
2019. május 4. –23:07

ANNALES
Universitatis Scientiarum

Budapestinensis

de Rolando E �otv �os nominatae

SECTIO MATHEMATICA
TOMUS XLIV.

REDIGIT
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1. Introduction

A subgroup of a group G which permutes with every subgroup of G
is called a quasinormal subgroup of G . We say, following Kegel [7] that
a subgroup of G is S -quasinormal in G if it permutes with every Sylow
subgroup of G . Several authors have investigated the structure of a finite
group when some subgroups of prime power order of the group are well-
situated in the group. Ito [6] proved that a finite group G of odd order is
nilpotent provided that all minimal subgroups of G lie in the center of G .
Buckley [3] proved that if all minimal subgroups of an odd order group
are normal, then the group is supersolvable. Shaalan [10] proved that if
every subgroup of G of prime order or 4 is S -quasinormal in G , then G is
supersolvable. Recently, the authors [2, 8] proved the following: Put �(G) =
= fp1� p2� � � �� png, where p1 �p2 ��� ��pn . Let Pi be a Sylow pi -subgroup

of G and let the exponent of Ω(Pi ) be pei
i

, where i = 1, 2, � � � , n . Suppose that

all members of the family fH j H � Ω(Pi ), H
� = 1, ExpH = pei

i
, i = 1, 2, � � � ,

ng are normal (quasinormal) in G . Then G is supersolvable. The object of this
paper is to get: Put �(G) = fp1� p2� � � � � png, where p1 �p2 ��� ��pn . Let

Pi be a Sylow pi -subgroup of G and let the exponent of Ω(Pi ) be pei
i

, where
i = 1, 2, � � � , n . Suppose that all members of the family fH j H � Ω(Pi ),

H � = 1, ExpH = pei
i

, i = 1, 2, � � � , ng are S -quasinormal in G . Then G is
supersolvable. Throughout this paper the term group always means a group
of finite order. Our notation is standard and taken mainly from [4].
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2. Main results

We prove the following result:

Theorem ���� Let p be the smallest prime dividing jGj and let P be

a Sylow p�subgroup of G of exponent pe � where e � 1� Suppose that all

members of the family fH j� P � H � = 1� ExpH = peg are S �quasinormal in

G � Then G has a normal p�complement�

Proof� We prove the Theorem by induction on jGj. Let H be a cyclic
subgroup of P of order pe . Our hypothesis implies that H is S -quasinormal in
G . So it follows that HQ is a subgroup of G , where Q is a Sylow q-subgroup
of G and q�p. Then HQ has a normal p-complement by [5, Satz 2.8, p.420].
We have that H � PG =

T
x�G

Px is normal in G and so H = PG � HQ is

normal in HQ . It follows that HQ = H � Q . Thus Op(G) = hQ j Q is
a Sylow q-subgroup of G , q�pi � CG (H ). If CG (H ) = G for all cyclic
subgroups of order pe in P , then it is easy to see that P � Z(G) and so G has
a normal p-complement by [4, Theorem 4.3, p.252]. Let CG (H ) �G for some
cyclic subgroup H of order pe . Then CG (H ) has a normal p-complement by
induction on jGj. Since Op(G) � CH (G), we have that Op(G) has a normal
p-complement and so also does G .

As an immediate consequence of Theorem 2.1, we have:

Corollary ���� Put �(G) = fp1� p2� � � � � png� where p1 �p2 ��� ��pn �

Let Pi be a Sylow pi �subgroup of G of exponent p
ei
i
� where i = 2� 3� � � � � n �

Suppose that all members of the family fH j H � Pi � H
� = 1� ExpH = pei

i
�

i = 2� 3� � � � � ng are S �quasinormal in G � Then G possesses an ordered Sylow

tower�

Proof� By Theorem 2.1, G has a normal pn-complement. Let Pn be a
Sylow pn-subgroup of G and K be a normal pn -complement of Pn in G . By
induction, K possesses an ordered Sylow tower. Therefore, G possesses an
ordered Sylow tower too.

We need the following Lemma:

Lemma ���� Let P be a normal Sylow p�subgroup of G of exponent pe �
where e � 1 such that G�P is supersolvable� Suppose that all members of

the family H = fH j H � P � H � = 1� ExpH = peg are S �quasinormal in G �

Then G is supersolvable�
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Proof� We prove the lemma by induction on jGj. If every element in H
is normal in G , then by [2, Theorem 4(b), p.253], P � Q�(G), where Q�(G)
is the largest supersolvably embedded subgroup of G (see[12]), and hence
hx j x � P , jx j is a prime or 4i � Q�(G). Therefore, G is supersolvable
by Yokoyama [11]. Thus we may assume that there exists an element H
in H such that H is not normal in G . Our hypothesis implies that H is
S -quasinormal in G . So it follows that HQ is a subgroup of G and q�p.
Clearly, H is a subnormal Hall subgroup of HQ . Thus H is normal in HQ
and so Q � NG (H ). So Op(G) � NG (H ) �G . Let L = HOp(G) � NG (H ).
Then G = PL. Since G�P �= L�(L � P) is supersolvable, it follows that L
is supersolvable by induction on jGj. Then Op(G) is a normal supersolvable
subgroup of G . Since Op(G) is a normal supersolvable subgroup of G , it
follows by [9, Exercise 7.2.23, p.159] that POp(G) = G is supersolvable.

Theorem ���� Put �(G) = fp1� p2� � � �� png� where p1 �p2 ��� ��pn �

Let Pi be a Sylow pi �subgroup of G of exponent p
ei
i
� where i = 1� 2� � � � � n �

Suppose that all members of the family fH j H � Pi � H
� = 1� ExpH = pei

i
�

i = 1� 2� � � � � ng are S �quasinormal in G � Then G is supersolvable�

Proof� By corollary 2.2, G possesses an ordered Sylow tower. Then
P1 is normal in G . By Schur–Zassenhaus’ theorem, G possesses a p�i -Hall
subgroup K which is a complement to P1 in G . Hence K is supersolvable by
induction on jGj. Now it follows from lemma 2.3 that G is supersolvable.

Theorem ���� Let P be a normal p�subgroup of G of exponent pe � where

e � 1 such that G�P is supersolvable� Suppose that all members of the family

fH j H � P � H � = 1� ExpH = peg are S �quasinormal in G � Then G is

supersolvable�

Proof� We prove the Theorem by induction on jGj. Let P1 be a Sylow
p-subgroup of G . We treat the following two cases:

Case �� P = P1. Then by lemma 2.3, G is supersolvable.

