) for Ve, 05, € (0,5 ), we have
2
ﬁjn, if1<k< J§
2 o] .
(4.6) B =0l ~ { 02 EL irk <k <2
92, if2j <k.
PROOF. Since for every w € 9(C2+) there existe >0, C >0andny € N
such that
T.0
Dy =2 <Cn®F (n > np)
an
(see [3, (3.38)]) thus
4.7) " > Cnt/? = 400 as n — +oc.

Vv Dl’l
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Similarly we have

n

V D—I’l
(a), (b) and (c) were proved in [12] and (d) follows from these.

(4.8) > Cnt/? = 400 as n — +oc.

The proof of (e) and (f) is a word-by-word repetition of the proof of (3.5)
and (3.6) of [7], so we omit the details. ]

REMARK. Observe that from (a) it also follows that there exists ¢ > 0
independent of n such that

(4.9) 1<k<ecn for ¥, € (0,%] :
Moreover, there exists ¢ > 0 independent of n such that
(4.10) |<K=n+l-k<cn for d, € [%n)
(see (b)).

LEMMA 2. If w € F(C*+) then we have
4.11) Yk—1,n = Ykn ~ Ykn — Yk+1,n k=1,2,...,n);

ﬁj nt ﬁkn

|an — Ykn| ~ On sin (T) wjn —

(i’k = 1727"'7’1);

(4.12)

(4.13) Ykn = Yk+1ln ™~ 6H(Sinﬁkn)(ﬁk+l,n - ﬁkn) (k=0,1,...,n);

' 1 1 1
w ~
(4.14) |Pnw) k)| 63/2 (SinﬁkH)S/z ﬁk+l,n —

k=1,2,...,n);

PROOF. (4.11) follows from [3, (1.110) and (12.20)].
Using (2.8) we have

o, +0 Dy — U
Yin = Ykn = On(cos¥;, — cosdy,) = 20, sin n T 7kn Gin —kn 7 Jn

which yields (4.12). From (4.5) and (4.12) we obtain (4.13).
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To verify (4.14) first observe that
|(an)/()7kn)| = |(prllw)()7kn)| ~

_ _1
~ Pn l(ykn)(b’kn - a—n”ykn - an|) 4 ~

1
1 _1
~ Vkn — yk+1,n) (ykn — a=nllykn — anl)" 4.

Here we have used Theorem 1.19 (a) and (e) in [3]. Next, we continue this
as follows: since

(4.15) Ykn — a=nllykn —anl = 53(1 — cos? Vgn) = 61% sin’ Vken
thus for every k = 1,2,...,n we have
|(an)l(ykn)| ~ (611(Sinﬁkn)(ﬁk+l,n - ﬁkn))_l(ég sin ﬁkn)_l/4 =
-3/2 . — _
= 85 P (sin D) 2Dty — D) !
which is (4.14). |

For x € I let us denote by y;, (one of) the closest node(s) to x (shortly
X R Yj,) from Uw?) ={yin | k=1,2,...,n}.

LEMMA 3. Ifw € F(C*+) then
(@)
(4.16) max |ug, (x)| ~ 1 (n € N).
x€el

(b) Moreover, there exist k+ > 0, k— > 0 such that uniformly for x and
n, we have

|(Paw)(x)| ~ |(an>l()7jn)||x _yjn|

4.17)
(X = Yjin € Wps10ovonls n €N),
where
Von = Y1n + K+@nMn, Va+ln = Ynn — K—|a—n|n-n.
(©
(Sinﬁkn)3/2 |ﬁk+1,n - ﬁkn|

|ugn ()| < ¢ : —
(4.18) fsind;,, sin 3o i Win~ Dkl

(X € [vl’l+1,117v0n]7 k = 1,2,...,]’1, ne N)

PROOF. (a) The relation (4.16) is Theorem 1.19(c) in [3].
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(b) If x € [ynn,y1,] then (4.17) is Theorem 1.19(d) in [3].
Next we show that there exists k4 > 0 such that
|(an)(x)| ~ |(pnw)l()71n)||x _YIn|
(x € [y1117v0n]7 ne N)

(The existence of k_ can be proved similarly.)

(4.19)

First we observe that by (4.16) we have

(4.20) |(an)(x)| < C|(pnw)l()71n)(x _yln)|

forallx € I and n € N.

Now let k+ > 0. It will be fixed later. By [3, Theorem 1.19(e)], (4.13)
and Lemma 1 we have

On

(4.21) Pn(V1n) ~ Yin — Yan ~ 611@1211 ~

(see also (2.3) and (2.4)).
From Theorem 5.7(b) and (1.50) of [3] we obtain that

(422) ‘pn(x) ~ ‘Pn()’ln) (x € [ylnavOn]a n e N)

We shall need the Markov—Bernstein inequality for w € 9(C2+) (see [3,
Theorem 1.15 and (1.50)]) which states that there exists C > 0 such that for
n>1land Pe P,

[(Pw) (x)pn ()| < Cl;lgl(PW)(X)l (x €.

Using this with Pw = uy, we have from (4.16), (4.21) and (4.22)
G
<
Pn(V1n) ~ anlin

g, ()] < (s € [¥1n>von -

Thus

!/
|”ln(s>(x _y1n>| < C1K+
O1n <5 <x < vop = Y1, +K+anMn).

Hence, if x € [y1,,vo,], we have for some s between y;, and x,
/
|uln(x)| = |u1n()71n)+uln(s)(x _yln)| >

1
> 1= [ug, () =y 2 1= Crrey > 3
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if 0 < k4 < 3¢ Thus
(P w)() o1

(PnW)’()?m)(x = Yi)! 5

for x € [y1,,von] and n € N. Combining this and (4.20) we obtain ((4.19)
which proves the statement (b).

lug, (x)| =

(c) By (4.17) we get

|”k (x)| — (Pnw)(x) -
" @nw) Okn)X = Yin)
/ / X =DYjn
(4.23) ~ ‘(an) (an)(pnw) (Ykn)‘ <
X = Ykn
Yi—1,n —Jj
< ‘(an)l(yjn)(an)l(ykn)‘ R et
Yin = Ykn
Therefore (4.18) follows from Lemma 2. |

4.2. Proof of Theorem 1

Since
Yon = Yin ~ Gnlln ~ Gn = Yln>
Ynn = Vasln ™~ la—n|n—n ~ Ynn — a—n
(see (3.2), (3.3) and [3, Theorem 1.19(f)]) thus from (2.6) it follows that it is

enough to estimate the weighted Lebesgue function A, (w, U, (wz),x) on the
interval x € [v,41 5, V051

Fix a weight w € %(C?+) and n € N. First suppose that x ~ Yin €
€ [Bnsvonl (ie. 0j, € (0,5]). Let

JT
Ap 5={k |ykn € [ﬂn,an)} = {k |0 <ﬁkn < 5},

(4.24) .
By =1k | yin € (@en,fn)} = {k |15 < < n}

Then

425)  Agw, Upw?),x) =D fugn @) = D [ugn G+ > [ugn ).
k=1 keAn keBn
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In order to estimate (4.25), we distinguish several cases.

CASE 1. Let x ~ yj, € [Bn,von] and k € Ay. Then ¥;,,7y, €
thus by (4.18), (4.4), (4.6) and (4.16) we have

( 5/2
1 ﬁk,,> . .
— (k) ifi<k<j)2
k (ﬁjn /
1

. < _— ifj/2<k<2j
(4.26) |“kn(x)| <C |k —j|+1’ 1 J/ S K> 4

1 ﬁkn>1/2 .
(k)2 <kk € A
( k (ﬁjn "

Then we obtain that

Z |”‘kn(x)| <

keAn
l Vien

i
<yt (b z >
- . |k . k ﬁjn
k>2j,keAn
If k € A, then 1 < k < cn with a constant 0 < ¢ < 1 independent of n (see

(4.1)).

CASE 1(a). If 1 <j < Clg , then using (4.1) we obtain that
1

1
4 | 5/6 cinDy 2 L 1/6
> @) < C Z%<—) +log2)+ Y E(T> -
k€An k=1 k=2j J
i
[cn] 1/6 5/6 2
1 [k (nD, 1 1
+ Z 1E\/;<j > <G (J‘) kz_;m"‘log(zjﬁ
k—c]nDn_7
Cl}’l
NN SN0 ARE I SR O
~1/6k2jk5/6 j vn e Ve[ T
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1 n \V6  /.p\1/6 s
<G{1+log2j)+ — | — 1 < Cy(nDy)'/°.
<G+ 0g(J)+j1/6 (\/D—n> +< 7 > < GnDy)

CASE 1(b). If SL& < j < [cn], then by (4.1) we obtain that

v Dn
cln
Z| ol < ¢ \/DTzl X 5/6E5/2+J£l§5/2+
Hhn 1= k \nD, j k\j
keAy k=1 =i
VDn
[cn]
1 [k
k=2j

A (a2 w NS i
2 _t ()52 Ny VI
: Cl{(wn) ) () AR

< O{1+1+1og2) + Dy*} < C3(nD)'/°,
where we used the fact that D, < Cn?. From these relations it follows that
(4.27) 3 lun@)] < CD)YS (€ [Busvonl n €N
k€eAn
with a constant C > 0 independent of x and n.

CASE 2. Now we estimate the second term of (4.25), i.e. we suppose
that x ~ yj, € [Bn,vou] is a fixed point (¥, € (0,5]) and k € By, ie.
)?kn € (a—l’luBI’l]’ ﬁkn S [%775) Then

) U +ﬁk . |T<) _ﬁk| 2 2
sin -2 2 % sin 2 2 =~ wjn = Vel ~ 0 = Dk |-

Therefore from (4.18) and (4.4) we get

1 (- ﬁkn)s/z 1
(4.28) Z |”kn(x)| <C Z — : .
keBy keBy, K ﬁjln/z Iﬁ,n — Vg

CASE 2(a). If 0 < ¥, < % then |U, — ¥j,| ~ 1. Since k € B, thus

cn < k < n with a constant ¢ > 0 independent of n (i.e. ] < K=n+1—
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— k < cn). Consequently by (4.2) we get

0211
D_n 5/6
1 1 K
Z |ukl’l(x)| < C 1/2 Z E (nD—n> +
keBn jn K=1

[cn] 5/2
1 (K C 1
+ E — (—) < i < Cz(nDn)1/6.

K=_n

Voo

CASE 2(b). Now, we suppose that 7- < 9, < T. If ¥y, € [%, 3”] then

[Dn — ﬁjn| ~ K _J| (see (4.4)). If ﬁkn [3_31’7[) then [¥y, — jn| ~ L.
Therefore by (4. 28) and (4.2) we get

1 (r —d,.)3/2
Y ) <C Y Eﬁ .
kEEM kEEM kn jﬂ

I n (7w — D)/
<C B A 7 EAR O
= 2. Kk—jj+1 " 2. K =

ﬂkne[” 371] ﬂkn |:3n, )
c2n
/D_
< Cp(logn+ Zni K 5/6+ % 1 (K i <
R K \nD_, . K\ % =
K=1 Ko_C2n
D_y

< Glogn < C3(nDy)'/°.
Consequently
429) Y )] £ CDY'® (& € [Bu,vonl, € N,
k€eBy
Combining (4.25), (4.27) and (4.29) we get

430) > [wen(0)] < COD)YC (x € [Bu,von), n € N).
k=1
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Now let z;, := (Yin +Yi+1,n)/2 (costiy = (zZin _:311)/611) for1 <i <y,
where s is a fixed index. Then by Theorem 1.19 of [3], (4.1) and (4.15) we
have

Yin — YVi+ln -~
‘P(Yin)(|yin - a—n”)’in —an |)1/4
1 nDn>1/6

1
vV Op sind;, Von ( i

|(an)(Zin)| ~

~ (|ym - a—n||)’in - an|)_1/4 ~
Let

T Cc n
By, = k‘—gz‘) <n——}={K‘c SKScn}
l,n { 2 kn \/D——n 2 D—n 3
(see (4.2)). Then by (4.2), (4.4) and (4.14)

1 .
i |uk (zi )| ~ (”an> e i (Slnﬁkn>3/2|ﬁk’n B ﬁk+1,n
n\&in ;
k=1 : k=1

2 _ 92 =
|Tin ﬁkn

_ 5/2 [c3n] 5/2
> C(nDn)l/6 Z % > C](I’an)l/6 Z i (5) >

KeB), K=_S2"
D_y

> Cy(nDy)'/S.
This together with (4.30) gives

max Z g, ()] ~ (D)0 (n € N).

xe[ﬂﬂstn] k=1

For x € [Vy41,,Bn] similar estimate holds if one replaces D, by D_.
Thus Theorem 2 is proved. |

4.3. Proof of Theorem 2

It is sufficient to prove that

4.31) max  A,(w, Vo(w?),x) ~logn  (n €N)

X€E[Bnvon

(see Part 4.2).



98 D. G. KUBAYI

The weighted Lebesgue function has the form

n
(x — vn+1,n)(x - VOn)

— Vit l,0) Vkn — Von)

Ap(w, Va(w?),x) =

|”‘kn(x)|+

@aw)(X) X = Vpiln
Paw)(von) von — Vo+l,n

‘ (Prw)(x) X = Von
(pnw)(vn+1,n) Von =~ Vn+ln

= Z (xX) + S (x) + SH(x).

Let x = yj, € [Bu,vonl (ie. 9j, € (0,5]). Then by (4.17), (4.14), (4.13) and
(4.1) we have

|(an)(x)| ~ |(an)l()7jn)(x _yjn)| < C|(an)/(an)()7j+1,n _yjn)| <
1 G, (nDn>1/6
< < >
= VO

j n

moreover
|(an)(V0n)| > C|(pnw)l())1n)(VOn _YIn)| >

> C Dy)'/0
3/2 5/2 anNn > m 3 (” n)

ln

(see (4.21)). From these it follows that

(4.32) S1x)< € (x €[Bn,voul, n EN).
Similarly we get
(4.33) $HX)<C & € [Burvonl, n €N,

For the estimation of ) (x) we need

|x

[Vkn — vn+1,n||ykn — Vol Ykn — a—nl[ykn — an|

. 2
~ |)jrz_a n||yjn_an| Slrlﬂjn
Vin —a—nllykn _a’1| sindh,
(see (2.8)). Split D (x) into two parts

(4.35) Do =D W+ Y ).

k€EAn keBp

_v0n| -~ |x _a—n”x _an|

(4.34)

In order to estimate the first sum, we distinguish two cases.
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CASE 1. Let 1 <j < Cl\/’%n and k € Ay, ie. 9,0, € (0,5]. From
(4.26) and (4.34) we obtain that
j/2 3.3\ 2 52 2
- 1 [0y 1
> wsc Z(ﬂ>—<—"> T D
k€A o \Dkn /K A\ k=j /2 ke =jl+1
[cn] 3 1/2 [cn] 1 3/2
kn _ Ykn L on
+Z<ﬁkn> . Z +1og(2,)+k§;k i
-] n

(Here we used the Remark in Part 4.1.)

CASE l(a). If 1 <j < ¢ \/”D— then using (4.1) we get
n

2\ 1/6 Cl\/%l P12
Y m<c ZE(]) +log2)+ Y E(E> +

k€EAn k=1 k=2j
[en] .o\ 12 j/2?
1/ j n\3/2 1 1
_ Z < _ - ;
S ) s a v
k:clﬁ k=]
(o] VDn ] 1/2 j 1/2 [en] n3/2
+ J_ -4 <
>otlem) X (e

~1Dn
!
<G {1 +log(2j)+ 1+ (%) } < Gy log(2)).

CASE 1(b). If ¢;

<j <
\/D_rz Jj < [cn] then

j/2 1 [x [en] i 3/2

n k=2j




100 D. G. KUBAYI

1/6 1/2 1F j/2
<cC ! n ! + L+1 2 )+
=1 \ub, J k5/6 2 Vik 08

=1 k:cl nm

[cn] 3/2 1/6 1/2 1/6
+Zk5/2 < { > (\/';)_’) +1+10g(2j)+1}§

<G {./ NG +1og<2,>} < Cylog(2)).

Thus we proved that

(4.36) > )< Clogn  (x € [Buvoul, n €N).
keAn

CASE 2. Now we estimate the second term of (4.35), i.e. we suppose that
X & Yjn € [Bn,von] is a fixed point (¥;, € (0,%]) and k € By,. From (4.34),
(4.18) and Lemma 1 we get

sind; 1w =) 5/2 1
§ § ’ Jn kn
w=c (Slnﬁk ) al/2 [0 — Vgl :
jl‘l

kEBy kEB, Jn
4.37
(4.37) 5302 U
< C] Z jn (7'[ - ﬁkn)
N kEBy K wjn - ﬁkn|

CASE 2(a). If 0 < #;, < 7 then |9y, — 0j,| ~ 1. Since k € B, thus
cn < k < n with a constant ¢ > 0 independent of n (iie. 1 < K =n+1—
— k < cn). Consequently by (4.2) we get

n

¢
vV P-n 1/6 [cn] 1/2
1 K 1 K
S Y wlmo) + X x(6) (s

k€Bn K=1 K=cy —A—
V D—?'l

copr (L ), Lal<e
= “1Y%n nD_, ﬁ ﬁ ne,s< (.

CASE 2(b). Now, we suppose that 7 < @, < Z. If U, € [%,%’r]

.
then (B, — 97| ~ LIl (sce (4.4)). Tf Oy € [3E,7) then By — 7] ~ 1.

jl‘l
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Therefore by (4.37) and (4.2) we get

1 (= y)'/?
Z (=¢ Z K wkn _ﬁjn| =

keBn keBn
1 n (ﬂ_ﬁkn)l/z
<cC L W= Okn) 7
= 23 Klk—j[+1 23 K =
ﬂkne[%’Tﬂ] ﬂkne[_nﬂ)
Cz}’l
\/D_
<G il + an K 1/6+ % LK) <
ogn — — | —
=518 K \nD_, K \n =
K=1 K= con
D_,

< Gflogn +1+1} < Gylogn.

Consequently

Y ()< Clogn (x € [Bn,voul, n €N).

Combining this with (4.35) and (4.36) we get
Y @< Clogn (x € [Ba,vonls n €N
Therefore using (4.32) and (4.33) we obtain that
Anw, Vaw?),x) < Clogn  (x € [Bp,vonl, n € N).
As in Part 4.2 we can prove that

AW, Vaw?),zi) > Clogn,

where z;, = (Vi +Yis1,,)/2 for 1 <'s (s is a fixed index, independent of 1)
which proves (4.31). |

4.4. Proof of Theorem 3

Here it suffices to show that

(4.38) Z |”kn(X)|2 = Z |ukn(x)|2 + Z |ukn(x)|2 <C
' k=1

keAn kEBn
(x € [:3117VO]1]7 nec N)
(see Part 4.2 and (4.24)).
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CASE 1. Let x = yj, € [Bn,von] and k € Ay. By (4.26) we get

) Y W 1 1
n n
2 a0 < € Zﬁ(ﬁ- )+Z Gt 2 e,
k€ An k=1 I k=i )2 k=2j "
ke An
We consider two cases.