Case �� P �P1. Put �(G) = fp1� p2� � � �� png, where p1 �p2 ��� ��pn .
Since G�P is supersolvable, it follows by [1, Theorem 5, p.5] that G�P
possesses supersolvable subgroups H�P and K�P such that jG�P : H�P j =
= p1 and jG�P : K�P j = pn . Since H�P and K�P are supersolvable, it
follows that H and K are supersolvable by induction on jGj. Since jG : H j =
= jG�P : H�P j = p1 and jG : K j = jG�P : K�P j = pn , it follows by [1,
Theorem 5, p.5] that G is supersolvable.
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Corollary ���� Let K be a normal subgroup of G such that G�K is

supersolvable� Put �(K ) = fp1� p2� � � �� psg� where p1 �p2 ��� � �ps and

let Pi be a Sylow pi �subgroup of K of exponent p
ei
i
� where i = 1� 2� � � � � s �

Suppose that all members of the family fH j H � Pi � H
� = 1� ExpH = peii �

i = 1� 2� � � � � sg are S �quasinormal in G � Then G is supersolvable�

Proof� We prove the corollary by induction on jGj. Theorem 2.4 implies
that K is supersolvable and so P1 is normal in K , where P1 is a Sylow
p1-subgroup of K and p1 is the largest prime dividing jK j. Clearly, P1 is
normal in G . Also, (G�P1)�(K�P1) �= G�K is supersolvable. Now we
conclude that G�P1 is supersolvable by induction on jGj. Now it follows
from Theorem 2.5 that G is supersolvable. The corollary is proved.

For a finite group P , we write

Ω(P) =

�
Ω1(P) if p�2

Ω2(P) if p = 2

where, as usual,

Ωi (P) = hx � P j jx j j pi i�

We are now in a position to prove the following results:

Theorem ��	� Let p be the smallest prime dividing jGj� P be a Sylow

p�subgroup of G and let the exponent of Ω(P) be pe � where e � 1� Suppose
that all members of the family fH j H � Ω(P)� H � = 1� ExpH = peg are

S �quasinormal in G � Then G has a normal p�complement�

Proof� Let H be an abelian subgroup of Ω(P) of exponent pe . Our
hypothesis implies that H is S -quasinormal in G . So it follows that HQ is a
subgroup of G , where Q is a Sylow q-subgroup of G and q�p. Clearly, H
is normal in HQ and so Q � NG (H ). Thus Op(G) � NG (H ) � G . Clearly,
HOp(G) � NG (H ) � G . If HOp(G) � NG (H ) �G , then HOp(G) has
a normal p-complement, say, K by induction. Thus K is a normal p�-Hall
subgroup of Op(G). Since K char Op(G) and Op(G) is normal in G , it
follows that K is normal in G . Since G�Op(G) is a p-group, we have that
K is a normal p�-Hall subgroup of G and so G has a normal p-complement.
Thus we may assume that NG (H ) = G . In particular, H is normal in G .
If G has no normal p-complement, then by Frobenius’ theorem, there exists
a nontrivial p-subgroup L of G such that NG (L)�CG (L) is not a p-group.
Clearly, we can assume that L � P . Let r be any prime dividing jNG (L)j
with r�p and let R be a Sylow r -subgroup of NG (L). Then R normalizes
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L and so Ω(L)R is a subgroup of NG (L). Since H is normal in G , hence
Theorem 2.1 implies that (HΩ(L))R has a normal p-complement and so also
does Ω(L)R. By [5, Satz 5.12, p.437], R centralizes L. Thus for each prime r
dividing jNG (L)j with r�p, each Sylow r -subgroup R of NG (L) centralizes
L and hence NG (L)�CG (L) is a p-group; a contradiction. Therefore G has a
normal p-complement.

As an immediate consequence of Theorem 2.7 we have:

Corollary ��
� Put �(G) = fp1� p2� � � �� png� where p1 �p2 ��� ��pn �

Let Pi be a Sylow pi �subgroup of G and let the exponent of Ω(Pi ) be p
ei
i
�

where i = 2� 3� � � � � n � Suppose that all members of the family fH j H �

� Ω(Pi )� H
� = 1� ExpH = p

ei
i
� i = 2� 3� � � � � ng are S �quasinormal in G �

Then G possesses an ordered Sylow tower�

We need the following lemmas:

Lemma ���� [M. Ezzat, Finite groups in which some subgroups of prime
power order are normal, M. SC. Thesis, Cairo University (1995)]. Suppose

that P is a normal Sylow p�subgroup of G and that Ω(P)K is supersolvable�

where K is a p��Hall subgroup of G � Then G is supersolvable�

Lemma ����� Let P be a normal p�subgroup of G such that G�P is

supersolvable and let the exponent of Ω(P) be pe � where e � 1� Suppose

that all members of the family fH j H � Ω(P)� H � = 1� ExpH = peg are

S �quasinormal in G � Then G is supersolvable�

Proof� We prove the lemma by induction on jGj. Let P1 be a Sylow
p-subgroup of G . We treat the following two cases:

Case �� P = P1. Then by Schur–Zassenhaus’ theorem, G possesses a
p�-Hall subgroup K which is a complement to P in G . Thus G�P �= K is
supersolvable. Since Ω(P) char P and P is normal in G , it follows that Ω(P) is
normal in G . Then Ω(P)K is a subgroup of G . If Ω(P)K = G , then G�Ω(P)
is supersolvable. Therefore G is supersolvable by Theorem 2.5. Thus we
may assume that Ω(P)K �G . Since Ω(P)K�Ω(P) �= K is supersolvable, it
follows by Theorem 2.5 that Ω(P)K is supersolvable. Applying lemma 2.9,
we conclude the supersolvability of G .

Case �� P �P1 put �(G) = fp1� p2� � � �� png, where p1 �p2 ��� ��pn .
Since G�P is supersolvable, it follows by [1, Theorem 5, p.5] that G�P
possesses supersolvable subgroups H�P and K�P such that jG�P : H�P j =
= p1 and jG�P : K�P j = pn . Since H�P and K�P are supersolvable, it
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follows that H and K are supersolvable by induction on jGj. Since jG : H j =
= jG�P : H�P j = p1 and jG : K j = jG�P : K�P j = pn , it follows by [1,
Theorem 5, p.5] that G is supersolvable.

As an immediate consequence of corollary 2.8 and lemma 2.10, we have:

Theorem ����� Put �(G) = fp1� p2� � � �� png� where p1 �p2 ��� ��pn �

Let Pi be a Sylow pi �subgroup of G and let the exponent of Ω(Pi ) be p
ei
i
�

where i = 1� 2� � � � � n � Suppose that all members of the family fH j H �

� Ω(Pi )� H
� = 1� ExpH = p

ei
i
� i = 1� 2� � � � � ng are S �quasinormal in G �

Then G is supersolvable�

Proof� We prove the Theorem by induction on jGj. By corollary 2.8,
we have that G possesses an ordered Sylow tower. Then P1 is normal in G .
By Schur–Zassenhaus’ theorem, G possesses a p�1-Hall subgroup K which is
a complement to P1 in G . Hence K is supersolvable by induction. Now it
follows from lemma 2.10 that G is supersolvable.