CASE 1(a). If 1 <j < Cl\/— then by (4.1) we have

il2

5/3
Z |”‘kn(x)|2 <C Zkiz <k> + 1+

keAn k=1 J

il2

1 1 1 /nD,\'?
<G 5/3Zk1/3 N kZZ MJ’;(f) %
=<]

[en] 13
1 1 1 1 (nD,

D\ 1/3
gc3{1+1+1+<—’2’> logn}§C4,
n

where we used (4.7).

CASE 1(b). If ¢; \/'%n <j < [cn], then (4.1) gives

n

1/Du

5/3 5 j/2 5
1 k n 1 [k

E |”kn(x)|2 <C E ) (—> (—> + E ) <—> +
KEAn P 1)l RN

vDn

2j [en]

1 1k
TR

k=j/2 k=2j



ON THE WEIGHTED LEBESGUE FUNCTIONS 103

IN

1 5/3 n
“ (”Dn> (J_

where we used (4.7).
CASE 2. Suppose that x = y;, € [Bn,von] is a fixed point (#;, € (0,%])

and k € B,,. From (4.18) and (4.4) we get
L (=) 1

> lua P <C Y .

" K? ﬁjn |ﬁjn - ﬂkn|2

(4.39)
keBn kEBn

CASE 2(a). If 0 < 9j, < 7 then by (4.2) we have

Z |ukn(x)|2 <

Ccy n
D_
ot d ST Sy
= ﬁjn = 2\nD_, Kecy 2 K2\ n =
D_p
(%) 1
1 1 5/3 vV D-n 1 1 [cn] \
<Cig— ( > K5 <
ﬁjn nD_, KZ=1 K3 n? chzzn
D—n
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1/3 2/3
<G (n.Dn> { ! + l} <Gy (@> < Gs.

2
J nD—n n

CASE 2(b). Let § < ¥;, < 7. Since

k—jl . 3

=il ra,, e [5.30]
|ﬁjn — | ~ n o 32 "

1, if 9, [Zn,n)

thus by (4.39) and (4.2) we obtain that

1 (=%,
wen (0> < C <
Z | " | Z K? wkn - jn|2

keBn keBI’l
1 n? (r — 6kn)5
<G T+ S
27;3 K2 (|k —j|+1)? 23 K2
ﬂkne[j,zﬂ] 'l?]‘»ne[zﬂ,f[)
) l’;
VO K \3/3 [en] 1 /KNS
seitr 2 wmlms) v 2 weln) (f
K=1 nY—n K= n "
_CZ\/E
5/3 2/3
1 n 1
<Gql+ +— 7 <C
B 3{ (”D—n> (\/D—n> ”}_ )
which proves Theorem 3. |
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A NOTE ON THE “GOOD” NODES OF WEIGHTED LAGRANGE
INTERPOLATION FOR NON-EVEN WEIGHTS

By
D. G. KUBAYI

(Received November 15, 2002)

In [4] J. Szabados established the connection between “good” nodes of
weighted Lagrange interpolation and the Lebesgue constants. L. Szili [5]
extended this result to other even exponential weights. Here we generalize
these results to include non-even exponential weights. These point systems
serve as basis for Erd8s type convergence processes in weighted interpolation
(see [6]-[8]).

In defining our class of weights, we need the notion of a quasi-increasing
function. We say that a function f : (0,d) — R is quasi-increasing if there
exists C > 0 such that

O0<x<y<d = fx)<CfQ).

Obviously, a monotone increasing function is quasi-increasing. Similarly, we
may define the notion of a qguasi-decreasing function. Following is our class
of weights (see [3, Chapter 1]).

DEFINITION. Let I :=(c,d) (—00 <c<0<d < o0)andw :=exp(—Q),
where Q : I — [0, oo) satisfies the following properties:
(a) Q' is continuous in I and Q(0) = 0;
(b) Q" exists and is positive in I \ {0};
(c) lim Q(t) =oc0= lim Q(t).
t—c+ t—d—

(d) The function

(1) T(t) := teI\{0}

is quasi-increasing in (0, d) and quasi-decreasing in (c, 0), with T(¢) > A > 1,
t€I\{0}.
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(e) There exists C} > 0 such that

Q" (x) /
— < |Q(x)|Qx), a.e.x € I\ {0}.
|Q’(x)| 1| | \{ }
(f) There exists a compact subinterval J of the open interval I, and
G > 0 such that

Q' _ Q)

o) = 2 00) ae.x €I\ J
Then we write w € F(C3+).
Let
2) Xn = {xnn <Xp_1p <...<Xpy <xpppCI

be an interpolatory matrix and suppose that w € F(C2+). It is known that
the weighted Lebesgue constants A, (w, X;;) (n € N) play an important role
in the convergence-divergence behaviour of weighted Lagrange interpolation
polynomials. Ay (w, X}) is defined as the sup norm on I of the weighted
Lebesgue function

) 9, Xi,) 1= 3 i (O 0 = 3 ),
k=1 k=1

where

W T = G X)) )~ )

(1<k<n,neN
are the fundamental functions of weighted Lagrange interpolation. Here
n
mp(x)=cp H (x — Xkpn)-
k=1

For a fixed weight w € F(C?+) and for all n € N we define the Mhaskar—
Rahmanov-Saff numbers a+, = a+,(w) to be the roots of the system of
equations

! / Q')
— dx =n,
na \/(x —a—p)(an —x)

1 / Q') »
T \/(x —a—p)ap —x)
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The significance of ay, lies partly in the identity

|Pw]| :=max |[(Pw)(x)|= max |[(Pw)(x)|
xel x€|[ ]

a_p,an

valid for all polynomials P of degree at most n (shortly P € #,,). For more
on a+,, see Chapters 1 and 3 in [3].

For a fixed weight w € #(C2+) and for n € N we set

—2/3
1 at
Op = —(an + |a—n|), Nan == | nT(axn) | n| 5
)
0
Dy, = T(a:l:n)ia D;; :=max{D_y, Dy }.
|a:l:n|

Our generalization of Proposition 2 in [4] and Theorem in [5] is the
following

THEOREM 1. Letw € F(C%+). If r, € P, satisties

n

0
(6) lraw| <e VP

with a constant Cy > 0 (independent of n), moreover for a pointy € I we
have (r,w)(y) =1 then

2/3 2/3
(7N a-p (1 + Gn_p(og||ryw|)) ) <y<ap (1 + Cinp(log|[raw|]) ),
where the constants Cy, C, > 0 depend only on w.

REMARK. For every weight w € F(C?+) there exist ¢ > 0, C > 0 and
ng € N such that

T(an)o
D, = 7(0;”) L<Cn?Tf (n 2 np)
n

(see [3, Lemma 3.7]) and hence

ZCns/2—>oo as n — o0o.

n
(Similar relations hold for D_,.)

Let’s consider a point system X, for which the weighted fundamental
polynomials g, (see (4)) are uniformly bounded on I, i.e. there exists a
constant A > 0 such that

|G W, Xn,x)| < A xel, k=1,2,...,n, n €N).
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This will be called an E(w)-system (the letter E reminds of Erd&s). For
many weights and for these type point systems one can construct convergent
sequence of weighted Lagrange interpolation polynomials of degree at most
n(l+¢), where ¢ > 0 is a fixed real number (see [6]—[8]).

From the Theorem 1 and the Remark above immediately follows the
following

COROLLARY 2. Let w € F(C?+) and suppose that the point system X,
(n € N) is an E(w)-system. Then there exist Cy, C, > 0 such that

®) a_n(1+GCn_p) < xpp < an(1+Cimy)
(k=1,2,...,n, n € N).

REMARK. For even exponential weights L. Szili and P. Vértesi proved
(8) using different methods (see [6]—[8]).

Now let’s consider the Lebesgue constants A,(w, X;) (n € N). Let
yn € I such that

An(W, Xp) =An(W, X, yn)
and consider the weighted polynomial

n

(raw)(x) = Z (Sgn dkn (Ykn))an (x).
k=1

Then

|(rnw)(x)| < A’I’l(wa X, x) < Ap(w, Xp) = (raw)(n),
that is, ||rp,w|| = Ap(w, X3). Since |(r,w)(xg,,)| = 1, it follows from Theorem
1 that we have

COROLLARY 3. Let w € F(C?+). Suppose that the point system X, is
such that

COL*
) Anw, Xp) <e VDI

with a constant Cy > 0 independent of n. Then there exist C|, Cy, > 0 such
that

(10) a_p(1+ C277—an) <X < ap(l+ Cl’?an)
(k=1,2,...,n, n € N),
where

2/3
By = (logAn(W’ )(n)) / .
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For w € 9(C2+) it is known that there exists a point system for which
An(w,X,) ~ logn, n € N. For the construction of these point systems,
see [1] and [2]. Moreover P. Vértesi [9] proved that the logn order is the
best possible. Thus the “best” weighted Lagrange interpolation point systems
satisfy

a—n(1+ Gn—yn(log 10gn)2/3) < Xkn < an(1+ Cyyp(log 10gn)2/3)
(k=1,2,...,n, n €N)
with some constants C;, (5 > 0 depending only on w.

Y

PROOF OF THEOREM 1. Let us fix w € F(C?+) and n € N. For every
rm € P, we have
(12) o)) < e e
where U, is the “decaying factor” for weighted polynomials, see Lemma 4.4,
(1.93), pp. 254 and 473 in [3]. Note that here we have used (4.12) in [3] with

—;_2

Q=t¢ 5

We shall prove our statement only for the interval (0,d). We can obtain
the analogous statement for (c, 0) by replacing x by —x.

Let us suppose that x > 0. We need the following properties of U, (see
[3, Lemma 4.5 and (1.93)]:

(@) Up(x)=0ifx € [0,ax];
(b) U,(x) is decreasing and negative for x € [a,,d);

(c) for K > 1 there exist C > 0 and ny € N such that for n > ng and
an <x <agy

a x 3/2 1 x 3/2
(I13) Un(x) < —=CnT(an) = (_ - 1) =-C |:_ (_ - 1)] >

5” ap 7711 an
moreover for x > ag,
M __ o "
T(an )611 V' Dy

From Lemma 3.11 in [3], it follows that for K > 1, we have

P IR s
Hn - (T(al‘l)r]n> B (@n) (l’l (an) E) B

an

n
- T(an)dy - v Dy )

Up(x) < —Cn
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From this relation, we obtain that there exists ({y > 0 such that

—_Ch_ .
(raow)@)| < e VD ||raw]| if x > agy,.

Therefore, if r, € P, satisfies (6) then |(r,w)(x)| < 1 for x > ag,. This
means that if for a point y € I we have (r,w)(y) = 1 then y < ag, and by
(12) and (13) we obtain

_C( (2 _1y)3/2
1= )] < e~ D tan =7
which gives
(14) y < an (1+ CimaQlograw])??)

As we observed earlier, replacing x by —x gives

yZa—y, (1 + Gn—pn(log ||’"11W“)2/3) .

which together with (14) gives the statement of the theorem. |
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A UNIFIED THEORY OF CONTRA-CONTINUITY FOR
FUNCTIONS

By
TAKASHI NOIRI and VALERIU POPA

(Received January 23, 2003)

1. Introduction

Semi-open sets, preopen sets, -open sets, 3-open sets and d-open sets
play an important role in the researches of generalizations of continuity
in topological spaces. By using these sets many authors introduced and
studied various types of generalizations of continuity. In 1996, DONTCHEV
[13] introduced the notion of contra-continuous functions. Recently, new
types of contra-continuous functions are introduced and studied: for ex-
ample, subcontra-continuity [6], contra 0-semi-continuity [9], contra-super-
continuity [16], contra-a -continuity [17], contra-semi-continuity [14], contra-
precontinuity [18], contra-f-continuity [7]. On the other hand, the present
authors introduced and investigated the notions of m-continuous functions
[50], almost m-continuous functions [52] and weakly m-continuous functions
[53].

In this paper, we introduce the notion of contra m-continuous functions as
functions from a set X satisfying some minimal conditions into a topological
space and investigate their properties and the relationships between contra
m-continuity and other related generalized forms of continuity. It turns out
that the contra m-continuity is a unified form of several modifications of
contra-continuity due to DONTCHEV [13].

2. Preliminaries

Let (X,7) be a topological space and A a subset of X. The closure of
A and the interior of A are denoted by CI(A) and Int(A), respectively. A
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subset A is said to be regular closed (resp. regular open) if Cl(Int(A)) = A
(resp. Int(CI(A)) = A). A point x € X is called a 0 -cluster (resp. 0-cluster)
point of A if Int(CI(V)) N A # @ (resp. CI(V) N A # () for every open
set V containing x. The set of all d-cluster (resp. 6-cluster) points of A is
called the d-closure (resp 6-closure) of A and is denoted by Cls(A) (resp.
Cly(A)). If A = Cls(A) (resp. A = Cly(A)), then A is said to be J-closed
(resp. O-closed). The complement of a d-closed (resp. 6-closed) set is called
a 0-open (resp. 6-open) set. The union of all d-open (resp. 6-open) sets
contained in a subset A is called the O -interior (resp. 0-interior) of A and is
denoted by Intg(A) (resp. Inty(A)).

DEFINITION 2.1. Let (X,7) be a topological space. A subset A of X
is said to be semi-open [22] (resp. preopen [29], a-open [36], -open [1]
or semi-preopen [3]) if A C Cl(Int(A)), (resp. A C Int(Cl(A)), A C
C Int(Cl(Int(A))), A C Cl(Int(CI(A)))).

The family of all semi-open (resp. preopen, ¢-open, 3-open) sets in X
is denoted by SO(X) (resp. PO(X), a(X), f(X)).

DEFINITION 2.2. The complement of a semi-open (resp. preopen, & -open,
p-open) set is said to be semi-closed [11] (resp. preclosed [29], a.-closed [30],
B-closed [1] or semi-preclosed [3]).

DEFINITION 2.3. The intersection of all semi-closed (resp. preclosed, a-
closed, B-closed) sets of X containing A is called the semi-closure [11] (resp.
preclosure [15], a-closure [30], B-closure [2] or semi-preclosure [3]) of A
and is denoted by sCI(A) (resp. pCl(A), a CI(A), B Cl1(A) or spCl(A)).

DEFINITION 2.4. The union of all semi-open (resp. preopen, «-open,
B-open) sets of X contained in A is called the semi-interior (resp. preinterior,
a-interior, B-interior or semi-preinterior) of A and is denoted by sInt(A)
(resp. pInt(A), a Int(A), B Int(A) or splnt(A)).

Throughout the present paper, (X, 7) and (Y, o) denote topological spaces
and f : (X,7) — (Y,0) presents a (single valued) function from a topological
space (X, 1) into a topological space (Y, 0).

DEFINITION 2.5. A function f : (X,7) — (Y,0) is said to be contra-
continuous [13] (resp. contra-super-continuous [16], contra-semi-continuous
[14], contra-precontinuous [18), contra a-continuous [17], contra 3 -continu-

ous [7]) if f _I(V) is closed (resp. 0 -closed, semi-closed, preclosed, @ -closed,
p-closed) for every open set V of Y.
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3. Contra m-continuous functions

DEFINITION 3.1. A subfamily mx of the power set P(X) of a nonempty
set X is called a minimal structure (briefly m-structure) on X if ) € mx and
X € mx. By (X,mx), we denote a nonempty set X with a minimal structure
myx on X. Each member of mx is said to be mx-open and the complement
of an mx-open set is said to be mx-closed.

REMARK 3.1. Let (X,7) be a topological space. Then the families 7,
SO(X), PO(X), a(X), B(X) are all m-structures on X.

DEFINITION 3.2. Let X be a nonempty set and mx an m-structure on X.
For a subset A of X, the mx-closure of A and the mx-interior of A are
defined in [27] as follows:

() mx-Cl(A)=({F:ACFX—-Fecmy},

Q) mx-Int(A)={U : U C A, U € mx}.

REMARK 3.2. Let (X,7) be a topological space and A a subset of X. If
myx =1 (resp. SO(X), PO(X), a(X), (X)), then we have

(1) mx-CI(A) = CI(A) (resp. sCI(A), pCl(A), a CI(A), g CI(A)),

(2) mx-Int(A) = Int(A) (resp. sInt(A), pInt(A), a Int(A), B Int(A)).

LEMMA 3.1. (Maki [27]) Let X be a nonempty set and myx a minimal
structure on X . For subsets A and B of X, the following properties hold:

(1) mx-Cl(X — A) = X — (mx-Int(A)) and mx-Int(X — A) = X —
— (mx-CI(A)),

) If (X — A) € my, then mx-Cl(A) = A and if A € my, then
mx -Int(A) = A,

B)mx-Cl(0) =0, myx-Cl(X) = X, mx-Int()) = ) and mx -Int(X) = X,

@4 If A C B, then mx-Cl(A) C mx-Cl(B) and mx-Int(A) C
C mx-Int(B),

(5) A Cmx-Cl(A) and mx-Int(A) C A,

(6) myx-Clmx-Cl(A)) = mx-Cl(A) and mx-Intimx-Int(A)) =
=myx-Int(A).

LEMMA 3.2. (Popa and Noiri [49]) Let X be a nonempty set with a
minimal structure myx and A a subset of X. Then x € mx-CI(A) if and
only it UNA#0 forevery U € mx containing x.
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DEFINITION 3.3. A minimal structure mx on a nonempty set X is said to
have the property ($) [27] if the union of any family of subsets belonging to
mx belongs to mx.

LEMMA 3.3. (Popa and Noiri [48]) For a minimal structure mx on a
nonempty set X, the following properties are equivalent:

(1) mx has the property (B);

Q) Ifmx-Int(V)=V, then V € mx;

B) Ifmx-CI(F)=F, then X — F € mx.

LEMMA 3.4. Let X be a nonempty set and mx a minimal structure on

X satistying the property (B ). For a subset A of X, the following properties
hold:

(1) A € my if and only if mx -Int(A) = A,
(2) A is mx -closed if and only if mx -Cl(A) = A,
(3) mx-Int(A) € mx and mx -CI(A) is mx -closed.

PROOF. This follows immediately from Lemmas 3.1 and 3.3.

DEFINITION 3.4. A function f : (X,mx) — (Y,0), where X is a
nonempty set with an m-structure mx and (Y,0) is a topological space,
is said to be m-continuous [50] (resp. almost m-continuous [52], weakly
m-continuous [53]) if for each point x € X and each open set V of Y
containing f(x), there exists U € myx containing x such that f(U) C V
(resp. f(U) C Int(CI(V)), f(U) C CI(V)).

THEOREM 3.1. For a function f : (X,mx) — (Y,0), where (X,mx) Is
a nonempty set with an m-structure my and (Y,0) is a topological space,the
following properties are equivalent:

(1) f is m-continuous;

(2)f_1(V) = mX-Int(f_l(V)) for every open set V of (Y,0);
(3) f~YK) = mx-Cl(f ~\(K)) for every closed set K of (Y,0).
PROOF. This follows from Theorem 3.1 of [50].