We now obtain at once:

Corollary ����� Put �(G) = fp1� p2� � � �� png� where p1 �p2 ��� � �
�pn � Let Pi be a Sylow pi �subgroup of G and let the exponent of Ω(Pi )

be p
ei
i
� where i = 1� 2� � � � � n � Suppose that all members of the family

fH j H � Ω(P)� H � = 1� ExpH = peii � i = 2� 3� � � � � ng are S �quasinormal in

G � Then

(i) G possesses an ordered Sylow tower�

(ii) G�P1 is supersolvable�

We can now prove:

Corollary ����� Let K be a normal subgroup of G such that G�K is

supersolvable� Put �(K ) = fp1� p2� � � �� psg� where p1 �p2 ��� ��ps and let

Pi be a Sylow pi �subgroup of K and let the exponent of Ω(Pi ) be p
ei
i � where

i = 1� 2� � � � � s � Suppose that all members of the family fH j H � Ω(Pi )�

H � = 1� ExpH = pei
i i = 1� 2� � � � � sg are S �quasinormal in G � Then G is

supersolvable�

Proof� We prove the corollary by induction on jGj. Theorem 2.11
implies that K is supersolvable and so P1 is normal in K , where P1 is a
Sylow p1-subgroup of K and p1 is the largest prime dividing the order of K .
Clearly, P1 char K and since K is normal in G , it follows that P1 is normal
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in G . Since (G�P1)�(K�P1) �= G�K is supersolvable, it follows that G�P1
is supersolvable by induction on jGj. Therefore G is supersolvable by lemma
2.10. The corollary is proved.
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Introduction

In his outstanding work [2], Ludwig Berwald showed that a two-
dimensional Landsberg manifold reduces to a Berwald manifold if its Douglas
tensor vanishes. In his own words: �The Landsberg spaces� the extremals

of which form a quasigeodesic system of curves� are identical with the two�

dimensional a�nely connected Finsler spaces�� ([2], p. 110.) The notion of
a “quasigeodesic system of curves” was introduced by W� Blaschke and G�

Bol in their book [3]. In modern language, the condition on the extremals
states that the geodesics of a Landsberg manifold coincide with those of a
linear connection on the underlying manifold. Since by the Douglas–Shen
theorem ([7], 6.6) this property is equivalent to the vanishing of the Douglas
tensor, our formulation is indeed a translation of Berwald’s theorem.

The analogous result in the higher dimensional case was proved in [9]
with the help of the projection of the Douglas tensor onto the indicatrix
bundle. Unfortunately, this elegant method does not work in two dimensions,
since the Douglas tensor then has components only along the Liouville vector
field by formula (26a) of Remark 2.4 below. Since the Liouville vector field is
orthogonal to the unit sphere bundle, we infer immediately that the projected

Douglas tensor of a two�dimensional Finsler manifold vanishes identically�

So we have to search for a completely different plan of attack in the two-
dimensional case. Our approach is based on Berwald’s original ideas, and it
may be considered as an intrinsic version of them.

We shall adopt throughout the notations, terminology and conventions of
[9] with one restriction. In this paper (M�E ) will denote a positive de�nite

two�dimensional Finsler manifold� (There is a generalization of the theorem
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for two-dimensional Finsler manifolds with nondegenerate Riemann–Finsler
metric. It also needs a little modification of Berwald’s method as we can see
in [1] using the machinery of classical tensor calculus.)

1. Two-dimensional Finsler manifolds

���� The Berwald frame� Starting from the Liouville vector field C and
the canonical spray S of (M�E ), let us first consider the unit vector fields

C0 :=
1p
2E

C and S0 :=
1p
2E

S�

Next, using the Gram–Schmidt process we construct, at least locally, a g-

orthonormal basis (C0� X0) of Xv (TM ), where g � T0
2(TM ) is the metric ten-

sor given by (20) in [9]. Applying the almost complex structure F associated
with the Barthel endomorphism of (M�E ), we obtain a local g-orthonormal

basis (FX0� S0) of Xh (TM ). The quadruple

(C0� X0� FX0� S0)

constructed in this way is a (local) orthonormal basis of X(TM ); it is called
the Berwald frame of the Finsler manifold (M�E ).

Note that

(1) X0E = 0�

This can be seen by a straightforward calculation:

0 = g(C�X0)
(20)�[9]

= � (C� FX0)
(15)�[9]

= = dJE (FX0) =

= dE [JF (X0)]
(13)�[6]

= dE [vX0)] = dE (X0) = X0E�

���� Proposition� The members of the Berwald frame have the follow�

ing homogeneity properties�

[C�C0] = �C0�(2)

[C� S0] = 0�(3)

[C�X0] = �X0�(4)

[C� FX0] = 0�(5)



2019. május 4. –23:07

TWO-DIMENSIONAL LANDSBERG MANIFOLDS WITH VANISHING DOUGLAS TENSOR 13

Proof� Taking into account the fact that the function 1p
2E

is homoge-

neous of degree �1, i.e., that

(6) C

�
1p
2E

�
= � 1p

2E
�

we obtain

[C�C0] =

�
C�

1p
2E

C

�
= C

�
1p
2E

�
C = � 1p

2E
C = �C0�

which shows (2). Similarly, since S is a spray and hence [C� S ] = S ,

[C� S0] =
1p
2E

[C� S ] + C

�
1p
2E

�
S =

1p
2E

S + C

�
1p
2E

�
S

(6)
= 0�

so (3) is also true.

In view of the definition (21) and the property (27) in [9] of the first
Cartan tensor C,

0 = 2g(C(S� FX0)� X0) = LC (J �g)(FX0� FX0) =

= Cg(X0� X0)� 2g(J [C� FX0]� X0]
1�1
= �2g(J [C� FX0]� X0)�

In the same way we find that

0 = 2g(C(S� FX0)� C ) = Cg(X0� C )� g(J [C� FX0]� C )� g(X0� J [C� S ]) =

(1�1)
= �g(J [C� FX0]� C )� g(X0� C )

(1�1)
= �g(J [C� FX0]� C )�

It follows from the last two relations that J [C� FX0] = 0, and so [C� FX0] is
vertical. Thus,

X0 = vX0
(13)�[6]

= JFX0
(9)�[6]

= [J� C ](FX0) = [X0� C ]�J [FX0� C ] = �[C�X0]

which proves the relation (4).

Taking into account again the fact that the vector field [FX0� C ] is verti-
cal, from the homogeneity of the Barthel endomorphism (see (18) in [9]) we
obtain

0 = [h� C ](FX0) = [h(FX0)� C ]� h[FX0� C ] =

= [h(FX0)� C ]
(13)�[6]

= [F (vX0)� C ] = [FX0� C ]

whence (5).
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��� Proposition� With the hypothesis above� the following relations

hold�

C
�(FX0� FX0) = v [X0� FX0] (v := 1� h)�(7)

v [X0� S ] = 0�(8)

�Y � X(TM ) : DhYX0 = 0� where D is the Cartan connection�(9)

Proof� According to the definition of the second Cartan tensor C� (see
e.g. [9]. formula (23)),

2g(C�(FX0� FX0)� X0) = (Lh(FX0)g)(J (FX0)� J (FX0)) =

(13)/[6]
= (LFX0

g)(X0� X0) = FX0g(X0� X0)� 2g([FX0� X0]� X0) =

1.1
= 2g([X0� FX0]� X0) =

= 2g(v [X0� FX0]� X0) + 2g(h[X0� FX0]� X0) = 2g(v [X0� FX0]� X0)�

using the g-orthogonality of the vertical and horizontal subbundle in the last
step. From this we obtain the relation

(10) g(C�(FX0� FX0)� v [X0� FX0]� X0) = 0�

Furthermore, by the properties (26), (27) in [9] of the second Cartan tensor,
we can write

0 = 2g(C�(FX0� FX0)� C ) =

= FX0g(X0� C )� g([FX0� X0]� C )� g(X0� [FX0� C ]) =

1.1, (5)
= g([X0� FX0]� C ) =

= g(v [X0� FX0]� C ) + g(h[X0� FX0]� C ) = g(v [X0� FX0]� C )�

This means that the equality

(11) g(C�(FX0� FX0)� v [X0� FX0]� C ) = 0

is valid automatically. The relations (10) and (11) show that the vertical vector
field C�(FX0� FX0) � v [X0� FX0] is orthogonal to two nowhere vanishing
vertical vector fields. Hence it must be the zero vector field, which proves (7).

Similarly, on the one hand

0 = 2g(C�(S� FX0)� X0) = Sg(X0� X0)� 2g([S�X0]� X0) =

= 2g([X0� S ]� X0) =

= 2g(v [X0� S ]� X0) + 2g(h[X0� S ]� X0) = 2g(v [X0� S ]� X0)�
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on the other hand

0 = 2g(C�(S� FX0)� C ) = Sg(X0� C ) � g([S�X0]� C )� g(X0� [S� C ]) =

= g([X0� S ]� C ) + g(X0� S ) = g([X0� S ]� C ) =

= g(v [X0� S ]� C ) + g(h[X0� S ]� C ) = g(v [X0� S ]� C )�

which imply the relation (8).

To prove the formula (9) it is sufficient to check that DFX0
X0 and DSX0

vanish. But this is immediate:

DFX0
X0

1�6�[9]
= v [FX0� X0] + C�(FX0� FX0)

(7)
= 0�

DSX0
1�6�[9]

= v [S�X0]
(8)
= 0�

���� Definition and Remark� The function

(12) � := g(C(FX0� FX0)� X0)

is said to be the main scalar of (M�E ) with respect to the Berwald frame
(C0� X0� FX0� S0). – Actually, � depends only on the choice of X0 and it is
uniquely determined up to sign.

���� Lemma� With the help of the main scalar and the vector �eld X0�

the �rst Cartan tensors can be represented in the form

(13) C = �iX0
� � iX0

� �X0 and Cb = �iX0
� � iX0

� � iX0
��

where � is the fundamental two�form�

Proof� The vertical vector field C(FX0� FX0) can be uniquely repre-
sented as a linear combination

C(FX0� FX0) = �1X0 + �2C0� �1� �2 � C�(TM )�

Since on the one hand

g(C(FX0� FX0)� C0) =
1p
2E

Cb(FX0� FX0� S )
(27)�[8]

= 0�

on the other hand

g(C(FX0� FX0)� C0) = g(�1X0 + �2C0� C0) = �2�

it follows that �2 = 0. So

� := g(C(FX0� FX0)� X0) = g(�1X0� X0) = �1�

hence C(FX0� FX0) = �X0, where � is the main scalar. From this observation
we infer immediately (13).
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���� Corollary� A positive de�nite two�dimensional Finsler manifold

is a Riemannian manifold if and only if its main scalar vanishes�

Proof� This is an immediate consequence of (13), because (M�E ) is a
Riemannian manifold if and only if C = 0.

��	� Proposition� A positive de�nite two�dimensional Finsler manifold

is a Berwald manifold if and only if the horizontal vector �elds annihilate the

main scalar� i�e�� dh� = 0�

Proof� We first recall that a Finsler manifold is a Berwald manifold if
and only if the h-covariant derivative, with respect to the Cartan connection,
of the first Cartan tensor vanishes. (An intrinsic proof of this well-known fact
is available in [8].) Thus we can argue as follows:

(M�E ) is a Berwald manifold � �Y � X(TM ) : DhYC = 0 �
� �Y � X(TM ) : 0 = (DhYC)(FX0� FX0) =

= DhY [C)(FX0� FX0)]� 2C(DhY FX0� FX0)
(Fins2)/[6]

=

= DhY [C(FX0� FX0)]� 2C(FDhYX0� FX0)
(9)
= DhY [C(FX0� FX0)]

(13)
=

= DhY (�X0) = [(hY )�]X0 + �DhYX0
(9)
= [(hY )�]X0 = [dh�(Y )]X0 �

� dh� = 0�

��
� Corollary� The second Cartan tensor of (M�E ) is completely

determined by the formula

(14) C
�(FX0� FX0) = �S (�)X0�

Proof� Since DSC = �C� (see [5], Prop. (A.12)), taking into account the
previous proof we obtain

C
�(FX0� FX0) = �(DSC)(FX0� FX0) = �[dh�(S )]X0 =

= �[d�(hS )]X0 = [�(d�)S ]X0 = �S (�)X0�

���� Proposition and Definition� Let us consider the curvature tensor

R = �1
2[h� h] of (M�E )� Then

(15) R(FX0� S0) = g(R(FX0� S0)� X0)X0�

and R is uniquely determined by this formula on the domain of the Berwald

frame constructed in 1.1� The function

(16) � := g(R(FX0� S0)� X0)
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is said to be the Gauss curvature of (M�E )�

Proof� Since R is a semibasic tensor of type (1� 2), it is uniquely de-

termined by its value on the local basis (FX0� S0) of Xh (TM ). So our only
task is to verify the equality (15). Starting with the definition of the Nijenhuis
torsion, we obtain

R(FX0� S0) = �([hFX0� hS0] +h2[FX0� S0]�h[FX0� hS0)�h[hFX0� S0]) =

= �[FX0� S0]� h[FX0� S0] + 2h[FX0� S0] = �v [FX0� S0]�

Now, if

R(FX0� S0) = f1X0 + f2C0 (f1� f2 � C�(TM ))�

then on the one hand

g(R(FX0� S0)� C ) = g(f1X0 + f2C0� C ) = f2g(C0� C ) =

=
1p
2E

f2g(C�C ) =
p

2Ef2

on the other hand, using repeatedly the fact that dhE = 0,

g(R(FX0� S0)� C ) = �g(v [FX0� S0]� C ) = �� (v [FX0� S0]� FC ) =

= �� (v [FX0� S0]� S ) =

= iS� (v [FX0� S0])
(16)�[9]

= �v [FX0� S0](E ) =

= h[FX0� S0](E )� [FX0� S0](E ) = [S0� FX0](E ) =

= S0[FX0(E )]� FX0[S0(E )] = 0�

These imply that f2 = 0, R(FX0� S0) = f1X0, and

f1 = g(f1X0� X0) = g(R(FX0� S0)� X0)

whence (15).