COROLLARY 3.1. (Popa and Noiri [48]) Let X be a nonempty set with
an m-structure mx satisfying the property (8). For a functionf : (X,mx) —
— (Y, 0), the following properties are equivalent:

(1) f is m-continuous;
(2)f_1(V) € myx for every open set V of (Y,0);
(3)f_1(K) is mx -closed in (X, mx) for every closed set K of (Y,0).
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DEFINITION 3.5. A function f : (X,mx) — (Y,0) is said to be contra
m-continuous iff_l(V) =mx- Cl(f_l(V)) for every open set V of (Y,0).
And also f is said to be contra m-continuous at x € X if for each closed set
F containing f(x), there exists U € mx containing x such that f(U) C F.

REMARK 3.3. The notions of m-continuity and contra m-continuity are
independent by Examples 2.1 and 2.2 of [7] and Examples 2.1 and 2.2 of
[18].

DEFINITION 3.6. Let A be a subset of a topological space (X, 7). The set
({U €1 :AC U} is called the kernel of A [32] and is denoted by Ker(A).
In [26], the kernel of A is called a A-set.

LEMMA 3.5. (Jafari and Noiri [16]) For subsets A and B of a topological
space (X, 1), the following properties hold:

(1) x € Ker(A) if and only if AN F # () for any closed set F containing
X,

(2) If A is open in (X,1), then A = Ker(A),
(3) If A C B, then Ker(A) C Ker(B).

THEOREM 3.2. For a function f : (X,mx) — (Y,0), the following
properties are equivalent:

(1) f is contra m-continuous;

) f_l (F) = mX-Int(f_1 (F)) for every closed set F of Y ;
(3) for each x € X, f is contra m-continuous at x ;
4) f(mx-Cl(A)) C Ker(f(A)) for every subset A of X ;

®)) mX-Cl(f_l (B)) C f_l(Ker(B)) for every subset B of Y .

PROOF. (1) = (2): Let F be any closed set of Y. Then Y — F is open and
=YY = F)=mx-Cl(f (Y — F)). By Lemma 3.1, we have X —f —1(F) =
=X —[mx- Int(f_l(F))]. Therefore, we havef_l(F) =mx- Int(f_l(F)).

(2) = (3): Let x € X and F be a closed set of Y containing f(x). Then
x € f7Y(F). By (2), x € mx-Int(f " (F)). There exists U € mx containing
x such that x € U C f~1(F). Then, x € U and f(U) C F.

(3) = (4): Let A be any subset of X. Let x € mx-CI(A) and F be a
closed set of Y containing f(x). Then by (3) there exists U € mx containing

x such that f(U) C F; hence x € U C f~1(F). Since x € mx-CI(A), by
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Lemma 3.2 UNA # () and hence §) #f(UNA) C f(U)Nf(A) C FNf(A). By
Lemma 3.5, we have f(x) € Ker(f(A)) and hence f (imx- CI(A)) C Ker(f(A)).

(4) = (5): Let B be any subset of Y. By (4) and Lemma 3.5,

fmx-Cl(f~(B))) C Ker(f (f ~(B))) C Ker(B)

and hence mx- Cl(f ~1(B)) C f~!(Ker(B)).

(5) = (1): Let V be any open set of Y. Then by (5) and Lemma
3.5 we have mx-ClI(f (V) ¢ f~1(Ker(V)) = f~1(V). By Lemma 3.1,
mx-Cl(f ~1(V)) = f~1(V). This shows that f is contra m-continuous.

COROLLARY 3.2. Let X be a nonempty set with a minimal struture mx
satistfying the property (B) and (Y,0) a topological space. For a function
[ (X,mx) — (Y,0), the following properties are equivalent:

(1) f is contra m-continuous;
@ f _I(F) € mx for every closed set F of Y ;
(3)f_1( V) is mx -closed in (X,mx) for every open set V of Y.

REMARK 3.4. Let (X,7) and (Y,0) be topological spaces. We put mx =
7 (resp. SO(X), PO(X), a(X), B(X)). Then a contra m-continuous function
f  (X,mx) — (Y,0) is contra-continuous (resp. contra-semi-continuous,
contra-precontinuous, contra-¢-continuous, contra-£ -continuous). Moreover,
Theorem 3.2 and Corollary 3.2 establish their characterizations which are
obtained in [13] (resp. [14], [18], [17], [7]).

For contra-3-continuous functions, for example, the following character-
izations are known in [7]:

COROLLARY 3.3. For a function f : (X,7) — (Y,0), the following
properties are equivalent:

(1) f is contra -continuous;
) f_l(F) € B(X) for every closed set F of Y ;

(3) for each x € X and each closed set F containing f (x), there exists
U € B(X) containing x such that f(U) C F;

(4) f(gCI(A)) C Ker(f (A)) for every subset A of X ;
(5) p CIf ~1(B)) C £~ (Ker(B)) for every subset B of Y .



A UNIFIED THEORY OF CONTRA-CONTINUITY FOR FUNCTIONS 121

4. Almost m-continuity

In this section, we obtain some sufficient conditions for a contra m-
continuous function to be almost m-continuous.

DEFINITION 4.1. A function f : (X,7) — (Y,0) is said to be weakly con-
tinuous [21] (resp. weakly quasicontinuous [55] or weakly semi-continuous
[5], [10], [20]; almost weakly continuous [19] or quasi precontinuous [43];
weakly a-continuous [37]; weakly B -continuous [48]) if for each x € X and
each open set V of Y containing f (x), there exists an open (resp. semi-open,
preopen, ¢ -open, 3-open) set U of X containing x such that f(U) C CI(V).

REMARK 4.1. Let f : (X,7) — (Y,0) be a function and mx =t (resp.
SO(X), PO(X), a(X), B(X)). Then a weakly m-continuous function f :
(X,mx) — (Y,0) is weakly continuous (resp. weakly semi-continuous,
almost weakly continuous, weakly a-continuous, weakly f-continuous).

It is proved in [18] that every contra-precontinuous function is almost
weakly continuous. The following theorem is a generalization of this result.

THEOREM 4.1. If a function f : (X,mx) — (Y,0) is contra m-continu-
ous, then it is weakly m-continuous.

PROOF. Let x € X and V be any open set of Y containing f(x). Then
CI(V) is a closed set containing f(x). Since f is contra m-continuous, by
Theorem 3.2 there exists U € myx containing x such that f(U) C CI(V);
hence f is weakly m-continuous.

COROLLARY 4.1. Ifa functionf : (X,mx) — (Y,0) is contra-continuous
(resp. contra-semi-continuous, contra-precontinuous, contra-c.-continuous,
contra-3 -continuous), it is weakly continuous (resp. weakly semi-continuous,
almost weakly continuous, weakly a -continuous, weakly f -continuous).

DEFINITION 4.2. A function f : (X,7) — (Y,0) is said to be almost-
continuous [60] (resp. almost quasicontinuous [45] or almost semi-continuous
[28], [33], [38]; almost precontinuous [35], [54]; almost o -continuous [62]
or almost feebly continuous [24]; almost -continuous [35]) if for each x €
€ X and each open set V of Y containing f(x), there exists an open (resp.
semi-open, preopen, a-open, 3-open) set U of X containing x such that
f(U) C Int(CI(V)).

REMARK 4.2. Let f : (X,7) — (Y,0) be a function and mx =t (resp.
SO(X), PO(X), a(X), B(X)). Then an almost m-continuous function f :
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(X,mx) — (Y,0)is almost continuous (resp. almost semi-continuous, almost
precontinuous, almost @ -continuous, almost 3-continuous).

DEFINITION 4.3. A function f : (X,t) — (Y,0) is said to be almost
open [58] (resp. almost preopen [47], almost regular open [1] or M -preopen
[31], a-preopen [51], almost -open [40]) if for each open (resp. semi-open,
preopen, ¢ -open, -open) set U of X, f(U) C Int(CI(U)).

DEFINITION 4.4. A function f : (X,mx) — (Y,0) is said to be almost
m-open if f(U) C Int(CI(U)) for every U € mx.

It is proved in [18] that every M -preopen contra-precontinuous function
is almost precontinuous. The following theorem is a generalization of this
result.

THEOREM 4.2. If f : (X,mx) — (Y,0) is almost m-open and contra
m-continuous, then f is almost m-continuous.

PROOF. Let x € X and V be any open set of Y containing f(x). Then
CI(V) is a closed set containing f(x). Since f is contra m-continuous, by
Theorem 3.2 there exists U € myx containing x such that f(U) C CI(V).
Since f is almost m-open, f(U) C Int(CI(f(U))) C Int(CI(V)). Hence f is
almost m-continuous.

COROLLARY 4.2. If f : (X,7) — (Y,0) Is contra-continuous (resp.
contra-semi-continuous, contra-precontinuous, contra-c.-continuous, contra-
B -continuous) and almost-open (resp. almost preopen, M -preopen, c -pre-
open, almost f3 -open), then it is almost continuous (resp. almost semi-contin-
uous, almost precontinuous, almost ¢ -continuous, almost 3 -continuous).

DEFINITION 4.5. A topological space (Y,0) is said to be almost-regular
[59] if for any regular closed set F of Y and any y ¢ F, there exist disjoint
open sets U and V suchthaty € U and F C V.

THEOREM 4.3. Iff : (X,mx) — (Y,0) is contram-continuous and (Y, o)
is almost-regular, then f is almost m-continuous.

PROOF. Let x € X and V be any open set of Y containing f(x). Since
(Y,0) is almost-regular, by Theorem 2.2 of [59] there exists a regular open
set G of Y such that f(x) € G C CI(G) C Int(CI(V)). Since f is contra
m-continuous and CI(G) is closed in Y, by Theorem 3.2 there exists U € mx
containing x such that f(U) C CI(G) C Int(CI(V). Hence f is almost
m-continuous.
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DEFINITION 4.6. A function f : (X,mx) — (Y,0) is said to be faintly
m-continuous if, for each x € X and each 0-open set V of Y containing
f(x), there exists U € my containing x such that f(U) C V.

REMARK 4.3. Let (X,7) be a topological space and mx = T (resp.
SO(X), PO(X), B(X)). Then faint m-continuity coincides with faint con-
tinuity [23] (resp. faint semi-continuity [39], faint precontinuity [39], faint
f-continuity [39]).

LEMMA 4.1. For a function f : (X,mx) — (Y,0), the following proper-
ties are equivalent:

(1) f is faintly m-continuous;

2) f_l( V)= mX-Int(f_l( V) for every 0 -open set V of (Y,0);

(3) f~HK) = mx-Cl(f ~\(K)) for every 0 -closed set K of (Y,0).

THEOREM 4.4. If (Y,0) is a regular space, then the implications (1) =
2) = (3) = (4) = (5) hold for a function f : (X,mx) — (Y,0):

(1) f is contra m-continuous;

(2) f is almost m -continuous;

(3) f is weakly m-continuous;

(4) f is faintly m-continuous;

(5) f is m-continuous.

PROOF. (1) = (2): This follows from Theorem 4.3.

(2) = (3): This is obvious.

(3) = (4): Let F be any 6-closed set of Y. It follows from Theorem 3.2
of [53] that mx-CI(f ~1(F)) ¢ f~1(Cly(F)) = f ~'(F). By Lemma 4.1, f is
faintly m-continuous.

(4) = (5): Let V be any open set of Y. Since Y is regular, V is
6-open. By Lemma 4.1, f ~1(V) = mx-Int(f ~1(V)). By Theorem 3.1, f is
m-continuous.

COROLLARY 4.3. If a functionf : (X,7) — (Y,0) is contra{ -continuous
(resp. contra precontinuous) and (Y,0) is regular, then f is B -continuous
(resp. precontinuous).

PROOF. This is shown in [7] (resp. [18]).

REMARK 4.4. By Remark 3.1 of [18], every m-continuous function is not
always contra m-continuous even if (Y, 0) is regular.
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LEMMA 4.2. (Popa and Noiri [52]). A function f : (X,mx) — (Y,0) is
almost m-continuous if and only if for any x € X and any regular open set
V' containing f (x), there exists U € mx containing x such thatf(U) C V.

We recall that a topological space (X, 1) is said to be extremally discon-
nected (briefly E.D.) if the closure of every open set of X is open in (X, 7).

THEOREM 4.5. Iff : (X,mx) — (Y,0) is contram-continuous and (Y, o)
is E.D., then f is almost m-continuous.

PROOF. Let x € X and V be any regular open set of Y containing f (x).
Since (Y,0) is E.D., by Lemma 5.6 of [43] V is clopen. Since f is contra
m-continuous, by Theprem 3.2 there exists U € mx containing x such that
f(U) C V. Hence, by Lemma 4.2 f is almost m-continuous.

DEFINITION 4.7. A function f : (X,mx) — (Y,0) is said to satisfy the
m-interiority condition if mx-Int(f ~1(Cl(V))) C f~1(V) for each open set
V of (Y,0).

THEOREM 4.6. If f : (X,mx) — (Y,0) Is contra m-continuous and
satisfies the m-interiority condition, then f is m-continuous.

PROOF. Let V be any open set of Y. Since f is contra m-continuous, by
Theorem 3.2 and Lemma 3.1

7Yy c e v)) = mx-Intf ~HCUVY)) =
= mx- Int(mx-Int(f "1 (CI(V))) C mx-Int(f ~L(V)) c f~L(V).

Therefore, we obtain f ~1(V) = mx-Int(f “1(V)). Hence, by Theorem 3.1 f
is m-continuous.

5. Contra m-closed graphs

DEFINITION 5.1. A function f : (X,mx) — (Y,0) is said to have a
contra m-closed graph if for each (x,y) € (X x Y) — G(f), there exist an
mx-open set U containing x and a closed set V of Y containing y such that
(U x V)NG(K) =0.

LEMMA 5.1. A function f : (X,mx) — (Y,0) has a contra m-closed
graph if and only if for each (x,y) € (X x Y) — G(f), there exist an mx -
open set U containing x and a closed set V of Y containing y such that
faoynv=0.
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THEOREM 5.1. Iff : (X,mx) — (Y,0) is a contra m -continuous function
and (Y,0) is Urysohn, then G(f) is contra m-closed.

PROOF. Suppose that (x,y) € (X X Y) — G(f). Then y # f(x). Since
Y is Urysohn, there exist open sets V and W in Y containing y and f(x),
respectively, such that CI(V) N CI(W) = (). Since f is contra m-continuous,
there exists an mx-open set U containing x such that f(U) C CI(W). This
implies that f(U) N CI(V) = ) and by Lemma 5.1 G(f) is contra m-closed.

REMARK 5.1. Let f : (X,7) — (Y,0) be a function. If mxy = PO(X)
(resp. a(X), B(X)), then by Theorem 5.1 we obtain the results established in
Theorem 4.1 of [18] (resp. Theorem 4.1 of [17], Theorem 2.21 of [7]).

THEOREM 5.2. If f : (X,mx) — (Y,0) is an m-continuous function and
(Y,0) is Ty, then G(f) is contra m-closed.

PROOF. Let (x,y) € (X X Y) — G(f). Then y # f(x). Since Y is Ty,
there exists an open set V in Y such that f(x) € V andy ¢ V. Since f
is m-continuous, there exists U € myx containing x such that f(U) C V.
Therefore, f(U)N(Y — V)=0 and Y — V is a closed set of Y containing
y. This shows that G(f) is contra m-closed.

REMARK 5.2. Let f : (X,7) — (Y,0) be a function. If mx = a(X), then
by Theorem 5.2 we obtain the results established in Theorem 4.2 of [17].

DEFINITION 5.2. A nonempty set X with an m-structure my is said to
be m-T, [50] if for each distinct points x,y € X, there exist U,V € mx
containing x and y, respectively, such that U NV = (.

THEOREM 5.3. Iff : (X,mx) — (Y,0) is an injective contra m -continu-
ous function with a contra m-closed graph, then (X,t) is m-T5.

PROOF. Let x and y be any distinct points of X. Then, since f is injective,
we have f(x) # f(y). Then we have (x,f(y)) € (X x Y) — G(f). Since
G(f) is contra m-closed, by Lemma 5.1 there exist an mx-open set U of X
containing x and a closed set V of Y containing f (y) such that f(U)NV = (.
Since f is contra m-continuous, there exists G € myx containing y such
that f(G) C V. Therefore, we have f(U) N f(G) = (. Clearly, we obtain
U N G = . This shows that X is m-T5.
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6. Some properties of contra m-continuity

THEOREM 6.1. Let (X,mx) be a nonempty set with an m-structure my .
If for each pair of distinct points x| and x, in X there exists a function f of
(X,mx) into a Urysohn space (Y,0) such that f(x1) # f(x) and f is contra
m-continuous at x; and x,, then X is m-T5.

PROOF. Let x and y be any distinct points of X. Then by the hypothesis,
there exist an Urysohn space (Y,0) and a function f : (X,mx) — (Y,0)
which satisfies the conditions of this theorem. Let y; = f(x;) for i = 1,2. Then
y1 # y2. Since Y is Urysohn, there exist open sets U; and U, containing
y1 and y,, respectively, such that CI(U;) N CI(U,) = (. Since f is contra
m-continuous at x;, by Theorem 3.2 there exists Gy, € mx containing x;
such that f(Gy,) C CI(U;) for i = 1,2. Hence we obtain Gy, N Gy, = 0.
Therefore, X is m-T5.

COROLLARY 6.1. If f : (X,mx) — (Y,0) Is a contra m-continuous
injection and (Y, 0) is Urysohn, then (X,mx) is m-T,.

PROOF. For each pair of distinct points x| and xp in X, f is a contra
m-continuous function of (X,mx) into a Urysohn space (Y,0) such that
f(x1) # f(xp) because f is injective. Hence, by Theorem 6.1 (X,my) is
m—Tz.

DEFINITION 6.1. A topological space (Y,0) is said to be ultra-Hausdorff
[61] if for each pair of distinct points x and y in Y there exist clopen sets U
and V containing x and y, respectively, such that U NV = ().

THEOREM 6.2. Iff : (X,mx) — (Y,0) is a contra m-continuous injec-
tion and (Y, 0) is ultra-HausdorfT, then (X,mx) is m-T5.

PROOF. Let x; and x, be any distinct points in X. Then, since f is
injective, f(x;) # f(xp). Moreover, since (Y, 0) is ultra-Hausdorff, there exist
clopen sets Vi, V5 such that f(x;) € Vi, f(xp) € V, and Vi NV, = (. By
Theorem 3.2, there exists U; € mx containing x; such that f(U;) C V; for
i = 1,2. Clearly, we obtain U; N U, = (. Thus (X, mx) is m-T5.

REMARK 6.1. Let f : (X,7) — (Y,0) be a function. If mx = B(X),
then by Theorem 6.1, Corollary 6.1 and Theorem 6.2 we obtain the results
established in Theorem 2.14, Corollary 2.1 and Corollary 2.2 of [7].

DEFINITION 6.2. Let (X, mx) be a nonempty set with an m-structure myx.
A subset A of X is said to be m-dense in X if mx-CI(A) = X.
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THEOREM 6.3. Let X be a nonempty set with two minimal structures m )1(

and mg( such that UN'YV € mg( whenever U € m;( and 'V € mg( and (Y,0)
be a Hausdorff space. If g : (X, m}() — (Y,0) is almost m-continuous,
f (X, mg() — (Y,0) is contra m-continuous and f (x) = g(x) on an m-dense
set D of (X, mg(), then f(x)=g(x) on X.

PROOF. Let A = {x € X : f(x) = g(x)}. Suppose that x € X — A. Then
f(x) # g(x). Since (Y,0) is Hausdorft, there exist open sets V and W such
that f(x) € V, g(x) € W and V N W = (§; hence CI(V) N Int(CI(W)) = (.
Since g is almost m-continuous, there exists U; € m)l( containing x such

that g(U;) C Int(CI(W)). Since f is contra m-continuous, by Theorem 3.2

there exists U, € mg( containing x such that f(U,) C CI(V). Now put

U=UnNnU,thenx € U, U € mg( and U N A = (). Therefore, by
Lemma 3.2 x € X — m%-Cl(A) and hence A = m%-CI(A). On the other
hand, f(x) = g(x) on D; hence D C A. Since D is m-dense in (X, mg(),

X = m%-CI(D) C m%-CI(A) = A. Therefore, X = A and f(x) = g(x) for
each x € X.

DEFINITION 6.3. A nonempty set X with an m-structure m x is said to be
m-compact [50] if every cover of X by mx-open sets has a finite subcover.

REMARK 6.2. Let (X, 1) be a topological space. If mx =71 (resp. SO(X),
PO(X), a(X)) then by Definition 6.3 we obtain the definitions of compact
(resp. semi-compact, strongly compact, & -compact) spaces.

DEFINITION 6.4. A topological space (X,7) is said to be strongly S-
closed [13] (resp. semi-compact [8], strongly compact [31], a-compact [25])
if every cover of X by closed (resp. semi-open, preopen, a-open) sets of
(X, 1) has a finite subcover.

DEFINITION 6.5. A topological space (Y,0) is said to be S-closed [63]
(resp. quasi H-closed [56]) if for every cover {V, : @ € A} of Y by
semi-open (resp. open) sets of (Y,0), there exists a finite subset Ay of A
such that Y = J{CI(V}) : @ € Ap}.

THEOREM 6.4. Iff : (X,mx) — (Y,0) is a contra m-continuous surjec-
tion and (X, myx) is m-compact, then (Y,0) is strongly S -closed.

PROOF. Let (X,mx) be m-compact and {V, : @ € A} any cover of
Y by closed sets of (Y,0). For each x € X, there exists a(x) € A such
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that f(x) € Vg(x). Since f is contra m-continuous, by Theorem 3.2 there
exists an mx-open set U(x) containing x such that f(U(x)) C V() . The
family {U(x) : x € X} is a cover of X by mx-open sets. Since (X, my) is
m-compact, there exist a finite number of points, say, xi,x3,...,x, in X such
that X = (J{U(xy) : x¢ € X,1 <k < n}. Therefore, we obtain

Y =fX) = JIf(U)) :x € X, 1<k <n}cC
C U{Va(xk) txp € X,1 <k <n}.
This shows that (Y, 0) is strongly S-closed.

COROLLARY 6.2. If f : (X,mx) — (Y,0) Is a contra m-continuous
surjection and (X, mx) is m-compact, then (Y,0) is S -closed and hence quasi
H -closed.

REMARK 6.3. Let (X,7) be a topological space. If mx =1 (resp. SO(X),
PO(X), a(X)), then by Theorem 6.4 we obtain the results established in
Theorem 4.2 of [14] (resp. Theorem 4.2 of [14], Corollary 5.1 of [18],
Corollary 5.1 of [17]).

DEFINITION 6.6. A nonempty set (X, mx ) with an m-structure m x is said
to be m-connected [50] if X cannot be written as the union of two nonempty
sets of mx.

REMARK 6.4. Let (X,7) be a topological space. If mx =1 (resp. SO(X),
PO(X), f(X)) then by Definition 6.6 we obtain the definitions of connected
(resp. semi-connected [44], preconnected [46], B-connected [48]) spaces.

THEOREM 6.5. Let (X,mx) be a nonempty set with an m-structure my
satistying the property (8) and (Y,0) a topological space. Iff : (X,mx) —
— (Y,0) is a contra m-continuous surjection and (X, my) is m-connected,
then (Y, 0) is connected.

PROOF. Assume that (Y, 0) is not connected. Then, there exist nonempty
open sets Vi, V, of (Y,0) such that Vi NV, = ) and V; U V, = Y.
Hence we have f~1(V)) nf=1(Vy) = 0 and f~ N (V) Uf~l(Vp) = X.
Since f is surjective, f~1(V}) and f~1(V,) are nonempty sets. Since f is
contra m-continuous and Vj, V, are clopen sets, by Theorem 3.2, f ~1(V}) =
= mx-Int(f ~%(V))) and f~1(V3) = mx-Int(f ~1(V3)). Since mx has the
property (B), by Lemma 3.4, f~1(V}) and f~1(V,) are mx-open sets in
(X, mx). Therefore, (X, mx) is not m-connected.
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REMARK 6.5. Let (X,7) be a topological space. If mxy = SO(X) (resp.
a(X), (X)), then by Theorem 6.5 we obtain the results established in The-
orem 5.4 of [14] (resp. Theorem 6.3 of [17], Theorem 3.2 of [7]).

COROLLARY. Iff : (X,7) — (Y,0) is a contra-continuous (resp. contra-
precontinuous) surjection and (X,t) is connected (resp. preconnected), then
(Y,0) is connected.

PROOF. This is an immediate consequence of Theorem 6.5.

DEFINITION 6.7. Let A be a subset of (X, mx). The mx-frontier of A,
mx-Fr(A), is defined by mx-Fr(A) = mx-Cl(A) N mx-Cl(X — A).

THEOREM 6.6. The set of all points x € X at which a function f :
(X,mx) — (Y,0) is not contra m-continuous is identical with the union of
the mx -frontiers of the inverse images of closed sets of Y containing f (x).

PROOF. Suppose that f is not contra m-continuous at x € X. There
exists a closed set F of Y containing f (x) such that f(U)N (Y — F) # () for

every U € my containing x. By Lemma 3.2 we have x € mx-CI(f ~1(Y —
— F)) = mx-CI(X —f_l(F)). On the other hand, we have x € f_l(F) C
C mx-Cl(f "1(F)) and hence x € mx-Fr(f ~1(F)).

Conversely, suppose that f is contra m-continuous at x € X and let F be
any closed set containing f(x). Then by Theorem 3.2 we have x € f ~(F) =

= my- Int(f _I(F)). Therefore, x ¢ mx-Fr(f _I(F)) for each closed set F
containing f(x). This completes the proof.

7. New varieties of contra-continuity

Let A be a subset of a topological space (X, 7). A point x of X is called a
semi-0 -cluster point of A if sSCI(U)N A # () for every U € SO(X) containing
x. The set of all semi-0-cluster points of A is called the semi-0-closure [12]
of A and is denoted by sClg(A). A subset A is said to be semi-0-closed if A =
=sCly(A). The complement of a semi-0-closed set is said to be semi-0-open.
A subset A is said to be semi-regular [12] if it is semi-open and semi-closed.

DEFINITION 7.1. Let (X, 7) be a topological space. A subset A of X is
said to be

(1) b-open [4] if A C Cl(Int(A)) U Int(CI(A)),
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(2) d-preopen [57] (resp. O-semi-open [42]) if A C Int(Cls(A)) (resp.
A C Cl(Intg (A))).

The family of all b-open (resp. 0 -preopen, 0 -semi-open, semi-6-open, 6 -
open) sets in (X, 7) is denoted by BO(X) (resp. 6 PO(X), 6 SO(X), SOO(X),
T@).

DEFINITION 7.2. The complement of a b-open (resp. 0 -preopen, O -semi-

open) set is said to be b-closed [4] (resp. O-preclosed [57], O-semi-closed
[42).

DEFINITION 7.3. The intersection of all b-closed (resp. d-preclosed, O -
semi-closed) sets of X containing A is called the b-closure [4] (resp. O-
preclosure [57], 0-semi-closure [42]) of A and is denoted by bCI(A) (resp.
pCls (A), sCls(A)).

DEFINITION 7.4. The union of all semi-8-open (resp. b-open, 0 -preopen,
0-semi-open) sets of X contained in A is called the semi-0-interior (resp.
b-interior, -preinterior, d-semi-interior) of A and is denoted by slntg(A)
(resp. bInt(A), pInts (A), slntg(A)).

LEMMA 7.1. For a subset A of a topological space (X,1), the following
properties hold:

(1) If A is a semi-open set, then sCI(A) is semi-regular,
(2) If A is a semi-regular set, then it is semi-0 -open,
(3) If A is a semi-regular set, then it is 0 -semi-open,
(4) If A is a semi-0 -open set, then it is O -semi-open,
(5) If A is a 0 -semi-open set, then it is semi-open.

PROOF. (1) and (2) are shown in Propositions 2.2 and 2.3 of [12].

(3) Let A be a semi-regular set. Then since A is semi-open and semi-
closed, we have Int(Cl(A)) C A C Cl(Int(A)). Since Int(CI(A)) is regular
open, we obtain Int(CIl(A)) C Inty(A) and hence

A C Cl(Int(A)) C Cl(Int(CI(A))) C Cl(Ints (A)).
This shows that A is d-semi-open.

(4): Let A be a semi-0-open set. For each x € A, there exists Uy €
€ SO(X) such that x € U, C sCI(Uy) C A. By (1), sCI(Uy) is semi-regular
and hence J-semi-open by (3). Therefore, A = |J, ¢ 4 SCI(Uyx) is d-semi-open
by Theorem 3 of [42].

(5) Let A be a d-semi-open set. Since Ints(A) C Int(A), A C Cl(Ints(A))
implies A C Cl(Int(A)). This shows that A is semi-open.
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By Lemma 7.1, we have the following diagram in which the converses
of implications need not be true as shown by the examples stated below.

Diagram 1
0-open — 0-open — open — preopen — 0-preopen
1 1 ! 1 |

semi-f-open — J-semi-open — semi-open —  b-open —  semi-preopen

EXAMPLE 7.1. Let X = {a,b,c} and v = {X,0,{a},{b},{a,b}}. Then
{a,b} is a d-open set of (X,7) which is not 8-open. The subset {a,c} is a
semi-0-open set which is not d -preopen.

EXAMPLE 7.2. (Park et al. [42]) Let X = {a,b,c,d} and 7 = {X, 0,
{a}, {c}, {a,b}, {a,c}, {a,b,c}, {a,c,d}}. Then {a,c,d} is an open set of
(X, 1) which is not 0 -semi-open.

EXAMPLE 7.3. Let X = {a,b,c,d} and 7 = {X,0,{c},{a,d},{a,c,d}}.

Then {a,b,c} is a preopen set of (X, 7) which is not semi-open.

EXAMPLE 7.4. Let X = {a,b,c,d} and © = {X,0,{a,b},{a,b,c}}.
Then {d} is a d-preopen set of (X,7) which is not §-open.

LEMMA 7.2. Let (X,t) be a topological space and A be a subset of X.
(1) If A is open, then Cls(A) = CI(A),
(2) If A is closed, then Intg(A) = Int(A).

PROOF. (1) is known in [64] and (2) follows obviously from (1).

For a topological space (X,7), the family of all d-open sets of (X,7)
forms a topology for X, which is weaker than 7. This topology has a
base consisting of all regular open sets in (X,7). It is usually called the
semi-regularization of T and is denoted by ;. Now, we have the following
interesting lemma.

LEMMA 7.3. Let (X,1) be a topological space and A be a subset of X.
(1) A is & -semi-open in (X,t) if and only if A is semi-open in (X,Ts),
(2) A is & -preopen in (X,1) if and only if A is preopen in (X,Ts).

PROOF. This folllows from Lemma 7.2 and the next facts:
(1) Cl(Intg(A)) = Cls(Inty(A)) = 75- Cl(rs- Int(A)),
(2) Int(Cls(A)) = Ints(Cly (A)) = 75- Int(rs- CI(A)).
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DEFINITION 7.5. A function f : (X,7) — (Y,0) is said to be contra
strongly 0 -continuous (resp. contra strongly semi-0-continuous, contra b-
continuous, contra 0-precontinuous, contra 0 -semi-continuous) if for every
open set V of (Y,0), f_l(V) is O-closed (resp. semi-O-closed, b-closed,
0-preclosed, d-semi-closed) in (X, 7).

REMARK 7.1. Let f : (X,7) — (Y,0) be a function and myx = 79
(resp. SO O(X), BO(X), d SO(X), 0 PO(X)). Then a contra m-continuous
function f : (X,mx) — (Y,0) is contra strongly 6-continuous (resp. contra
strongly semi-6-continuous, contra b-continuous, contra J -semi-continuous,
contra d -precontinuous).

All the families 79, SOO(X), BO(X), 6 SO(X), d PO(X) have the prop-
erty (B). Especially, 7y is a topology for X. Therefore, we can apply
all results obtained in Sections 3-6 to these new functions. The following
theorem is a typical characterization.

THEOREM 7.1. A function f : (X,t) — (Y,0) is a contra strongly 0 -
continuous (resp. contra strongly semi-0 -continuous, contra b-continuous,
contra O -semi-continuous, contra O -precontinuous) function if and only if if

for every closed set F of Y, f ~\(F) is 0 -open (resp. semi-0 -open, b-open,
0 -preopen, 0 -semi-open) in X .

PROOF. The proof is obvious from the definition.
By Theorem 7.1 and DIAGRAM I, we obtain the following diagram:

Diagram II.

contra st.§-C — contra-super-C — contra-C — contra-p-C — contra 0 -p-C

1 1 1 1 |

contra st. s-0-C — contra §-s-C — contra-s-C — contra b-C — contra-f3-C

In the diagram above, we abbreviate as follows: C = continuous, st. = strongly,
p = pre and s = semi.

THEOREM 7.2. For a function f : (X,t) — (Y,0), the following proper-
ties are equivalent:

(1) f is contra strongly 0 -continuous;

(2) For each point x € X and each closed set F of Y containing f(x),
there exists a 0 -open set U of X containing x such that f(U) C F;

(3) For each point x € X and each closed set F of Y containing f(x),
there exists an open set U of X containing x such that f (CI(U)) C F;
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@) f : (X,19) — (Y,0) is contra-continuous.

PROOF. By Theorem 7.1, (1) is equivalent to (4). We prove only the
implication : (3) = (1), the other proofs being obvious. Let F be any closed

setof Y and x € f —1(F). Then f(x) € F and by (3) there exists an open
set U of X containing x such that f(ClI(U)) C F. Therefore, we have

x € U cCClU) C f_l(F) and hence f_l(F) is O-open in X. It follows
from Theorem 7.1 that f is contra strongly 0-continuous.

THEOREM 7.3. A function f : (X,t) — (Y,0) is contra 6 -semi-continu-
ous (resp. contra O -precontinuous) if and only if f : (X,t5) — (Y,0) is
contra-semi-continuous (resp. contra-precontinious).

PROOF. This is an immediate consequence of Lemma 7.3.

THEOREM 7.4. For a function f : (X,1) — (Y,0), the following proper-
ties are equivalent:

(1) f is contra strongly semi-0 -continuous;

(2) For each point x € X and each closed set F of Y containing f(x),
there exists a semi-0 -open set U of X containing x such that f(U) C F;

(3) For each point x € X and each closed set F of Y containing f(x),
there exists a semi-regular set U of X containing x such that f(U) C F.

PROOF. (1) = (2): this is obvious.

(2) = (3): For any semi-f-open set G and each x € G, there exists a
semi-open set H such that x € H C sCI(H) C G. By Lemma 7.1, sCI(H) is
a semi-regular set. Set U = sCI(H), then (3) holds.

(3) = (1): Let F be any closed set of Y and x € f_l(F). Then there
exists a semi-regular set U of X containing x such that f(U) C F. Then we
have x € U C f~1(F). This shows by Lemma 7.1 that f ~}(F) is semi-0-open
in X.

Finally, we deal with the preservation theorem of compact-like spaces
under new types of contra-continuous surjections.

DEFINITION 7.6. A topological space (X,7) is said to be

(1) s-closed [12] if for every semi-open cover { V,, : @ € A} of X, there
exists a finite subset Ay of A such that X = | J{sCl(Vy) : @ € Ay},

(2) b-compact (resp. Os-compact, 0p-compact) if every b-open (resp.
0 -semi-open, 0 -preopen) cover of X has a finite subcover.
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THEOREM 7.5. Letf : (X,1) — (Y,0) be a surjective function. If one of

the following conditions holds, then (Y, 0) is strongly S -closed.

(1) f is contra strongly 0 -continuous and (X, t) is quasi H -closed,
(2) f 1is contra strongly semi-0 -continuous and (X,7) is s-closed,
(3) f is contra b-continuous and (X,t) is b-compact,

(4) f is contra O -semi-continuous and (X, 7) is 05 -compact,

(5) f is contra 6 -precontinuous) and (X,T) is 0p-compact).

PROOF. The proofs for the first and the second statements follow from

Theorems 7.2 and 7.4, respectively. The other are obvious.
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ON THE EXTREMAL FROBENIUS PROBLEM IN A NEW ASPECT

By
G. KISS

(Received February 13, 2003)

1. Introduction and main result

Let0 <aj; <ap <...< ay be integers with gcd(aj;...;a,) = 1. Itis
well-known that the equation K = Y7 x;a; has a solution in non-negative
integers x; provided K is sufficiently large. Define G(a;,ay,...,a,) as the
greatest integer K for which the preceding equation has no such solution and
g(n,1) by

g(n,t)=max G(ay,ay,...,ay)
where the max is taken over all a; satisfying 1 < a; <ap < ... <ap <t,
gcd(ay;...;an) = 1. The investigation of G(ay,ay,...,a,) and g(n,t) has
given rise to many papers, see e.g. [2], [5], [6].

ERDGS and GRAHAM asked [3, p.86] “For what choice of n positive
integers 1 < a; < ap < ... < a, < t is the number of integers not of

the form ) ¢;a; maximal, where the ¢; range over all non-negative integers?
i

Is the choice a; =t —i + 1, 1 <i < n optimal for this?”
The aim of the present paper is to give a simple proof for this conjecture.
In addition we shall give further examples for optimal sets.

Let N(ay,ay,...,a,) be the number of positive integers with no repre-
sentation by ay,as,...,a,. Analogously to g(n,t) we can define v(n,t) as

v(n,t) =max N(aj,ay,...,a,)
where the max is taken over all g; satisfying 1 < a; <ay <...<a;, <,
ged(ays...;an)=1.
The statement of Erdés and Graham can be written in following form
with the new notation:
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THEOREM 1. Letn andt be positive integers such that 1 <n <t. Then
(1) vin,t) =Nt —n+1,t —n+2,...,1).
The proof of Theorem 1. uses the following result of DIXMIER [1,

Thm.2]: For a, < ¢ and any k, at least min(¢,kn — k + 1) integers can be
represented by aj,ay,...,a, in the interval I = [(k — D)t + 1, kt].

2. Proof of Theorem 1

We prove first the following lemma:

LEMMA. Let n andt be positive integers such that 1 < n < t. Let the
integers q and r be defined by t =q(n —1)+r, where 1 <r <n — 1. Then
(t—n+r—1)g

> .