����� Theorem (E� Cartan’s “permutation formulas”)� For the Lie

brackets of the members of the Berwald frame we have

(17a–c)

[X0� FX0] =� 1p
2E

S0� �FX0 �S (�)X0

[S0� X0] = � 1p
2E

FX0

[FX0� S0] = � �X0

where � is the main scalar� � is the Gauss curvature of (M�E )�
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Proof� Since

[X0� FX0] = v [X0� FX0] + h[X0� FX0]
(7)� (14)

= �S (�)X0 + h[X0� FX0]�

to prove the relation (17a) it remains to be shown that

(18) h[X0� FX0] = � 1p
2E

S0 � �FX0�

First we observe that

2�
(12)
= 2g(C(FX0� FX0)� X0) = X0g(X0� X0)

�2g(J [X0� FX0]� X0) = �2g(J [X0� FX0]� X0)

whence

(19) g(J [X0� FX0]� X0) = ���
Similarly,

0 = 2g(C(FX0� FX0)� C ) =

= X0g(X0� C )� g(J [X0� FX0]� C )� g(X0� J [X0� S ]) =

= �g(J [X0� FX0]� C )� g(X0� J [X0� S ]) =

Prop. I.7/[4]
= �g(J [X0� FX0]� C )� g(X0� X0)�

Hence it follows that

(20) g(J [X0� FX0]� C0) = � 1p
2E

�

Now we use orthonormal expansion to express J [X0� FX0] in terms of the
local basis (X0� C0) of Xv (TM ):

J [X0� FX0] = g(J [X0� FX0]� X0)X0 + g(J [X0� FX0]� C0)C0 =

(19)� (20)
= ��X0 �

1p
2E

C0�

In view of the identity F � J = h , from this we obtain (18) and hence (17a).

For the second formula (17b) we have

[S0� X0] = h[S0� X0] + v [S0� X0]
(8)
= h[S0� X0] = �FJ

�
X0�

1p
2E

S

�
=

(1)
= � 1p

2E
FJ [X0� S ]

Prop. I.7/[3]
= � 1p

2E
FX0�
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To prove (17c), first it will be shown that the vector field [FX0� S0] is
vertical, i.e.,

(21) h[FX0� S0] = 0�

The vanishing of the h-horizontal torsion of the Cartan connection (see
[9], 1.7 or [6], (M3)) yields

h[FX0� S0] = DFX0
S0 �DS0

FX0 = DFX0
S0 � FDS0

X0
(9)
= DFX0

S0�

Using the fact that dhE = 0 and the vanishing of the h-deflection of the Cartan
connection ([6], (M4)) we obtain

DFX0
S0 = DFX0

�
1p
2E

S

�
= FX0

�
1p
2E

�
S +

1p
2E

DFX0
S =

=
1p
2E

DFX0
FC =

1p
2E

FDFX0
C = 0�

thus (21) is true. By this observation and taking into account 1.9 it follows
that

[FX0� S0] = v [FX0� S0] = �R(FX0� S0) = ��X0�

completing the proof.

����� Proposition („Bianchi identity”)�

(22) �� + X0(�) + S0(S�) = 0�

Proof� Starting with the Jacobi identity, taking into account that both
FX0 and S0 are horizontal vector fields and dhE = 0, finally using (17a–c)
we obtain

0 = [X0� [S0� FX0]] + [FX0� [X0� S0]] + [S0� [FX0� X0]] =

(17a–c)
= [X0� �X0] +

�
FX0�

1p
2E

FX0

�
+

�
S0�

1p
2E

S0 + �FX0 + S (�)X0

�
=

= (X0�)X0 + �[S0� FX0] + S0(�)FX0 + S (�)[S0� X0] + S0(S�)X0 =

(17b–c)
= (X0�)X0 + ��X0 + S0(�)FX0 �

1p
2E

S (�)FX0 + S0(S�)X0 =

= [X0(�) + �� + S0(S�)]X0

whence (22).
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2. Two-dimensional Landsberg manifolds with vanishing Douglas tensor

���� Proposition� A positive de�nite two�dimensional Finsler manifold

is a Landsberg manifold if and only if the main scalar is a �rst integral of the

canonical spray� i�e��

(23) S (�) = 0�

Proof� This is an immediate consequence of ��	
 and 2.1 in ���

���� Lemma� Suppose that (M�E ) is a �positive de�nite� two�dimen�

sional
 Landsberg manifold� Then the mixed curvature and the mixed Ricci

tensor of the Berwald connection are completely determined by the formulas

�
P(FX0� FX0)FX0 = �FX0(�)X0�(24)

�̃
P(FX0� FX0) = �FX0(�)�(25)

where � is the main scalar of (M�E )�

Proof� (25) is a trivial consequence of (24). To prove (24), we first recall
that the relation

�
P(X�Y )Z = �(DhXC)(Y�Z ) (X� Y� Z � X(TM ))

holds in any Landsberg manifold (see e.g. [9], 2.1/(iv)). Thus, in our case

�
P(FX0� FX0)FX0 = �(DFX0

C)(FX0� FX0) = �DFX0
C(FX0� FX0)+

+ 2C(DFX0
FX0� FX0)

(13)
= �DFX0

�X0+

+ 2C(FDFX0
X0� FX0)

(9)
= �FX0(�)X0

whence (25).

���� Proposition� The Douglas tensor of a positive de�nite two�

dimensional Landsberg manifold is completely determined by

(26) D (FX0 � FX0)FX0 =
1
3

[X0(FX0(�) + 2�FX0(�)]C�

Proof� As we know from 6.2 and 6.3 in [7], D is semibasic, symmetric,
and for any semispray S0, iS0

D = 0. Thus, in two dimensions D is completely
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determined by its value on the triplet (FX0� FX0� FX0). According to 6.2/(b)
in [7],

D (FX0 � FX0)FX0 =
�
P(FX0� FX0)FX0 �

1
3

� �
DJ

�̃
P

�
(FX0� FX0� FX0)C�

� �̃
P(FX0� FX0)X0

(24)� (25)
= �1

3

� �
DX0

�̃
P

�
(FX0� FX0)C =

= �1
3

�
X0

� �̃
P(FX0� FX0)

�
� 2

�̃
P

� �
DX0

FX0� FX0

��
C

(25)
=

=
1
3

�
X0(FX0(�)) + 2

�̃
P

� �
DX0

FX0� FX0

��
C�

There remains only to calculate the second member of the right hand side.
Applying the rules of calculation of the Berwald connection ((27) and (Brw1–
4) in [6]) we obtain

�
DX0

FX0 = F
�

DJFX0
JFX0 = FJ [X0� FX0] = h[X0� FX0]

(17a)
=

= � 1p
2E

S0 � �(h � F )X0 � S (�)hX0 = � 1p
2E

S0 � �FX0�

Hence
�
P

� �
DX0

FX0� FX0

�
= � 1p

2E

�̃
P(S0� FX0)� �

�̃
P(FX0� FX0) =

(4.4a)/[7]
= �� �̃P(FX0� FX0)

(25)
= �FX0(�)�

and the result follows.