Nt —n+1,t—n+2,...,t)=

PROOF. Since the numbers a; =t — n + i are consecutive, all integers in
the intervals J, = [m(t — n + 1),mt] are representable m = 1,2,... Hence
the integers without a representation are those situated before J;, between J;
and Js, ..., between J,,_; and J,, as long as these intervals are distinct, i.e.
(m — 1t <m(t —n + 1), or equivalently m(n — 1) < t. Hence the last value
is m = g. So the number of integers without representation is

q q
Z[m(t—n+l)—(m—l)t—l]=Z(t—mn+m—l)=

m=1 —
1
2 =qt — ‘1(q2+ )(ﬂ_l)_ng[zf—(q+l)(n_ 1) —2] =
:%[I+Q(n—1)+r—(q+1)(n_1)_2]= (l‘—n+2r_1)q.

PROOF OF THEOREM 1. Dixmier’s theorem mentioned in the introduction
claims that the intervals [ contain at least

n;2n—1;3n—-2;...; kin—1D+1; ...

representable elements. So the number of elements in I, without representa-
tion will be at most

t—n; t—2n+1; t—=3n+2;...;t—k(n—1)—-1;...; t—gn—1)—1=r—1.
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This is an arithmetical progression. Hence

q
N(ay,az,...,a0) <) (t —k(n — 1) = 1)
k=1
which is the same as the second ) in (2).

Thusv(n,t) =Nt —n+1,t —n+2,...,t) as claimed.

3. Optimal sets

We found that the set A ={t —n+1,f —n+2,...,t} is optimal in the
sense that v(n,t) = N(A). Can we find other optimal sets, as well? In the
following theorem we show, that this is possible in many cases.

THEOREM 2. Letd,n,k be integers such that2 < d <n,0<k <n —d.
Ifn—k=0 (modd+1)orn—k=—-1 (modd+1) then fort =dn +k
there exist at least two optimal sets A, i.e. for which

N(A) =v(n,dn +k).

PROOF. We have to show that there exists an optimal set different from
{t—n+1,t—n+2,...,t}. We shall use the same sets as in [4] when proving
the exact value of g(n,dn +k) for d, k and n satisfying the above conditions.

Case (i). Letn —k =0 (modd+1). Write n =1[(d + 1) +k, then
dn+k=1ldld+1)+dk +k=(d+1)Id+k).

Let A = {aj;a;...;a,} consist of all multiples of (d + 1) and the [ largest
elements of the residue class (—1) modulo (d + 1) up to ¢:

A={d+1;,2(d+1);...;(d+k — )(d+ 1);(ld +k)(d + 1);
dn+k—1;dn+k—1—(d+1);dn+k—1-2(d+1);...;dn+k—1—( —1)(d+1)}.
Letz =dn+k —1—( —1)(d+1) be the smallest element of A, which is not
a multiple of (d + 1).

It is well-known (see e.g. Sylvester [7]), that N(b,c) = (b — 1)(c — 1)/2,
hence

N(A):N(d+1,z)=(z—1)g=[dn+k—l(d+1)+d—1]%=

d
:(dn+k—n+k+d—1)§.
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This coincides with v(n,t) = N(t —n+ 1, —n +2,...,t) since by the
notations and result of the Lemma now t =dn +k =d(n — 1)+ k +d, so

d=qg,r=k+dand dn+k—n+k+d—1=t—n+r—1.

Case (ii). Suppose n —k =—1 (modd+1). Thenn=I(d+1)+k —1
and
dn+k=(d+1dl +dk —d+k=(d+1)dl +k)—d.
Sodn+k —1=(d+1)(dl+k —1)is a multiple of (d+1). Let A= {a;;ay;...
...;ap} consist of all multiples of (d + 1) and the [ largest elements of the
residue class (1) modulo (d + 1) up to ¢:

A={d+1;2(d+1);...;(ld+k — 1)(d + 1);
dn+k;dn+k —(d+1);dn+k —2(d+1);...;5dn+k — (I — 1)(d+1)}.
We obtain N(A) =v(n,t) by similar calculations as in Case (i).

ACKNOWLEDGEMENT. I am grateful to Professor Rébert Freud for many
suggestions and helpful collaboration.
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ON TRANSMISSION PROBLEMS FOR NONLINEAR PARABOLIC
DIFFERENTIAL EQUATIONS

By
WILLI JAGER and LASZLO SIMON
(Received February 24, 2003)

Introduction

In [3] W. Jdger and N. Kutev considered the following nonlinear trans-
mission (contact) problem for nonlinear elliptic equations:

n

(0.1) > Dilai(x,u, Du)] + b(x,u, Du) = 0 in Q
0.2) - u=gonajQ

(0.3) [i a;j(x,u, Duy;| |s =0

(0.4) - uy = d(uy) on S

where Q C R" is a bounded domain with sufficiently smooth boundary 9Q
which is divided into two subdomains €21, {2, by means of a smooth surface
S which has no intersection point with d€2, the boundary of Q; is S and
the boundary of Q, is S U dQ. Further, [f]|s denotes the jump of f on S
in the direction of the normal v, @ is a smooth strictly increasing function
and u; denotes the restriction of u to Q; (j = 1,2). The coefficients of the

equation are smooth in Q_j and satisfy standard conditions but they have jump
on the surface S. The problem was motivated e.g. by reaction-diffusion
phenomena in porous medium. The authors formulated conditions which

This work was supported by the Hungarian National Foundation for Scienific Research
under grant OTKA T 031807
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implied comparison principles, existence and uniqueness of the weak and the
classical solution, respectively.

The aim of this paper is to consider similar transmission problems for
nonlinear parabolic equations, including nonlocal transmission condition on
S and to formulate conditions which imply the existence of weak solutions. In
Section 1 we shall consider parabolic equations with a transmission condition
which is a bit more general than (0.3), (0.4) and in Section 2 we shall consider
equations with nonlocal transmission condition.

1. Nonlinear transmission conditions

Let Q C R" be a bounded domain having the uniform C! regularity
property (see [1]) which is divided into two subdomains 1, £, by means of
a smooth surface S which has no intersection point with d€2, the boundary of
Q; is S and the boundary of €, is S U dQ (such that ; and Q, have the
C! regularity property).

In this section we shall consider weak solutions of the following problem:

n
D = Dyilai(t,x,u, Du)] +b(t,x,u, Du) =0,
i=1
1€0,T), xcQUQ,

(1.6) u=0onT'7=[0,T] x 0Q
n n

(7)Y ai(t,x,uy, Duy il g = @ (p) Y a;(t,x, uz, Dup)vils,,
i:] l=1

(1.8) up =@(x,up) = Ox(up) on S7=1[0,T] x §
(1.9) w(0,x) = ug(x), x €QUQ,

(1.5)

where ¢ : Q x R — R is a given function with the properties

peC? @.>0, @0 = 0: lim @y = +00, lim @ = —o0,

for each fixed x € Q.

The assumptions on a;, b are in some sense more general then in [3].
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Let m > 2 be a real number. For any domain Q; C R" denote by
W17 () the usual Sobolev space with the norm
1/m

L |= / (Dul™ + [u]™)
Qo

Let V be a closed linear subspace of W1(Q) and denote by L™ (0, T; V)
the Banach space of the set of measurable functions u : (0, T) — V such that
|| u||™ is integrable and define the norm by

T
It o7y / o) 13 dr.
0

The dual space of L™ (0, T; V) is L™(0, T; V*) where 1/m + 1/ = 1
and V* is the dual space of V (see, e.g., [4], [5]).

In order to define the weak solution of (1.5)-(1.9) we define the function
U by

U=uyq, +ok,u)a,

where x9; is the characteristic function of €;. Since for x € €2

U=®:(u), DU=® (u)Du, DU =®, (u)Du+(Dx®y)(u),
1

w=0;(U), Du=—7—
O (D (U))

IU,

1
= T
Dy (P (U))
thus u satisfies (1.5) for x € Q5 (in classical sense) if and only if U satisfies
U - (onbx)@;l(U»)
@@ (V)

DU — (D@, (@7 (U))]

n
DU—-®(@;(U)D | D;
i=1

+

D
a; (t,x,cb;1<U>,

DU — (D@ ) (@7 (U
+(D;(®x—](U))b t,x,(Dx_l(U), (I X _Xl)( X ( )) =0
D5 (P (1))
This equation can be written in the form
n

DU-Y D

i=1

+

DU — (Dy@y)(®@; 1(U))
L (D (1))

(@7 [(U))a; (t,x,cb;1<U>,
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+) D@L (P (U))]g (t,x,ob;l(U),

i=1

DU — (D@, )(@; 1(U)) .\
@ (@5 (V)

—1
L@ O (t,x,q,x_l(U),DU— (D@ )(@; (U>>> 0

@, (@7 (V)
where
D[ @ (@7 1(U))] = & (@7 {(U)(@; (U)D; U + (D, @)@ (1)) =
= 2@ DU + (D @@ ()

Further, for x € S we have

n n
> ay(t,x,up, Duyw; = @ (uz) Y a;(t,x, uz, Dug)v; =
i=1 i=1
DU — (Ds®)(@5 ' (U))
— [
(D (1))

= (@ (U))g (t,x,d>;1<U>,

i=1

up = U.
Consequently, u is a classical solution of (1.5)~(1.9) if and only if U = uyq, +
+(x, M)XQZ is a classical solution of the problem

n
DU - Di[Ai(t,x, U, DU)]+B(t,x,U,DU) =0,

(1.10) P

te0,T), x€QUQ,
(1.11) U=0onT7=[0,T] xdQ

n

n
(1.12) > A(t,x, U, DUpwils, = Y Ai(t,x, Uy, DUp)vils,

i=1 i=1
(1.13) U=U,onST=[0,T] xS
(1.14) U(0,x) = @y (up(x)) = Up(x), x € Q UQy
where
Ai(taxaz7p) = a[(taxaz7p) fOI'X S Ql
_ L1 P — (D)@ (2))

Ai(t,x,2,p) = DL (@ 2)a; | 1,x, 07 1 (2),

IRD I " (@71 (2))

for x € Qy
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B(t,x,z,p) =b(t,x,z,p) for x € Q

p— (D)@ ') |
@, (@7 (2))

(1.16) B(t,x,z,p) = ®,L(®; ' (2)b (r,x,cb;’<z>,

n @x” _ _
+Y j{ o L@)1p; + (D, D[P l(zn}-
i=1 X

p — (Dy®,)(@5 ' (2))
(@ (2))

Therefore, it is natural the following

-a; (r,x,d)x_l(z), ) for x € Q.

DEFINITION 1.1. We shall say that u is a weak solution of (1.5)—(1.9) if
U=uyo, + CID,C(u))(Q2 is a weak solution of (1.10)—(1.14) in the following
sense:

(1.17) U € L0, T; V) with V = Wol’p(Q), DU € L0, T; V*),
n
(1.18) DU =Y " Di[Ai(t,x, U,DU)] + B(t,x,U,DU) =0
i=l1
in usual generalized sense (see below) and
(1.19) U@QO,x)=Uyx), x € Q.
Obviously, if U is a classical solution of (1.10)—(1.14) then it satisfies

(1.17)—(1.19), i.e. it is a weak solution.

It is well known the following result on the weak solution of (1.17)—
(1.19) (which is based on the theory of pseudo-monotone operators, see,

e.g. [2]).
Assume that
I. The functions A;, B : Qr x R"™! — R satisfy the Carathéodory

conditions, i.e. A;(t,x,z,p), B(t,x,z,p) are measurable in (f,x) € Qr =
= (0, T) x Q for each fixed (z,p) € R"! and they are continuous in (z,p) €
€ R™! for ae. (t,x) € Qr.

IL |A;(t,x,2,p)| < cillz|™ 1+ |p|™ 11 + ki (x), for ae. (,x) € Qr,
each (z,p) € R"™! with some constant ¢; and a function k; € L™(Q),
|B(t,x,2,p)| < cllz]™" ="+ pI" 1+ Ky (o).

n
1L Y [A;(t,x,2,p) — Ai(t,x,2,p")](p; — p}) > 0 if p=p*.
i=1
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n

IV. > A;(t,x,z,p)pi+B(t,x,2,p)z > c3|p|™ —ko(x) with some constant
i=1

¢ >0, ky € LY(Q).

Then we may define the operator G : L (0, T; V) — L™(0, T; V*) by

n
> Ai(t,x, U, DUD;W + B(t,x,U,DU)W |,
i=1

[G(U), W] =
Qr

UWeL"0,T;V)
which is bounded (i.e. it maps bounded sets of L™(0, T; V) into bounded
sets of L (0, T; V*)) and it is demicontinuous (the strong convergence of a
sequence (Up) in L'™(0, T; V) implies the weak convergence of (G(U})) in
L™, T; V*). Further, G is pseudomonotone with respect to
D(L)={W e L"0,T;V): D/W € L0, T; V*), W()= 0},
i.e. if Uy € D(L), (U;) — U weakly in L™(0, T; V), (D;U;) — D;U weakly
in L™(0, T; V*) and lim sup; _. . .[G(U}), U — U] < 0 then
ll_i{I;o[G(Ul), U-U]l=0 and (G(U))— G(U)

weakly in L(0, T; V*). Finally, G is coercive:
[GU), U] _
im ————— =

[Ul=ec I Ul

By Theorem 4. of [2] we have

THEOREM 1.2. Assume I-1V. Then for any Uy € V there exists

(1.20) U € L'"(0,T; V) such that D,U € L0, T; V*),
(1.21) DU+ G(U) =0,
(1.22) Uli=o = Up.

If U satisfies (1.20)—(1.22), we say that U is a weak solution of (1.17)-
(1.19).

REMARK 1. If A;, B satisfy (the monotonicity condition)
n
(1.23) > TAi(t,x,2,p) — Ai(t,x,2%,p)(pi — p})+

i=1
+[B(t>xazyp) - B(ta-xaz*,p*)](z - Z*) 2 0
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then, obviously, the solution is unique.

Now we formulate conditions on a;, b which imply -1V for A;, B and
so the existence of weak solutions of (1.5)—(1.9).

Assume that
I’. The functions a;, b satisfy the Carathéodory conditions.
I’. For x € Q) |a;(t,x,Z,p)| <

ki(x)
@L(2)

(I)I( ) [|(Dx(z)|’" 1+[CI)’ )] m 1|p|m 1 |(qu)x)(z)|m—l} +

1 D,
bt X, 2P0 s )Z{ o @[P (2)pi+

+(Dy; @x)(@)] + (Dy @)@} a;(t,x,7,p)| <

C1
DL (2)

ki(x)

< .
= D (%)

{|q)x(z)|m 1+[(I)I (Z)]m 1|p|m 1 |(qu)x)(z)|m—l}+

n
M. 3" (a1, x,2,5) — a1, x, 2, 9B — pF) > 0 if p p*.
i=1

IV’. For x € Q,

n

O "(D)Px (2) o
E{“ Gt

N i {(Dx,- Px)E) | Dy P)@)P:7(D)Dx(E)  (Dy; CD})(Z)CDx(Z)} ‘
D3 (2) [@3(D)]3 (@3 ()17

1
(I)I( )b(t,x,z P)(DX(Z)+

i=1

-a;(t,x,Z,p) > ¢ {[(I)//r(z)]m—2|ﬁ|m + |(qu)x)(2)| } _ ko (x)

(@3 (2)]? (@3 (D)1>

V’. For x € Q| we assume that ag;, b satisfy the same conditions as A;,
B, respectively, in II-1V.

THEOREM 1.3. Assume I'-V’. Then the problem (1.5)—(1.9) has a weak
solution for any uq with the property @, (up) € V.
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PROOF. For x € Q,, the assumption II has the form (according to (1.15),
(1.16))

/ —1 <
Oy (P ' (2))

< C][|Z|m_1 + |p|m_1] +ky(x) and

p — (Dy®@)( @5 ' (2)) N
@, (@ (2))

(@ a; (: R (Dxcbxx@;l(z»)

L (@ ()b (t,x,d>;1(z),

n (I)x .
> [ o (@' @pi + (Dx,.cbb(cb;l(z»] :

i=1

1
a (t,x,d);](z),p_(Dx(DX)((Dx (Z))>‘ <

@, (@7 (2))
<epllz|™ T+ kg ).

By using the substitutions

_ —1
(1.24) z=07l(r), p=P? (D/xcbx_)f(bx (z))
D (D) (2))

one gets: II” implies that A;, B satisfy assumption II.

Clearly, assumption III’ implies III. Finally, by using substitutions (1.24)
and (1.15), (1.16) one finds: IV’ implies that A;, B satisfy IV.

Now we consider some special cases when one can check that I'-IV’ are
fulfilled.

If functions a; have the form
(1.25) a;i(t,x,7,p) =f(t,x)|15|m_] signp; for x € Qq,
a;(t,x,2,p) = f (6, 0)[ @ ()]~ |p|™ " signp; for x € Q)

with some measurable function f satisfying c¢g < f(r,x) < ¢ for some
positive constants cy, ¢ then a; satisfies '-III’ and for x € Q;

n
(1.26) Zai(t,x,i,[))f)i > cz[q);(i)]m_2|f)|m with a constant ¢, > 0.
i=1

We shall formulate conditions which imply I’-IV’ in two special cases.
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THEOREM 1.4. Let®, = ® (i.e. it is not depending on x ). Further, assume
that a; satisty I’-III’ and (1.26) (e.g. a; have the form (1.25)); b satisfies I’
and

. I TN
(121 bx 2D =D D)~ o) D ailt
sl
where
1.2 < q) m—1
(1.28) b1, 2.)| < s @)™ and
(1.29) b*(1,x,%,5) > 0.

Then conditions I'-1V’ hold.
REMARK 2. (1.28), (1.29) are satisfied e.g. for

b*(l‘7x7Z ﬁ) |(D(Z)|m_l Sigl’lz.

1
(3)
Let
(1.30) @, (2) = a(x)Z where « € C'(Qy), a >0.
Since then ®,” = 0, it is not difficult to prove
THEOREM 1.5. Assume (1.30), I’, for x € Q
(1.31) jai (6,2, 2,9)] < e [~ + B+ ki (o),

Ib(t,x,2,p)] < ey [|Z™ 1+ (B 1 + &y (x),

n
(1.32) D ai(t,x,Z,p)pi+

i=1
+|b(t,x,Z,p) + —Z(D a)x)a;(t,x,%,p)| z

> oo[|p|™ + |Z|™] with some constant c¢; > 0.
Then A;, B satisty II'-1V".

REMARK 3. Clearly, the followig conditions imply (1.32):

n
> ai(t,x,2,p)p; > const|p|™,  b(t,x,%,p)Z > constz|™,
i=1

e )Z(Dm(x)a,(t,x,z P < |b(r,x,z,f>>|-
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According to Remark 1 it is easy to formulate sufficient conditions for
the uniquenss of the weak solution of (1.5)—(1.9). The condition (1.23) (the
condition of monotonicity) is satisfied e.g. if the functions a; are defined by
(1.25) and the function b is defined by

8(t,x)
'(2)

D7) o
CI;;(Z) ;ai(f,vaap)Pi

b(t,x,%,p) = (7)™ Lsignz —

with some measurable function g, satisfying ¢g < g(t,x) < ¢q for some
positive constants cy, c{).

2. Nonlocal transmission conditions

In this section we shall consider weak solutions of the problem
n

u = Dyla;(t,x,u, Du)] +b(t,x,u, Du) = F(t,x),

(2.33) =
1€, T), xeQ uUQy,
(2.34) u=0onI'y=[0,T] x 0Q,
(2.35) wy (1,x) = aup(Po(t), 3 (x)) on ST =[0, T] x S,
(2.36) Zai(r,x,ul(t,xx Duy(t,x); =

i=1

= aph(t) Y | ai@po(t), (), up@o(t), (x)), Dup(po(t), 1 (x))-

i=1

n
Q@37 Y D@ eow; |, w0,x) =ul), x€Q U,
j=1
where g : [0, T] — [0, T] is a C! function, satisfying
Yo>0, 0<yo)<t, po(T)=T

Y : Q — Qis a C? function such that v ~! exists and ! € C2(Q),
Y(s)=3S, w(Qj) = Qj; a > 0 is a given constant.

In order to define the weak solution of (2.33)—(2.37), we define the
function U by

U@, &) = uw,Epq, ) +au@o®),p Exa,©).
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Since in Qy
U, &) = auo@),p ) = ault,x),
with 1 =yo(@), x=9E), =y, 1), &=y ), ie

1 1
u(t,x) = —U@E) = —Uy O~ (),

1 1
Dyu(t,x) = —Dr U, p = )y () = oy U@,
0

1
Deut,x) =~ D: U@, £y ~)'(x)
where ( 1)) = @) @~ ) = [/ E)17!

thus u satisfies (2.33) in €, if and only if U satisfies

1
C!'(/)(I)(T)DT U(T7 E)_

n 1 1
- D, {a,- Wo@), ¥ (), ~U &), DU, f)[w’@]—l)} +
i=1

1 1
+b(¢0(7),¢(§), g U(T, E), EDE U(T, E)[wl(g)]—l) = F(¢O(T),w(§)), le

1 n n aé—]
(2.38) oo™ U@&-Y {Z L@ E)D;

j=1 Li=1 ~ 7

- |ai (o), 1/)(5), U,8),— DgU(T HIy'EI™H ]}

+b(¥o(7), 1.0(5), Ur,8), — Dg U@ &Y' E17Y) = Fo@),p )

where we used the notation
a .

aﬁ(v) &) = (D Hw &)
Xi

The equation (2.38) can be written in the form

(2.39) D U@E - Dy, {atp(’)(r)-
j=1
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Z g,(w@)a (zpo(r)w(&), U, &), — DgU(T Ely' @)1 }
i=l1

+ZZ“¢0(T)D§, [ ° (1/)(-’3))]

j=1i=1
1
a; (po(0), w@, —U,8), —Dg U@, &)y E1 )+

+a 1o (@)b(o(T), 1/)(-’3), U,&), — Dg U@ &' @1 " =
= OCII)O(T)F(%(T),II)(E)) =F(@,%)

where
[ ° (@ (&))] Z(D,kw‘1>(¢(5>>(D Yi)E)-
k=1
Further, for £ € S we have

> ai(@, &, (r,E), (Deuy)(@,E)w; = ay((r)-

i=1

I

{C“IJO(T)Z [a (tpo(7), 1/)(5), U,§),— DU(T Oy’ E1”
j=1

i=1

=

[a, (o), Y ), urWo(@), v &), Dur(apo(c), 1 (€) Z(Dw*st»v }
i=1 j=1

Dy Hw @]y, } :

Consequently, u is a classical solution of (2.33)—(2.37) if and only if
U(t,&) = u(w,Eyq, €) + au@o®), ¥ €, ©).

is a solution of the problem
n
(2.40) DU-Y" Dg;[Aj(@,8, U@, &), (D U)(T, E)+
j=1

B(,§,U(r,8),(D:U),8) = Fi(r,8), ©€(0,T), §€Q Uy,
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(2.41) U=0onTIT,
(2.42) Ul = U2 on ST,

n n
(243) Y A@E UL, DU|s, = Y Ai(r,E Uy, DUyjls,,

j=1 j=1
(2.44) U0,8) =up@ ) = Up§), §e€Q Uy
where
Aj(ragaz’p) = aj(TaEaz,p) for E € Q],
(245) Aj(T7E7Z7p) =
" 1 1 _ _

= ayy(r) gai(wom,w(&), — 2.~y O Dy Hw @)):

for & € Q,;

B(t,&,z,p) =b(r,§,z,p) for § € Q,

1 1
(246)  B(1,&,z,p) = ap{(®)bo), (&), 2, Ep[w’@]—m

n 1 1
+apg(m) Y awo@. @), —z, —ply' @1 -

i=1

n
> Dy Hap ENDpr)E)
jk=1
for & € Q.
DEFINITION 2.1. We shall say that u is a weak solution of (2.33)-(2.37)

if U is a weak solution of (1.17)—(1.19) with F; on the right hand side of
(1.18) (i.e. U satisfies (1.20)—(1.22) with F; on the right hand side of (1.21)).

Now we formulate conditions on a;, b which imply I-IV for A;, B (and
so the existence of weak solutins to (2.33)-(2.37)).

Assume that
II”. For x € Q,
jai (t,x,2,p)| < el 2"+ 1pI" 1 + Ky (),

b(t,x,2,p)] < cr[Z[™ 7+ ™ N+ Kk (x), Ky € L™(Qy).
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III”. For x € Qj a;(t,x,Z,p) is continuously differentiable with respect

to p and the matrix
n

da;
(Tl(t,xyzaﬁ)>
P il=1

is positive definite for each (¢,x,Z,p).
v”.
n
Y ait,x,2,p)pi > ealp|" — ko), ky € L'(Qy),

i=1

b(t,x,2,0)+ Y |ai(t,x,2,0) > (Dpy; YD)~ (x) | pz > 0.

i=1 k=1
THEOREM 2.2. Assume I’, II"-1V” and V’. Then Aj , B satisty I-1V, thus
the problem (2.33)—(2.37) has a weak solution for any F € L™"(Qr), up € V.

PROOF. Since ¢,y ~1 € C2(Q), from formulas (2.45), (2.46) and II”, V’
immediately follows that A;, B satisfy II. Further, it is easy to show that if

the matrix
aAj n
T(T, E, Z’p)
9Dk jok=1

is positive definite for each (r,&, z, p) then condition III is satisfied. According

to (2.45) and [yp'E)]17" = @~ @ ©)),

SNFP? | U
[Z P <¢0(T),1l)(§), ~ 2~y )(w@)) :

IA; TN
E(T,E,z,p)—awo(r)z 2-

i=1

1
(D HENDHE (&))] :

n

: 0_Aj>” o —1y T(%) “1y
ie. ( nc ) SOOI eI () @ @@
which implies by III” that (%)7}( X is positive definite.

j, —

Finally, by using the notations

1 1
x=yE, 1=yor), I=-z, p= 5p<w‘1>’<w<s>>,
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Z Aj(, £, Z,p)pj = m/J(')(t)-
j=1

{Za, (wom Y (©), —z, —p[w”] @ (&))) (D Dy (&))}

j=1 Ui=1
Za(rx zp)Z(D,w )(x)pj =
Wy >’(r) e T
0!2 " (Xz
ai(t,x,2, )i = ———calp|™ — ka(x) 2 c3lp|™ — ka(x)
(pol)(r),Z; Wy Ty 2Pl R 2 sl —k

with some constant c3 > 0. Similarly, by (2.46), IV”
B(r.E,2,p)c = apo(n)b(t,x,Z, p)z+

+ay(® Y |ait,x,2,p) Y (D YD)~ @) | z > 0,
i=1 jok=1

REMARK 4. A simple sufficient condition for the second part of IV” is:
b(t,x,Z,p)Z > 0 and

n

Y |aitx,2,0) Y (D HODpO@ @) || < bit,x,2,p)].
i=1 jik=1

By using Remark 1, it is easy to formulate sufficient conditions for the
uniqueness of the weak solution. The condition, formulated in Remark 1 is

satisfied if the matrix
aAj n
o (Ta ‘Sa POyP)
dpk jk=0

is positive semidefinite for each fixed (z, &, pg, p), where we used the notations
Ap=B,py=z.
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ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN 17 ([0,1]%)

By
JOZSEF TURI

(Received January 23, 2003)

1. Introduction

Let Xy, k € N?, be a multiindex sequence of independent, identically
distributed (i.i.d.) random variables having zero mean and unit variance. Let

Ya®=—— 3 X telo1f,

viInl T

n € N, be the usual random field defined by the partial sums.
Consider also the multidimensional empirical process

1
A= Y a{U <ty —th),  telo,11%

i<n

n € N*, where U, i € N, are independent random vectors having uniform
distribution on [0, 1]¢.

The behaviour of the multiindex random fields Yy (t) and Z,(t) are usu-
ally investigated in the Skorohod space D(][0, 11%). The limit of Yq(t) is the
d-parameter Wiener process W(t), while the limit of Zy(t) is the d-parameter
Brownian bridge B(t). However, to study some statistics, one can consider
these random fields as random elements in the space I” (see OLIVEIRA and
SUQUET [11]). Actually, using IVANOV’s [8] general theorems, one can easily

prove limit theorems for Yp(t) and Z,(t) in L ([0, l]d).
The main topic of this note is the study of almost sure (a.s.) versions of

the above mentioned usual limit theorems (see BERKES [2] for an overview
of a.s. limit theorems). There are several methods to prove a.s. (central) limit



160 JOZSEF TURI

theorems (see Major [9], Berkes and Cséki [3], Fazekas and Rychlik [6],
Moéri [10]). Fazekas and Rychlik [7] described a general method to prove a.s.
versions of multiindex limit theorems in metric spaces. We shall apply that
method to obtain a.s. limit theorems for Yn(t) and Z,(t) in LP ([0, l]d), see
Theorem 2.1 and Theorem 3.1, respectively. The proofs are simple, because
in I” we do not need maximal inequalities. The one-dimensional version of
the above threorems were presented in Tdri [13].

2. The almost sure version of Donsker’s theorem in L7 ([0, 1]19)

Throughout the paper let 1 < p < oo and d € N be fixed. Let k = (ky, ...
e kg),m = (ng,...,n4),... € NY, 1 =(1,...,1) € N¥. Relations <, min,
max, — oo are defined coordinatewise. I.e. n — oo means that n; — oo, for
eachi =1,...,d. Let log, x =logx, if x > e and log, x = 1, if x < e. Let
d d
log, n;,n € N7,

= =1

n| ="

2

n; and |logn| =
1 i

Denote the usual integer part by [-], moreover for n € N and t € [0, l]d
denote the vector ([ny1],-..,[n4t4]) € N also by [nt].

Denote =- the convergence in distribution. (£, A, P) is the underlying
probability space, w € € is an elementary event.

Throughout this section Xj, i € Nd, will be i.i.d. real random variables
with EXy =0, D? Xy = I and E|X; [P < 00. Let S = Y i<y X
In this part we consider the random field
1
——S[nt),
Vn|

We will use the next result of IVANOV [8].

(1) Yn(t) = t €[0,11%.

REMARK 2.1. Let Ynp(t), n € Nd, and Y (t) be random elements in
IP([0,119), p > 1. Assume that

(i) The finite dimensional distributions of Yy converge weakly to those
of Y;

(i) E[Yn(®)]" — E[Y (t)

(iii) sup sup E|Yn(®)|P < oc.
" tefo,114

P, asn — oo, for each t € [0, 1]%;
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Then f(Yn) = f(Y), as n — oo, for every continuous functional f on
Lr (o, 11%.

We need the next result due the ROSENTHAL (see [1], p. 205).

REMARK 2.2. Let Yj, i < n, be independent centered random variables
with E| Y;|P < oo, p > 2. Then there exist a constant K}, > 0 depending only
on p such that

l/p 1/p 1/2

14
]EZYI < K, max Z]E|Yi|p ) ZI[’3|Y1|2

i<n i<n i<n
We also need the next result (see [1], p. 136).

REMARK 2.3. Let X;, i € Nd, be centered i.i.d. random variables such

that ﬁ Sicn Xi = N0, 1). If E|X; [P < 00, p > 1, then

P
ZX — EX]P, asn— oo,

\/_ i<n

where X has normal distribution with mean O and variance 1.

For the sake of completeness we give a proof for the Donsker theorem
in LP([0, 11%).

PROPOSITION 2.1. The multiindex sequence Yn, n € N, of processes
defined by (1) converges weakly to the d-parameter standard Wiener process
W in LP([0,11%), where 1 < p < cc.

PROOF. We shall prove that the conditions of Remark 2.1 are fulfilled.

Condition (i), that is the convergence of the finite dimensional distribu-
tions to those of the Wiener process is an elementary fact.

Apply Remark 2.3 to obtain that condition (ii) is fulfilled.

Now, we will show that condition (iii) of Remark 2.1 is satisfied.
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We will distinguish two cases. In the first case 1 < p < 2.

2\ P/2
E| Yo =E Yox El Y x <
\/_ i<[nt] (|n|)p/2 i<[nt]
(|n|)P/2
(|n|)p/2

In the second case 2 < p < co. Here we use Remark 2.2. If
p/2

SExP>| Y EXP|

i<[nt] i<[nt]
then
P
E| Yo (Ol = E N dooX
1<[nt]
| "
< < C* < .
= (n |> p/2 K%] NTZE
If
p/2
YOEXP<| Y EXP|
i<[nt] i<[nt]
then
p/2
E|Ya(®F = E J_ >oX%| <=L | D EXP
i<[nt] (| |) i<[nt]
(|n|)P/2
—— =K, <
The proof of Proposition 2.1 is complete. |

To prove a.s. Donsker’s theorem we shall need the next result due to
FAZEKAS and RYCHLIK [7].

Let 0, denote the unit mass at point x. Let u x denote the distribution
of X.
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REMARK 2.4. Let (B,p) be a complete separable metric space and Xy,
n € N?, be a multiindex sequence of random elements in B. Assume that for
any pair h,1 € N¢, h < 1, there exists a B-valued random element Xp,) with
the following properties. Xpj =0if h=11Ifk,1 € N, then for h = min{k,1}
the following random elements are independent: Xy and Xp); X and Xp ;
Xh,k and Xh,l'

Assume that there exist C > 0, f > 0, and increasing sequences {c,(li) } of
positive numbers with limy, — c,(f) = 00, c,(;ll/c,(j) =0O(1) foreachi =1,...
...,d, such that

d [ 0\P
Emin{p?(X;, Xup, 1} < C T | =5
i=1 \
forh <1 Let 0 < d,Ei) < log(cl((iil/c,(j)), assume that Y 2, dlgi) = oo for
d .
i=1,...,d. Letdy = [[d and Dn = Yy p di.
i=1 " -

Then for any probability distribution # on the Borel o-algebra of B the
following two statements are equivalent

1
Dn Z A x, () = K> as n — oo, for almost every o € Q;
k<n
1
Ede,uXk:HL, as n — oo.
k<n

The almost sure version of Donsker’s theorem in I7([0, l]d) is the fol-
lowing.

THEOREM 2.1. Let 1 < p < oo. Let the multiindex sequence of fields
Yk(t,w) = Yi(t) be defined in (1). Then

1 1
_ —O0y. () = ,
Toga] 2 [Tt = 4
k<n
in IP(]0, l]d), asn — oo, for almost every w € Q, where W is the standard

d-parameter Wiener process.

PROOF. We shall prove that the conditions of Remark 2.4 are fulfilled.

The separability and completeness of space I7([0,1]9), 1 < p < oo, are
well-known facts.
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Let us define the process
1
Yiall)= {Sints = Smingiomney > kK <m, te (0,119

Then the independence conditions of Remark 2.4 are satisfied.
We will distinguish two cases.
In the first case 2 < p < oco. Applying Jensen’s inequality we get

2/p

E(p?(Yp, Yic)) = E / Ya®) — Yin®Pdt | =
0,114

_E /
\[o,l]d

2/p
1

p
|n| / ]E ‘ Smin{k,[nt]}‘ dt = A
0,11

2/p
p

1
dt

ﬁsmin{k,[nt]}

<

We distinguish again two cases and use Remark 2.2. If

> EXP > Yoo EXP

i<min{k,[nt]} i<min{k,[nt]}

p/2

then
2/p

1
Agm / K ) EXxPdt <
0 l]d i<min{k,[nt]}

|-

K
K, Y EXPadt| < |I;1| (C-Kp*P < C*ﬂ.
i<k

IA

2/p
2/P |k|
n

0,114
If
p/2

Yoo EXP < oo EXP

i<min{k,[nt]} i<min{k,[nt]}
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then

p/2 2/P

1
asl [ X ExP) a] <
0 ]]d i<min{k,[nt]}
p/2 2/p

1 2 * |k|
n| o = n|’

In the second case 1 < p < 2. By Jensen’s inequality

’ 2/p
1
E(p?(Ya, Yien) = E / Sty | 6| <
0,114
2
1 2 1 K|
= Ta] E‘Smin{k,[nt]}‘ dt=nn ) B >, X wa<Cor
[O,I]d [O,I]d i<min{k,[nt]}

Therefore we can apply Remark 2.3 with c,(j) =k, k=1,2,...,i=1,...,d.
The proof of Theorem 2.1 is complete. |

3. The multidimensional empirical process in L7 ([0, l]d)

Let 1 <p < oo andd,h € N be fixed. In this section, we consider the
multidimensional empirical process

2) Zn(t) = G{Ui <t} —Jt),  te[o,119,
T

i<n

where Uj, 1 € Nh, are independent random variables uniformly distributed on
[0, 114.

PROPOSITION 3.1. The multiindex sequence Zy(t), n € Nd, weakly con-

verges to the d-parameter Brownian bridge B in space L”(]0, l[d), where
1<p<oo.

PROOF. We shall prove that the conditions of Remark 2.1 are fulfilled.
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Condition (i), the convergence of the finite dimensional distributions to
those of the Brownian bridge is an elementary fact.

Apply Remark 2.3 to obtain that condition (ii) is fulfilled.
Now, we will show that condition (iii) of Remark 2.1 is satisfied.

We will distinguish two cases. In the first case 1 < p < 2.

2\ P/2
1
Bl < o | B > ol <t} —Jth :
i<n
_ 1 \P/2
= R (In] [€](1 = [E))" 7 < 1 < oo0.

In the second case 2 < p < co. Here we distinguish again two cases.
It

p/2

2
S E{U <t} =t > | Y El{U; <t} — [t :

i<n i<n

then by Rosenthal’s inequality

K,
E| Zn (H)]P < meugq—wh:uwzqm<@<m

(| |)p/2 i<n
If
p/2

2
Y E{U <t — [t < | DX <t — |t :

i<n i<n

then

(Kp)
(In|)/2

The proof of Proposition 3.1 is complete. |

B ZaOF < (In] [t]1 = [¢)P/? < K2/* < o

The almost sure version of the limit theorem for the empirical process in
I7([0,119) is the following.
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THEOREM 3.1. Let1 < p < oo. Let Zy(t) be the empirical process defined
in (2). Then

1
E —07 (.») = UB>
[logn] 2 [k “70) T 18
k<n

in IP(]0, l[d), as n — oo, for almost every w € €, where B is the d-
parameter Brownian bridge.