���� Remark� Using the same technique, it may be proved that the effect

of the tensors
�
P,

�̃
P and D can be described analogously in any (positive

definite, two-dimensional) Finsler manifold. More precisely, the following
relations are fulfilled in the general case:

�
P(FX0� FX0)FX0 = �[FX0(�) + X0(S�)]X0 + 2

S (�)p
2E

C0�(24a)

�̃
P(FX0� FX0) = �FX0(�)�X0(S�)�(25a)

D (FX0 � FX0)FX0 =
1
3

�
X0(FX0(�)) + X0(X0(S�))+(26a)

+ 2�FX0(�) + 2X0(S�) + 3
S (�)
E

�
C�
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���� Lemma� Suppose that (M�E ) is a positive de�nite two�dimensional

Landsberg manifold with vanishing Douglas tensor� The iterated Lie deriva�

tives of the main scalar with respect to the vector �elds X0� FX0� S0 �up to

�fth order
 can be expressed as follows�

LFX0
LX0

� = ��LFX0
��(27)

LS0
LX0

� = � 1p
2E

LFX0
��(28)

LFX0
L

2
X0
� =

�
�2 � LX0

�� 1
2E

�
LFX0

��(29)

LS0
L

2
X0
� =

3p
2E

�LFX0
��(30)

LFX0
L

3
X0
� =

�
��3 + 3�LX0

�� L2
X0
� +

2
E
�

�
LFX0

��(31)

LS0
L

3
X0
� =

1p
2E

�
4LX0

�� 7�2 +
1

2E

�
LFX0

��(32)

LFX0
L

4
X0
� =

�
� L3

X0
� + 4�L2

X0
� + 3(LX0

�)2 � 6�2
LX0

�+(33)

+
4
E
LX0

�� 11
2E

�2 + �4 +
1

(2E )2

�
LFX0

��

LnX0
:= LX0

� � � � � LX0
�n times
�

Proof� We shall verify only the first three formulas, the remaining ones
can be handled in the same way. First we observe that the vanishing of the
Douglas tensor implies by (26) the relation

(34) X0(FX0(�)) = �2�FX0(�)�

From now on we calculate.

(a) LFX0
LX0

� = [FX0� X0]�+LX0
LFX0

�
(34)
= [FX0� X0]��2�FX0(�)

(17a)�(23)
=

= 1p
2E

(S0�) + �(FX0)�� 2�(FX0)�
(23)
= ��(FX0)� = ��LFX0

�,

thus (27) is proved.

(b) LS0
LX0

� = [S0� X0]� + X0(S0�)
(17b)� (23)

= � 1p
2E

(FX0)� = � 1p
2E
LFX0

�,

so we have obtained (28).
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c) LFX0
L2
X0
� = LFX0

LX0
(X0�) = [FX0� X0](X0�)+X0[FX0(X0�)]

(17a)�(23)
=

= 1p
2E
S0(X0�) + �(FX0)(X0�) + X0[FX0(X0�)]

(28)� (27)
= � 1

2ELFX0
� �

� �2LFX0
� + X0[FX0(X0�)]

(27)
=
�
� 1

2E � �2
�
LFX0

� + X0(��(FX0)�) =

=
�
� 1

2E � �2
�
LFX0

�� (X0�)LFX0
�� �LX0

LFX0
�

(34)
=

=
�
� 1

2E � �2 � LX0
�
�
LFX0

� + 2�2LFX0
� =

�
�2 � LX0

�� 1
2E

�
LFX0

�,

showing that (29) is also valid.

���� Theorem� If a positive de�nite two�dimensional Landsberg mani�

fold has a vanishing Douglas tensor� then it is a Berwald manifold�

Proof� (A) In the next, quite tedious calculations our aim is to show that

(35) LFX0
� = 0�

Then on the one hand

0 = (FX0)� = [(F � v )X0]� = [h(FX0)]� = (dh�)(FX0)

on the other hand

(dh�)(S ) = (d�)(hS ) = (d�)S = S (�)
(23)
= 0�

so it follows that dh� = 0 and, in view of Proposition 1.7, (M�E ) is a Berwald
manifold.

Notice that our subsequent reasoning relies heavily on the fact that

(36) �� = �X0(�)�

This relation is an immediate consequence of the Bianchi identity (22) and
the property (23).

(B) We start with the “permutation formula” (17c) and apply both its
sides to the main scalar. Taking into account (23), we obtain

(37) LS0
LFX0

� = �X0(�)�

Now we evaluate the vector field [S0� X0] on the function FX0(�).

[S0� X0](FX0(�)) = S0[X0(FX0(�))]�X0[S0(FX0(�))]
(34)� (37)

=

= �2S0[�(FX0)(�)]�X0(�X0(�))
(23)
=

= �2�S0[(FX0)�]�X0(�)X0(�)� �X0(X0�)
(37)� (36)

=

= �2��X0(�) + ��X0(�)� �X0(X0�) = ��(�X0(�) + X0(X0�))�
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Since, on the other side, [S0� X0]
(17b)

= � 1p
2E
FX0, it follows that

(38)
1p
2E
L

2
FX0

� = �(�X0(�) + X0(X0�))�

Applying the vector field X0 to both sides of (38), owing to (1) we obtain

1p
2E

LX0
L

2
FX0

� = X0(�)(�X0(�) + X0(X0�))+

+�
h
(LX0

�)2 + �L2
X0
� + L3

X0
�
i

(36)
= �(��2

LX0
� + (LX0

�)2 + L3
X0
�)�

i.e.

(39)
1p
2E

LX0
L

2
FX0

� = �(��2
LX0

� + (LX0
�)2 + L3

X0
�)�

The Lie derivatives of the two sides of (34) with respect to FX0 yield

(40)
1p
2E

LFX0
LX0

LFX0
� =

1p
2E

[�2(LFX0
�)2 � 2�L2

FX0
�]�

Taking the difference of (39) and (40), and then substituting the term
1p
2E
L2
FX0

� from the right hand side of (38) we obtain

1p
2E

[X0� FX0](FX0(�)) =

= �(�2
LX0

� + (LX0
�)2 + L3

X0
� + 2�L2

X0
�) +

2p
2E

(LFX0
�)2�

The left hand side of this equality can also be written in the form

1p
2E

[X0� FX0](FX0(�))
(17a)� (23)

=

= � 1
2E

S0[FX0(�)]� 1p
2E

�(FX0)(FX0(�)) =

(37)� (38)
= ��

�
1

2E
X0(�) + �2X0(�) + �X0(X0�)

�
�

so it follows that

(41)
2p
2E

(LFX0
�)2 +�(L3

X0
�+3�L2

X0
�+(LX0

�)2 +2�2
LX0

�+
1

2E
LX0

�) = 0�
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Now we apply the vector field X0 to (41). Taking into account that

X0

�
2p
2E

(LFX0
�)2

�
(1)
=

2p
2E

LX0
(LFX0

�)2 =
4p
2E

(LFX0
�)LX0

LFX0
� =

(34)
= � 8�p

2E
(LFX0

�)2 =

(41)
= 4 � ��

�
L

3
X0
� + 3�L2

X0
� + (LX0

�)2 + 2�2
LX0

� +
1

2E
LX0

�

�
�

we obtain the relation

(X0�)

�
L

3
X0
� + 3�L2

X0
� + (LX0

�)2 + 2�2
LX0

� +
1

2E
LX0

�

�
+

+�

�
L

4
X0
� + 5(LX0

�)L2
X0
� + 7�L3

X0
� + 8�(LX0

�)2+

+14�2
L

2
X0
� +

1
2E

L
2
X0
� + 8�3

LX0
� +

2�
E
LX0

�

�
= 0�

Using (36), this takes the form

�

�
L

4
X0
� + 6�L3

X0
� +

�
5LX0

� + 11�2 +
1

2E

�
L

2
X0
�+(42)

+

�
7LX0

� + 6�2 +
3

2E

�
�LX0

�

�
= 0�

(C) To conclude the proof, we finally discuss the relation (42).