PROOF. We shall prove that the conditions of Remark 2.4 are fulfilled.

Let us define the process

Zien(t U; <t} —|t U; <t t),
n(®) = \/—Z(x{ } 1t - \/—Z(x{ )} — It])

i<n i<k

k<n kneN tel0 1%
Then the independence conditions of Remark 2.4 are satisfied.
In the first case let 2 < p < co. Then
2/p

E(p*(Zn, Zin)) = E Zn — ZgplP dt | =
\[o,l]d

p o\ 2P

=E / \/_Z(X{U <t} —Jt| dt <

O,I]d l<k

p o\ 2P

E> {0 <t} —|th| dt

i<k

1
n|
0,114

< A.

We will distinguish again two cases. If

p/2

STEp{U <t - [P > (S Ex{U<t -]

i<k i<n
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then by the Rosenthal inequality

2/p )
1 k|*/P
st | [ mXEdusg-pra) <o
oqd 1=K
If
p/2
2
STER{G < th— [t < [ D E{UG <t} — |t]] ,
i<k i<k
then
p/2 2/P
1
asm| [ K SErusg-wP) af -
O,I]d i<k
2/p
Kk
/ Ky(K| - [t (1 = [g)P/2dt | < K,,| |
Inl In|’
0,114
In the second case 1 < p < 2.
B(p? (Zn, Zem)) < E / 7 — Zienldt =
(0,14
2
=E / NG > G{Ui <t} —|th| dt=
[0 l]d l<k

_ L / B S qUi<th—|th| dt=

|

[0,  \isk
1 Kk
=Tl / |k||t|(1—|t|)dtgH.
[0,114

The proof of Theorem 3.1 is complete.

K]

|’



ALMOST SURE FUNCTIONAL LIMIT THEOREMS IN ([0, 11 169

(11

(2]

(3]

(4]

(5]

(6]

(71

(81

[9]

(101

(111

[12]

[13]

[14]

References

A. ARAUJO AND E. GINE, The Central Limit Theorem for Real and Banach
Valued Random Variables, John Wiley & Sons, New York, Chichseter,
Brisbane, Toronto (1980).

I. BERKES, Results and problems related to the pointwise central limit theorem,
In: B. Szyszkowicz (Ed.) Asymptotic results in probability and statistics,
Elsevier, Amsterdam, (1998), 59-96.

I. BERKES AND E. CSAKI, A universal result in almost sure central limit theory
Stoch. Proc. Appl., 94 (2001), 105-134.

P. BILLINGSLEY, Convergence of Probability Measures, John Wiley & Sons,
New York, London, Sydney, Toronto, 1968.

C. M. DEO, A functional central limit theorem for stationary random fields, The
Annals of Probability, 3 (1975), 708-715.

I. FAZEKAS AND Z. RYCHLIK, Almost sure functional limit theorems, Annales
Universitatis Mariae Curie Sklodowska, XVI, (2002), 1-18.

I. FAZEKAS AND Z. RYCHLIK, Almost sure functional limit theorems for ran-
dom fields, Technical Report No. 2001/12, (270) University of Debrecen,
Hungary.

IvaNov, Converge of distributions of functionals of measurable fields (Russian)
Ukrain. Math. Zh., 32 (1980), 27-34.

P. MAJOR, Almost sure functional limit theorems, Part II. The case of indepen-
dent random variables, Studia Sci. Math. Hungar., 36 (2000), 231-273.

T. F. MORI, On the strong law of large numbers for logarithmically weighted
sums, Annales Univ. Sci. Budapest., 36 (1993), 35-46.

P. E. OLIVEIRA AND CH. SUQUET, Weak convergence in L]0, 1[ of the uniform
empirical process under dependence, Statistics & Probability Letters, 39
(1998), 363-370.

P. K. SEN, Weak convergence of multidimensional empirical processes for
stationary ¢ -mixing processes, The Annals of Probability, 2, 147-154.

J. TURI, Almost sure functional limit theorems in P (]0, 1[), where 1 < p < oc,
Acta Acad. Paed. Agriensis, Sectio Mathematicae, 29 (2002), 77-87.

G. TUSNADY, A remark on the approximation of the sample df in the multidi-
mensional case, Periodica Mathematica Hungarica, 8, (1977), 53-55.

J6zsef Turi

Institute of Mathematics and Computer Sciences
College of Nyiregyhdza

Nyiregyhaza 4400

P. O. Box 166

Hungary

turijOnyf.hu






ANNALES UNIV. SCI. BUDAPEST., 44 (2002), 171-177
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0. Introduction

Let R be an associative ring with 10, and / be an infinite linearly
ordered set of indices. The I x I matrix over R is a functiona : I x I — R.
All rings considered here are Dedekind-finite, which guarantee that inverse
matrix of triangular one is always triangular.

Let Tr(I, R) be a group of all invertible upper triangular matrices with
only finite number of entries different from the unit matrix e. By Dy(1, R)
and U Ty (I, R) we denote its diagonal and unitriangular subgroups. The group
UTy(I, R) is normal in Ty(I, R) as a kernel of a, homomorphism which sends
triangular matrix to a diagonal one with the same main diagonal. T¢ (I, R) is
generated by diagonal and unitriangular matrices. So we have Ty(I,R) =
=Dr(I, )AUT; (1, R).

The group UTy(I, R) is called (generalized) McLain group. The group
UT;(Q Fp) is infinite locally finite perfect p-group, which is characteristi-
cally simple — in contrast to finite p-groups [11]. Its automorphisms were
described in [16]. The group UTy(N,F)) is the simplest example of infinite
p-group which does not satisfy a normalizer condition [12]. McLain groups
serve as a source of examples and show limitations of many results in group
theory: see [13]-[15], [8] for counterexamples to some problems concerning
groups with chain condition for subgroups, [18], [19] for examples of large
families of characteristically simple groups, [1]-[3] for explicit constructions
of some acyclic groups with prescribed properties and some extensions of
groups, [5]-[7] for recognizing McLain groups from their automorphism
groups and applications to Hahn groups.
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In this paper we investigate a normal structure of McLain groups. In our
results we use a notion of net subgroups, which was successfully applied to
other infinite dimensional groups: for description of parabolic subgroups of
Vershik—Kerov’s group [10] and subgroups of triangular matrices containing
finitary diagonal matrices for a large class of rings [9].

1. Nets of ideals and net, subgroups

A system 0 = (0y;) (i, j € I) of two sided ideals 0;; of R is called at
net, if
Oir'arjgaij foralli,j,rEI.
If the set I is finite we have a finite net.

It is clear that if 0, T are nets, then a system 0 N7 = (0;; N7;;) is a net
too. The relation 0 < 7 if 0;; C 7;;” defines a partial order on the set of all
nets. Here, we consider only upper nets o for which o;; is trivial for i > j.
We say that o is nontrivial if g;; #0 for at least one pair of indexes (i, ).

Let the set G(0) consist of all matrices a € U Ty(1, R) such that a;; € 0;;
for all i < j. Since 0 is a net, G(0) is closed under multiplication of matrices.

In fact, we can show more

PROPOSITION 1. Ifo is a net, then G(0) is a subgroup of U Tr (1, R).

PROOF. It suffices to prove that, a € G(o) implies a1l = (a; j) € G(o).
We define the support of a € UT;(I, R) as sup(a) = {i € I : a;j#0or a;; #0

for some j #i }. By use of the homomorphism UTr(, R) — UT(m, R) which

forgets all entries out of sup(a) x sup(a) we can restrict our considerations

to finite dimensional unitriangular group and a finite net. Since a~! - a = e,

we have aj, = ajp = 0 which means that aj, € 01,. Now since aLj+1 =
= —aj,ay — ... — a{J_laj_lJ — ay; by induction we have a{ﬁl €041
Similarly we have a;; € 0;; for all i < j, which finishes the proof.

The map 0 — G(0) is a bijection and c N\t — HG(oNt) = G(0o)N G(T).
So we have the following

PROPOSITION 2. The lattice of nets of ideals of ring R indexed by I is
isomorphic to the lattice of net subgroups of UTy(I, R).

Not all subgroups of U Ty (I, R) are net subgroups as shows
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EXAMPLE 1. Fixi < k <[ from I. Let o be a net with the only nontrivial
entries 0;; = 0;; = 0y = R. By G we denote a subgroup of G(o) consisting
of all matrices for which a;; = ai;. It is easy to show that G is not a net
subgroup.

It is an interesting question for which o the net subgroup G(o) is abelian.
We characterize below maximal abelian net subgroups.

EXAMPLE 2. Let iy € L, then we define nets: o such that oy; = R if
k < iy and [ > iy and op; = 0 otherwise, and 7 such that 7;; = R if k < i
and [ > iy and 74; = 0 otherwise. It is easy to verify that G(o) and G(t) are
maximal abelian subgroups [11], [5]. However, in the case of I = () we have

a net o such that s;; = R if k < v/2 and I > v/2 (and 0 otherwise). For this
net G(o) is also maximal abelian subgroup.

These examples show that detailed analysis of net subgroups in McLain
groups depends on assumptions on the order properties of I which will appear
elsewhere.

2. Normal, subgroups of McLain groups

The net o is called normal net if for alli < r <j,i,j, r € I we have
0ir C0j; and 0, C 0y;.
Our main result here is

THEOREM 1. Let R be an associative ring with 1 additively generated, by
invertible elements and such that 1 is a sum of two invertible elements. Let H
be a subgroup of UTy(I, R). The group H is a normal subgroup of T¢ (I, R)
if and only if H = G(0') for some normal net 0.

PROOF. If 0 is a normal net, then straightforward calculations show that
for any g € G(o) and v € Ty (I, R) we have v - g vle G(o).

Now let H < T¢(I,R) and H C UT;(I,R). We put 0;; = {& € R:
tij(@) € H} fori < j and 0;; = 0 otherwise. In view of formulas for
conjugations of transvections d; CE tij(@) - d;(0) = t;;(@0), d;(0) - ;j () -
d; O~ =1 j(a0), and assumptions on R the sets 0;; are two-sided ideals of
R. From equalities [t;, (), t;;(1)] = t;j(a) - d(0) = 1;;(a0), [1;,(a), t,j(@)] =

= tjj () valid for distinct i, j, r, the net o is a normal net. Clearly G(o) C H.
We prove now that if a € H, then #;;(a;;) € H for all i < j. We have

b=[a"1,d;©)] € H and b;; = a;;(0 — Da;;. If we put ¢ = [b~1,d;(0~1)]
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we will have [d;(0),c] =1;;((0 — 1)c;;) € H. Since ¢;; = bl’.ib,-j(Q — 1), by
conjugations formulas it follows that #;;(a;;) € H. It means that H C G(0)
and Theorem is proved.

In particular case I = N our result can be deduced also from results of
[4] for finite dimensional unitriangular group, because U T¢(N, R) is a direct
limit of finite dimensional groups under natural embeddings.

Since the property of net of ideals ‘to be normal’ is invariant under lattice
operations we have

THEOREM 2. Under assumptions of Theorem 1, the net subgroups G(o)
corresponding to normal nets form a sublattice A of the lattice of normal
subgroups of McLain groups.

We note here that if R has an infinite lattice of two-sided ideals, then A
is uncountable. (In view of the above result it is an interesting question which
normal subgroups of U Ty (I, R) are not normal in T¢(I, R).

Now we give examples of large families of net subgroups G(o) which
are not normal in McLain group.

EXAMPLE 3. Let ~ be an equivalence relation on I. We define a net &
putting 6;; = Rif i ~ j and 6;; = 0 otherwise. The net subgroup G(G) is
called an equi-group (see [12]). We say that equivalence classes C, D form a
mini-max pair if C# D, C has a minimal element, D has a maximal element
and min C < max D. For example, if I = N then ~ has no mini-max pair if
and only if ~ has no finite equivalence class or has exactly one finite class
of the form {1, 2, ..., n}. If & has no mini-max pair of classes, then G(G)
coincides with its normalizer in U Ty(I, R) (Thm. 3 of [12]). It means that
McLain group does not satisfy a normalizes condition for subgroups. We note
here that if has a mini-max pair of classes, then for all nontrivial net t C &
net subgroup G(t) does not coincide with its centralizes in U Ty (I, R) (and
so a normalizes) (it is an easy consequence of Thm. 2 of [12]).

3. Monotonic functions and normal subgroups

Let R = K he a field (or simple ring) such that |K| > 2. As usual, for
two linearly ordered sets A, B we extend the order to disjoint sum A U B
assuming a < b for all a € A and b € B. We made additional assumption
that for linearly ordered set I LI {oc} the following condition holds

(x) foralli € I every subset of interval [i, co] has a minimal element.
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As examples of a set I satisfying this condition can serve N, Z, NUN, Z LU N
with natural order.

By M F(I) we denote the set of all functions f : I — I'U{co} which are
monotonic, i.e. x <y implies f(x) < f(y). For G(o) (0-normal) we define
fo € MF(I) as follows: fy(i) = minimal j such that g; j #0 and oo otherwise.
The function fi is well defined since normal net has the property: if 0;; = K
then for all » > i, s >j we have 0,5 = K.

The following Lemma is obvious
LEMMA 1. Ifo is a normal net, then f; € M F(I).

The set M F(I) form a lattice under operations

(fo A fo)(i) = max{fy (i), fr ()},
(fo V fo)(i) = min{fo (i), f ()}

The functions fimax(i) = i + 1 and f,;, = oo for all i correspond to
UTr(I,R) and {e} respectively. Clearly fin < fo < fmax for all fo from
MF(I). We have also G(o) N G(t) — fo Afy and G(o -T) — fo V f7.

So we obtain a generalization of the known result of Weir which states
that normal subgroups of UT,(K) are partition subgroups corresponding
to some monotonic functions determined by ‘boundaries’ of these partition
subgroups ([17] Thm. 4).

THEOREM 3. If K is a field, |K| > 2, and I satisfies condition (), then
the correspondence G(0) — fy defines a lattice isomorphism between the
lattice A= {G(0) € U Iy (I, K ) : 0-normal net} and the lattice M F(I).

4. Subgroups of triangular matrices containing diagonal

The methods and results of previous sections can be used to describe
subgroups of Tr (1, R) containing Dy (I, R). By D-net 0 = (0j;) of two-sided
ideals of R we mean a net 0 such that oy = R and 0;; = 0 for all i, j, k
(i > j). By G(o) we denote the set of all matrices a € Tp (I, R) such that
a;j € o5 for all i < j. Similar proof as in Proposition 1 shows that G(0) is
a subgroup of Ty(I, R). Small changes in the proof of Theorem I give the
following
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THEOREM 4. Let R be an associative ring with 1 additively generated by

invertible elements and such that 1 is a sum of two invertible elements. Let
H be a subgroup of Ty(I, R) containing Dy(I, R). Then there exists a unique
upper D-net 0 = (0;;) of two-sided ideals of R, such that H = G(0).

This result can he easily generalized to the greater group T(I, R) of

triangular matrices with finite number of nonzero elements in every column.
For details of the proof in the special case I = N see [9].
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1. Adapted basis in T(Osck M) and T*(Osck M)

Here OsckM will be defined as a C° manifold in which the transfor-
mations of form (1.1) are allowed. It is formed as a tangent space of higher
order of the base manifold M.

Let E = Osck M be a (k + 1)n dimensional C°° manifold. In some local
chart (U, ¢) a point u € E has coordinates

(xayla,y2a ykay= e yla y2a - ykay - (yaay

where x? = y% and

a,b,c,d,e,...=1,2,....n, a,B,y,0,k,...=0,1,2,... k.
The following abbreviations will be used:
9 0 0
daa a=12,...k, 0g =00y =—=—"+=

=W’

x4 9yla’
If in some other chart (U’,p’) the point u € E has coordinates

!/ ! !/ !/
(x@,yla y2a yka'y then in U N U’ the allowable coordinate transfor-
mations are given by:

a' a, 1.2 n
(L.1) x% =x“"(&x",x=,...,x")
! ! !
Y1 = (3ax )y = (99y "y
! ! !
y2a — (aanla )yla + (alayla )yZa

This research was partly supported by Sciences Fund of Serbia, grant number 1262.
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! ! ! !
y3a — (aanza )y la + (alayZa )+ (azayZa )y3a, o,
, J— —_ —_
YR = @0ay * DNy 4 (81,y*FTDy20 4+ @y E DD yR

THEOREM 1.1. The transformations of type (1.1) on the common domain
form a group.

Some nice example of the space E can be obtained if the points (x%) €
€ M, dim M = n are considered as the points of the curve x? =x%(t),t € T
and y*? a = 1,2,...,k are determined by
(1.2) yomdexe,  ae=d g oL
' Lt LT dre Tar
Ifin U N U’ the equation x* = x9 (x (1), x2(t),. .., x" (1)) is valid, then it is
easy to see that

(1.3) ylal = dtlxal, yzal = dt2 = dtzxal, s ykal = dthal
satisfy (1.1). In [19] y*¢ = %dtax“ and it results that the structure group is
different from (1.1). As from (1.2) and (1.3) it follows

! ! / /
(1.4) yla = yla e play, y2a =20 yla y2ay

/ /
1
yka' = ykai(x yla | ykay

and from the above equation we get (1.1).

Let us introduce the notations:
;@O pd

(1.5) (O)AZ’ — aax“l, (a)AZ, — dta(O)AZ - —a a=1,2,...,k.

The natural basis B* of T*(E) is
B* = {dy%,dy'e,.. . dy ).

The elements of B* are not transformed as tensors ([19], [9]).
The adapted basis B* of T*(E) is given by

(1.6) B* = {6y%, 0y 0y%9,.. ., 6yk9},
where,
(1.7) 6y% = dx? = dy%e,

6y1a — dyla +M01bady0b,

(3y2a = dyza + Mlzlfdylb + Mozlfdy()b, e,
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THEOREM 1.2. The necessary and sufficient conditions that dy“*® are
transformed as d-tensor field, i.e.

!
1 9x4

= oy“e, a=01,...,k
x4

dy
are the following equations:
/ ' ’ b ,
(1.8) Mécz+ﬁ)a(aaxb)=M0(!i7_ﬁ) Doy ™C +1V1$:ﬁ)cl Doy @ 4

(a+B)b’
R M(a+ﬂ—1)c’aaby

1<, a+p <k.

(a+p-Dc" | aaby(a+ﬁ)b’

The proof is given in [9].

From (1.8) after some calculation we get

! + 1 !
0 () g (%) e
a a

(a+1)c’

N (a +B — 1>M(a+ﬁ)b' (ﬁ_l)Agl + (a;ﬂ>(ﬁ)Agl.

a (a+B—1)c!

The natural basis B of T(E) is

B = {004,014+ %a}-
The transformation law of its elements are given in [19].
Let us denote the adapted basis of T(E) by B, where

(19) B:{60a761a752a7---76ka}={60!61}
and
00a = d0a — No2a1, — NgPoo, — ... — NEP oy,
_ 2b kb
(1.10) 014 = da — Njj o2 — N1 Okbs
5ka = Ika-

THEOREM 1.3. ([9]) The necessary and sufficient conditions that B be
dual to B* ((1.6) and (1.10)) when B is dual to B* i.e.