(a) If � = 0, then we see from (41) that LFX0
� = 0. This means by (A) that

(M�E ) is a Berwald manifold.

(b) In the case ��0 the second factor has to vanish on the left hand side
of (42). Then we take the Lie derivative of this factor with respect to
the vector field FX0. Applying the relations (27)–(33), after a somewhat
lengthy but quite straightforward calculation we obtain

(43)

�
L

3
X0
� + 3�L2

X0
� + (LX0

�)2 + 2�2
LX0

� +
1

2E
LX0

�

�
LFX0

� = 0�

If LFX0
� = 0, then the process ends. Otherwise the first factor on the left

hand side of (43) is zero, but, owing to (41), this also yields the desired
relation LFX0

� = 0.
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1. Introduction

Let 0 �a1 �a2 ��� � �an be integers with gcd(a1� � � � � an) = 1. It is
well-known that the equation N =

P
n

i=1 xiai has a solution in non-negative
integers xi provided N is sufficiently large. Denote G(a1� a2� � � � � an) the
greatest integer N for which the preceding equation has no such solution.
G(a1� a2� � � � � an) is called a Frobenius number� The computation and estimate
of G have given rise to many papers. The question of the estimation of G
naturally suggests the following extremal problem [2]. For integers n and t ,
define g(n� t) by

g(n� t) = maxG(a1� a2� � � � � an)

where the max is taken over all ai satisfying 1 �a1 ��� � �an � t ,
gcd(a1; � � � ; an) = 1. g(n� t) is called an extremal Frobenius number�

Erd�os and Graham proved in [2] that, for n � 2,

t2

n � 1
� 5t � g(n� t) �2

t2

n
�

They found the exact value of g(n� 2n+k ) for fixed k , if n is sufficiently large

(n�20k2):

(1) g(n� 2n + k ) =
n

2n + 4k � 1� for k � 1 and n � k � 1 (mod 3)
2n + 4k + 1� for k � 1 and n � k �� 1 (mod 3).

Dixmier has proved [1, Thm.1] that, for 2 � n�t�
t � 2
n � 1

�
(t � n + 1) � 1 � g(n� t) �

��
t � 1
n � 1

�
� 1

�
t � 1�
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thus proving a conjecture by Erd�os and Graham [3, page 86] stating that

g(n� t)�
t2

(n � 1)
�

In the same paper Dixmier improved the upper bound as follows
[1, Thm.3]. For 2 � n�t

g(n� t)�(v � 1)(t � r � 1) � 1�(2)

where t � 1 = v (n � 1) � r and 0 � r �n � 1�

Dixmier gave the exact value of g(n� t) for some special cases.

In this paper we find the exact value of some further extremal Frobenius
numbers and extend the validity of Erdős–Graham’s formula (1) for any n �
k + 2 using Dixmier’s upper bound.

2. Main result

Theorem� Let d� n� k be integers such that 2�d�n � 0 � k � n � d�
If n � k � 0 (mod d + 1) or n � k � �1 (mod d + 1) then

g(n� dn + k ) = d(d � 1)n + 2dk + d2 � d � 1�

Proof� With the notations of (2), we obtain

dn + k � 1 = (d + 1)(n � 1) � n + k + d = (d + 1)(n � 1)� (n � k � d)�

if k � n�d. We have v = d +1 and r = n�k �d. We can apply formula (2):

g(n� t) � (v � 1)(t � r � 1) � 1 = d[dn + k � (n � k � d) � 1] � 1 =

= d(dn + k � n + k + d � 1)� 1 =

= d[(d � 1)n + 2k + d � 1] � 1 = d(d � 1)n + 2dk + d2 � d � 1�

The proof will be complete if we find integers 0 �a1 �a2 ��� ��an � t

such that

G(a1� a2� � � � � an ) = d(d � 1)n + 2dk + d2 � d � 1�

We consider the cases n � k � 0 and 1 (mod d + 1) separately.

Case (i). Let n � k � 0 (mod d + 1). Write n = l (d + 1) + k , then

dn + k = l d(d + 1) + dk + k = (d + 1)(l d + k )�
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Let A = fa1; a2; � � � ; ang consist of all multiples of (d + 1) and the l largest
elements of the residue class (�1) modulo (d + 1) up to t :

A = fd + 1; 2(d + 1); 3(d + 1) � � � ; (l d + k � 1)(d + 1); (l d + k )(d + 1);

dn+k�1; dn+k�1�(d+1); dn+k�1�2(d+1); � � � ; dn+k�1�(l�1)(d+1)g�

It is clear that jAj = (l d+k )+l = l (d+1)+k = n . Let z = dn+k�1�(l�1)(d+1)
be the smallest element of A, which is not a multiple of (d + 1). Let us write
z in the form

z = dn + k � 1 � (l � 1)(d + 1) = (l d + k )(d + 1)� 1 � (l � 1)(d + 1) =

= (d + 1)(l d + k � l + 1)� 1�

We know that 0; z ; 2z ; � � � ; (d � 1)z ; dz is a complete residue system mod
(d + 1). Hence the largest integer, which has no representation by A is (see
e.g.[4])

G(A) = dz � (d + 1) = d(d + 1)(l d + k � l + 1) � d � d � 1 =

= d(d + 1)[(d � 1)l + k + 1] � 2d � 1 =

= d(d + 1)(d � 1)l + d(d + 1)k + d2 + d � 2d � 1�

Substituting n � k = l (d + 1), we obtain the desired

G(A) = d(d � 1)n + 2dk + d2 � d � 1�

Case (ii). Suppose n�k � �1 ( mod d + 1). Then n�k = l (d + 1)�1, or
n = l (d+1)+k�1. We see that dn+k = (d+1)dl+dk�d+k = (d+1)(dl+k )�d,
hence dn + k � 1 = (d + 1)(dl + k )� d � 1 = (d + 1)(dl + k � 1) is a multiple
of (d + 1). Let A = fa1; a2; � � � ; ang consist of all multiples of (d + 1) and the
l largest elements of the residue class (1) modulo (d + 1) up to t :

A = fd + 1; 2(d + 1); 3(d + 1) � � � ; (l d + k � 1)(d + 1);

dn + k ; dn + k � (d + 1); dn + k � 2(d + 1); � � � ; dn + k � (l � 1)(d + 1)g�

It is obvious that jAj = (l d + k � 1) + l = l (d + 1) + k � 1 = n . Let
x = dn + k � (l � 1)(d + 1) be the smallest element of A, which is in the
residue class (1) mod (d + 1). We write x in the form

x = dn + k � (l � 1)(d + 1) = (l d + k � 1)(d + 1) + 1 � (l � 1)(d + 1) =

= (d + 1)(l d + k � 1 � l + 1) + 1 = (d + 1)[(d � 1)l + k ] + 1�

The proof is carried out analogously to Case (i), since 0; x ; 2x ; � � � ; (d�1)x ; dx
is a complete system of residues mod (d + 1). The largest integer, which has
no representation by A is

G(A) = d(d + 1)(d � 1)l + d(d + 1)k + d � d � 1 =

= d(d � 1)(n � k + 1) + d(d + 1)k � 1 = d(d � 1)n + 2dk + d2 � d � 1�
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3. Some corollaries

First we apply our Theorem for d = 2.