(0adPt) = 6P 50
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are the following relations:

(1.11) NP _ Mo(c?ﬁ)b _ patBb plate _

aa (a+l)e MNaa

M(a +6)b N(a +2)c M(a +6)b N(a +H—1)c -

(a+2)c “'xa T T (@a+p—1)c" '@a

THEOREM 1.4. ([9]) The necessary and sufficient conditions that 4 with
respect to (1.1) are transformed as d-tensors are the following formulae

b ! !
(1.12) Néi'/"ﬁ) (9gx%) = No(!%+ﬁ)ca(a+ﬂ)cy(a+ﬂ)b +

N Néc‘;+ﬂ—1)c @’ |

O +f—1)cY
1 ! !
L+ NG )Ca(a+1)cy(a+ﬁ)b — dgay PP,

2. Liouville vector fields

DEFINITION 2.1. The fields I'(jy, T'2), ..., Tk), which in the basis B
T(Osck M) have the form:

k
2.DIy = (0>y1“6ka,

k—1 k
[ = ( 0 >y1aa(k—l)a+ (1>)’2a0ka,

k—(@G—1) k—(@-2)
T = ( 0 >y“’3(k—(i_1)>a + ( 1 )yZ“f’(k—(f—z»an

k—1 ; k ;
(i—Da ia
+...+ <i 2>y dk—1)a + <i 1>y Okas

1 2 3 k
1—‘(k) = (0>y1aala + <1>y2a62a + (2>y3a83a +...+ (k _ 1>ykaaka

are the Liouville fields in T(Osck M).

THEOREM 2.1. The Liouville fields determined by (2.1) are d -vector fields
of type (1,0).
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It can be proved that (k — (i — 1))!T';) (determined by (2.1)) are exactly

the Liouville vector fields I'¥) given by R. MIRON and CH. ATANASIU in [16],
[17].

For k = 3 (2.1) has the form
) =y"993, Ty =y19924 +3y*03,,
T3y = y'%014 +29%% 05, + 39> 034,

these vector fields were obtained in [8].

THEOREM 2.2. The Liouville vector fields in the basis B have the form
(2.2) T(1) = 2{90kq,
k—1
Fo = 22( )aé(k—l)a +25% 4,

k=2 k—1
T'g) = Z3( )aé(k—Z)a +23( )aé(k—l)a +Z§a5ka,

. k—(@{—1 k—(i—2
iy = 0o+ Ou——2pa * -+ 5 “Oka

F(k) = zkl"éla + Zk2a52a +...+ z,faéka,
where

23) zf@=FDe =k Da:___zzy—ﬁ—4»a:...zzga=)4a

(e (5 e

ffkba k — k =2\ (k=Da_1b
( ) <0>M«<
k 1 J2 k-2
2y MG py™ + 0 MGy

k J (i—pa (k=7 - (k—ja (i—j—1)b
) ,'_j_z M =1pY *

k—i+ 1\ k=pa _1b .
+...+( 0 >M(k irpY G <i).

(k—J)a _
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For k =3 in [8] we get

3 2 1 1
Zla =Z2a =Z3a =y a

Zé’)a — 3y2a +M231§1y1b, Z32a — 2y2a +M121;1y1b
3% =3y 1 2M30y % + My 1P,
which coincide with (2.3).

3. Zermello’s conditions in Osck M

DEFINITION 3.1. A differentiable Lagrangian of order k on a C°°® mani-
fold is a function L : E — R differentiable on E (where rank [yla] =1) and
continuous in those points of E where y!4 are equal to zero.

Let L : E — R be a differentiable Lagrangian of order k and ¢ : t €
€ [0,1] — {x%(t)} € M a smooth parametrized curve, such that Imc C U,
U being the domain of a local chart at the differentiable manifold M. The
extension ¢* (of ¢) to k is given by:

¢t €[0,1] = x4 (1)dq +d x(1)d1g +. .. +dEx(1)0kg.
The integral of action L.« is

1

L.« :/L(x,yl,yz,...,yk)dt.
0

The integral of action .+ does not depend on the parametrization of the
*
curve c*:

a _ .a _ ,0a aa _ ja a_da_x —
(3.1 x“=x%t)=y", Yot =dix = a=12,...,k,
if

1 1

(3.2) /L(x,yl,yz,...,y">dr _ /L(x,yl',yz',...,y"'ms,
0 0

where s = s(¢) is at least C¥ function, s'(r) > 0 for t € [0,1], s(0) = 0,
s(1)=1 and

d%x4

!
(3.3) y*4 =dixe R

a=12,.. k.
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The equations which give the conditions when (3.2) is satisfied are called
Zermello’s conditions.

(3.2) will be satisfied if along the c*

! ! !
(3.4) Ly, y? 08 = Loyt y% 00,
where s’ = % We shall use the notation s(@) = d%s

dt* -
From (3.1) and (3.3) we get (for s = s(¢)):

dx?
3.5 la - 22 ¢,
(3.5) y s
1 1
2a _ dy asl+ ady asll’
as as’
y3a _ ayZa o+ a)’za § a)’za §
ds ds! gsl = 7’
9 (k—1)a 9 (k—1)a 9 (k—1)a
yka = &2 s+ 2 : NUFURNLS AN O
as as 9sk—=1)

The above equations follows from the relations:
yla = yla(sysl), yza = yza(saslasll)a IR y(k_l)a = y(k_l)a(s,sla s >S(k_1))-
Using the notations:
dx*
(3.6) A = 15 Af, =df A, a=12,...k
and the Leibniz rule we have

THEOREM 3.1. y%% and s'@), a = 1,2,...,k are connected by formulae:
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k—1 k—1 k—1
k k
y¢ = ( 0 >AZ 1s’+< | >AZ 2s”+...+ <k 1>A8s( ).

The explicit form of (3.7) is the following:
/
(38) yla :yla SI
/ /
yZa :yZa (S/>2 +yla s
/ / /
y3a =y3a (s/)3 +y2a 3s's" +y1a s

! ! ! I
y4a =y4a (sl)4 +y3a 6(sl)2s” +y2a (3(s”)2 +4SISI”)+yla s(’v),

From (3.7) it follows:

THEOREM 3.2. A% and s@ a =1,2,...k are connected by the formula:

Af = @1 6Ag_18/+ @ -1 78Ag‘_zs”+...+ @1 —aASS(O‘).
0 as 1 as a—1/ 0ds

THEOREM 3.3. The following relations are valid:

(3.10) oyl oy oyt _dy%
' as’ as” 7 as) ds ’
G1D ay(a+ﬁ)a _a +f ay(a+ﬂ—l)a _ _(« +f ayﬁa
' ds(@) a 9sla=D a as,
O<a+p <k.

Relations (3.10) and (3.11) are crucial by the determination of Zermello’s
conditions.
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If we take the partial derivatives of (3.4) with respect to s, s, ..., s
we get:
(3.12)
ayla y2a ayka p , p
O1al) =+ G2a D)=+ + (Ora D)= = Lor,yLoy%, 056,
ay2a ayka
(024 L)~ 557 -+ (3ka)W =0,
ayka

On the left hand side in (3.12) L = L(x,yl,yz,yk). If we multiply the
first equation of (3.12) with s’, the second with 2s”, ..., the last with ks®)
and add all these equations and use (3.4) we get:

la 2a
9 9
(3.13) (alam s +(62aL)< P i >+
S

all

5 5
..+(akaL)( ays' +2ay,, Sk s (k>>

!/ !/ !
= Lo,y y? . y")s = Lo,y y2 . 0h).
From (3.11) and (3.5) we obtain:

ayla ;_dx?

la

as’ © T das D TV
ay2a ayza II 2 ayla / ayla
"+2 =— +2 =2
ds’ S as” 1 ds S ds’ S Y
ay 5/ ay 5" ayka _
5y +2a 7 +"'+k—as(k)_
k 9yk=Da k gyk=Da k 9yk=Da
=—y73/+2_y78”+ +k= )77 (k)_kyka
1 9ds 2 as! k 9sk=1)

The substitution of the above equations into (3.13) results

(3.14) 31,0y + 202, L)y*? + ...+ k(93,L)y* = L.
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If we multiply the second equation of (3.12) with (%)s’ and the following
with (g)s”, (3)s’ ", (g)s(k_l) respectively and add all these equations we

get
ayZa ay3a 3 ay3a
(aZaL)<aS,, s’> +(a3“L)<as" s+ (5 as"'S” +

ayka 3\ ayk k) ayka k—1
+(akaL) (WS + 2 WS +...+ 2 as(k)S( ) =0.

If we use (3.11) and (3.5) the above equation takes the form

(3.15) @)(aZaL)yl“ + (;>(030L)y2‘* ot (];)(akaL)y(k_l)a =0.

If we multiply the third equation of (3.12) with (g)s” and the following with
(g)s’”, (g)s(iv), e, (g)s(k) respectively we get

(3.16) G)(a3aL)y1“ + (i>(84aL)y2“ o+ (];)(akaL)y(k—Z)“ =0,
On the similar way we obtain (for 4 <i < k):

(3.17) (i) (0ia Dy + (i f 1) @a+na Dy +...+ ('f ) (8o L)y * iD= 0.
We shall use the notations:

k
(3.18) I = (k>y1“aka,

k-1 k\ o
K _ >y dk—1)a + (k—l)y Ika>

k-2 -1\ , K\ s

(k 2>y Ik —2)a + (k—2>y aa(k—l)a+<k_2>y “Okas
la 2a k ka

(s (e (o

From (3.14)-(3.18) it follows
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THEOREM 3.4. The necessary conditions that the integral of action does
not depend on the parametrization of the curve are:

319  L(D=0, BLID)=0, ..., I (D=0, LI =L

Equations (3.19) are Zermello’s conditions. A comparison of (3.18) with
(2.1) gives

THEOREM 3.5. The Liouville vector fields I,y and I, are equal for o =
=1,2,...,k, e

(3.20) Ie = Ty,
so I, are vector fields.

THEOREM 3.6. The Zermello’s conditions can be written in the form
(321) Tay()=0, TyD)=0, ..., Tu_n(L)=0, [y (L) =L

4. Energies of higher order
DEFINITION 4.1. We call ¢, (L) energies of order &, ¢ = 1,2,...,k of the

Lagrangian L(x,y!, ..., yX). They are defined along a curve ¢ by the invariants
I, in the following form:

ex(L) = —d B _y +d* Ly — ...+ (=D a1 — 1,
ex_1(L) = [l +d l_y — ...+ (=D 15 =21 (),
4.1) ek—2L)= fe—p — ...+ (=¥ 1k =301 (D),
ex(L) = [(—DK=2h + (—DFlaln (L),
e1(L) = [(—D*=1h1 (D).

PROPOSITION 4.1. The following identities hold:
(4.2) (ex —d}ex_1)(L) = I (L) — L,
(ex_1 — dier_o)(L) = L1 (D),

(e — dle)(L) = (=172 (L).
From (3.19), (4.1) and (4.2) it follows
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THEOREM 4.1. For the Lagrangian L(x,yl, .. .,yk), for which the Zer-
mello’s conditions are satisfied, the higher order energies are equal to zero,
ie.

e1(L)=0, &(L)=0, ..., g(L)=0.
PROPOSITION 4.2. For any differentiable Lagrangian L(x,y!, yz, . .,yk)

and any differentiable function F = F(t) defined along the curve c : [0,1] —
— M we have

(4.3) (d'F)L - [(d! F)I + (d*?F)L,_; + ...+ d*F)L))(L) = F(d'e, )L+
+d} [~ Fey + (d} F)ej_1 — (d*F)eg_p + ...+ (=D " Fye (D).

PROOF. The right hand side of the above equation can be written in the
form

[—(d} F)ex — d{'ex—1) + (df F)eg—y —dj'ex_2) — ...
A (D@ T Y ey — dPey) + (1)K (dF F)e (D) =
= —(d} F)(I(L)— D)~ [(d*F) [ _1+(d} F) Iy _»+. . +dF 2 F)L+(df F)(L) =
=(d!F)L — [d'F)Iy + (d*F)L_; + ...+ d*FL(L).
The above equation is involved in the Noether theory of symmetries of

the higher order Lagrangians [19].

THEOREM 4.2. For any differentiable function F(x(t),y 1(t), - yk (1)) the
operators dtl, Eg and I}, b, ..., I, are connected by formula:

44) d/(F)=1y'"00q +y* 010 +y 020 + ... +d} y* 9] F =
=B +d' L, —d* L +dP L5+ ...+ (=DFdF L IF.

THEOREM 4.3. For any differentiable Lagrangian along the smooth curve
c:[0,1] — x%(@) € M we have [19]

(4.5) d}er (L) = -y EX(L),

where
0 _ 1 2 k
Ea - aoa _dt ala +dt aza +"'+(_1)dt aka.

PROOEF. Let us introduce the notation

(4.6) B=l —d h_y+d g — ...+ (=DM,
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From (4.1) we have

4.7

e (L)=B(L) - L,
dl(ex(L))=(d'B)L—d!L.

From (4.4) and (4.6) we have

(4.8)

d'L=y""EXL)+dB)L.

If we substitute (dtlB)L from (4.8) into (4.7) we obtain (4.5).
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THE RESULT OF EVEN ALLOCATION OF FUNDS FOR
POSTGRADUATE TRAINING

By
M. FARKAS
(April 9, 2003)

Introduction

A simple competitive system of ODEs is constructed and analysed along
with its implications modeling the dynamics of staff in a large institute which
trains its own would be staff in postgraduate courses. A certain field of science
is considered with competing branches. The model shows that more popular
branches increase their number related to less popular ones faster than linear.

1. The model

Suppose that in a large institute or university in a certain field of science,
mathematics say, there is a fixed amount of funds available in unit time (a
year or three years) for postgraduate training and the funds are distributed
according to the respective numbers of postgraduate, say PhD, students among
the different branches of the given field. Students are admitted by their merits,
by an entrance examination, say, and then they choose the branch freely.
The training of a student in unit time (tuition and scholarship provided by
the institute or the state) costs a certain amount of money. We use this
amount as the unit of funds and assume that the fotal amount of funds in
unit time is K units. Different branches have different popularities depending
on the hardships, on how fast may one get to the point of working on some
research problem and being able to publish, on the quality and personality of

Research partially supported by the Hungarian National Foundation for Scientific Re-
search, grant numbers T029893, T0O31716, and by a Proyecto de la Universidad de Antioquia,
Medellin, Colombia.
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the possible supervisors etc. We denote the popularity of the i-th branch by
a;. This may be measured by the average number of postgraduate students
of a researcher in the i-th field. The number of staff (possible supervisors,
PhD title holders, say) in branch i at time ¢ will be denoted by N;(t). We
assume also that successful students at the end of their training enter the
staff of the given branch at the same institute and that the institute does not
recruit staff from outside. This condition may be relaxed assuming that the
students having obtained their degree enter other institutes in the country as
well, provided that popularities and funds have the same values at the different
institutes. Under these assumptions if branch i were the only existing branch
then the simplest assumption is that N; follows the logistic dynamics, i.e.

dN;
dt

=riN;(1 —a;N; /K)

where r; = a; — m is the intrinsic growth rate of the branch, m being the
rate of reaching pension age of the staff, considered to be independent of the
branch and small compared to q;.

If there are n branches then the dynamics is governed by the system

dN;

(1.1) -

n
=rN (1= aN/K |, i=12,..,n.
j=1

2. Implications of the model

System (1.1) is a simple degenerate Lotka-Volterra system (see e.g.
Farkas[2001]). According to our assumptions all the parameters are positive.
The equilibria, apart from those on the coordinate hyperplanes, i.e. those that
represent the absence of some of the branches, are the points of the open
simplex

S={(NecR"

n
Y aiNj/K=1,N; >0, i=12,...,n
j=1

According as Zj’-’zl a;j N; /K is larger or less than one, the quantity of staff is
decreasing (by lay off, say), resp. increasing in all the branches. Denoting an
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arbitrary point of S by N = (N, N»,...,N,) the characteristic polynomial
at this point is

_rlﬁKlal —A, _rlﬁKlaz _rlﬁKlan

_ rzﬁzal _ rzﬁzaz _ _ rzﬁzan

D(},) = K K A’ e 7]{
_Vnﬁnal _"nﬁnaz _rnﬁnan —l

Simple row and column operations yield

n
D@y =41 (/l +3 a; r,-ﬁ,-/K> ,
i=1

i.e. 0 is an (n — 1)-tuple root and the n-th root is

n
An = —ZairiN,-/K) <0.

i=1
This means that the simplex S is the center manifold of each equilibrium
N on it and each equilibrium has a one dimensional stable manifold. As
a consequence, the simplex is a global attractor of the system with respect
to the open positive orthant of R”, i.e. every solution with positive initial
conditions tends towards a point on S as ¢ tends to infinity. This means that
in the long run the distribution of the staff by branches will settle at a point
of the simplex. Which point will it be, depends on the initial conditions. It is
also easy to determine the equation of the trajectories. We may divide each
equation of system (1.1) by the first one obtaining

dN; _ N
= ,l=1,2,...,}’l.
dN] r Nl
Thus the equation of the trajectory corresponding to the initial point

(Nyg, Nag, - - -, N,,0) in the interior of the positive orthant parametrized by the
first coordinate is

N; = Mo Nlri/r1 =12 n
r'/rl > >E *
Nl(l)

These results may be used several ways.

If the initial distribution of staff among the branches, the popularity of
the branches and the funds available for postgraduate training are known we
may forecast the long run distribution of staff.
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If we want to fix the long run overall quantity of staff we may control
the funding accordingly.

If we want to achieve a certain relative distribution among the branches
we may try to find methods that increase the popularity of some branches and
decrease that of some others.

What is important, we don’t have to fix the aimed situation at the start.
We may fix the parameters and the initial values appropriately and leave it to
the dynamics to sort out.

3. The case n =2

We illustrate the results of the previous Section in case there are only two
branches. In this case the simplex of equilibria is the straight line segment

alNl/K+a2N2/K =1,

(in the positive quadrant of the plane Ny, N,) and the equation of the trajec-
tories is
N
N2 — ’_2/0’_ N{Z/rl
2/71
N 10
i.e. they are parts of parabolae that pass through the origin. We may assume
without loss of generality that r{ < rp implying that these are parabolae
convex down. The Figure (produced by Maple-V) shows the phase portrait
when a; = 0.31, ap, = 0.61, r; = 03, rp, = 0.6, K = 10 and the initial
conditions are given in the Table.

2

Table. Initial values with corresponding equilibria

(N1g, Nag) (N1, Np)

(1,2) (2.85, 14.47)
2,2) (5.47,13.13)
(3,2) (7.87,11.91)
(4,2) (10.05, 10.81)
(5,2) (12.03,9.82)
(6,2) (13.83,8.92)

As we see, trajectories end up at points of the straight line segment
N1 /3226 + N,/16.39 = 1.

The second branch is twice as popular as the first one. While the number of
staff in the first branch grows 2-3 fold in the long run, in the second branch
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it grows 7-5 fold. If we want to have 10 staff in each branch in the long run,

say, then we have to start with 4 in the first one and 2 in the second one.
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