Corollary �� Let n� k be integers such that 2�n� 0 � k � n � 2� If

n � k � 0 (mod 3) or n � k � �1 (mod 3) then

g(n� 2n + k ) = 2n + 4k + 1�

This improves the case n � k �� 1 (mod 3) of the Erdős–Graham result
(1) by omitting the premise “n is sufficiently large”. For the greatest permis-
sible value k = n � 2, we have

g(n� 3n � 2) = 2n + 4(n � 2) + 1 = 6n � 7�

The next exact value is obtained by Dixmier [1, Thm.4]. Since n� 1 divides
t � 2 = 3n � 3, we have

g(n� 3n� 1) =
(3n � 1)(3n � 3)

n � 1
� (3n� 1) + 1 = 3(3n� 1)� 3n + 2 = 6n� 1�

Now, take d = 3 in the Theorem. We obtain:

Corollary �� Let n� k be integers such that 2�n� 0 � k � n � 3� If

n � k � 0 (mod 4) or n � k � �1 (mod 4) then

g(n� 3n + k ) = 6n + 6k + 5�

We can continue this specification and get exact formulae for further
extremal Frobenius numbers�

Corollary �� Let d� n be integers such that d�n � If n � 0 ( mod d+1)
or n � �1 (mod d + 1) then

g(n� dn) = d(d � 1)n + d2 � d � 1�

For example: g(n� 2n) = 2n + 1; g(n� 3n) = 6n + 5; g(n� 4n) = 12n + 11.
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In [8] J� Szabados established a relation between the “good” nodes of
weighted Lagrange interpolation and the weighted Lebesgue constants. In this
note we give a generalization of his results for other exponential weights.

Let Xn := fxn�n ��� � �x1�ng � I := R or (�1� 1) (n � N) be
an interpolatory matrix and w : I � R be a given weight function. It is
known that (see e.g. [7] and [10]) the weighted Lebesgue constants �n(w�Xn)
(n � N) play a fundamental role in the convergence-divergence behaviour
of sequences of weighted Lagrange interpolatory polynomials. �n (w�Xn) is
defined as the supremum norm on I of the weighted Lebesgue function

(1)
�n(w�Xn � x ) :=

nX
k=1

���� (�nw )(x )
(�nw )�(xk �n)(x � xk �n )

���� =:
nX
k=1

jqk �n (x )j

(x � I � n � N)�

where �n (x ) := cn
nQ
k=1

(x � xk �n).

Throughout this paper we shall assume that our weight has the form

w := e�Q , where Q : I � R is even, continuous and convex. The nth
Mhaskar–Rahmanov–Saff number an := an(w ) is the (unique) positive root
of the equation

n =
2
�

Z 1

0

an tQ
�(an t)p

1� t2
dt (n � N)�

Research supported by the Hungarian National Scientific Research Foundation (OTKA)

under Grant No. T032719, T32872 and by FKFP 0198/1999.
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One of its property is that

krnwk := max
x�I

j(rnw )(x )j = max
jx j�an

j(rnw )(x )j (rn � Pn � n � N)�

where Pn denotes the polynomials of degree � n .

Our classes of weights on R are the so-called Freud�type weights, where
Q is even and polynomial growth at +�, and the Erd�os�type weights, where
Q is even and of faster than polynomial growth at +�. The exponential

weights on (�1� 1) that we discuss include wk �� := e�Qk�� , where Qk �� (x ) :=

= expk ((1 � x2)��). Here 	 
0� k � 0 and expk := exp(exp(� � � exp()))
is the k � 1-th iterated exponential and exp0(x ) := x . We shall denote these
classes of weights by F(R), E(R) and EXP[�1� 1], respectively. For a formal
definition of these classes, see [6, Definitions 1–3].

It is not difficult to see that the function T (x ) := 1+(xQ ��(x ))�Q �(x ) (x �
� (0�+�)	 I ) guarantees the regular growth of Q . If T is bounded on I then
Q is at most polynomial growth on I . This is true for Freud-type weights.
In contrast, if T (x ) � +� as x tends to the endpoints to I (it is true for
w � E(R) or EXP[�1� 1]) then Q is faster than polynomial growth near the
endpoint of I .

We shall derive the generalizations of results in [8]1from the following
statement.

Theorem� Let w � F(R)� E(R) or EXP[�1� 1]� If rn � Pn satis�es

(2) krnwk�e
cw

np
Tn (Tn := T (an))

with a constant cw 
0 and for a point y � I we have (rnw )(y) = 1 then

jy j � an

�
1 + dw

�
log krnwk
nTn

�2�3
�

with some constant dw 
0 depending only on w �

Remarks� 1. For our weights we have n�
p
Tn � +� if n � +�.

Indeed, if w � F(R) then there exist 1 �A � B such that A � T (x ) � B (x �
� (0�+�)), see the definition of F(R) in [6, p. 153]. For w � E(R) we know
that for any � 
0 there exists c 
0 independent of n such that Tn � cn�

1 Actually formula (2) in [8] holds only for an � jx j � ran with some constant r �1.

That means the [8] Proposition 1 is true with some additional condition.
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(n � N) (see [2, (2.7)]). Finally, if w � EXP[�1� 1] then for some � 
0 we

have Tn = O(n2�� ) (n � +�), see [4, (3.8)].

2. Actually, the starting point of [8] was the problem of the behaviour
of the point systems Xn (n � N) for which the weighted fundamental poly-
nomials qk �n (see (1)) are uniformly bounded, i.e. jqk �n (x )j � A uniformly in
x , k and n . These point systems serve as a basis of constructing convergent
weighted interpolation polynomials of degree at most n(1 + �) (see [12] and
[9]).

From the Theorem and Remark 1 we immediately obtain

Corollary �� Let w � F(R)� E(R) or EXP[�1� 1] and suppose that the

point system Xn (n � N) is such that the corresponding weighted fundamen�

tal polynomials of Lagrange interpolation qk �n (k = 1� 2� � � � � n� n � N) are

uniformly bounded� Then there exists c
0 such that

max
1�k�n

jxk �n j � an

�
1 + c

�
1
nTn

�2�3
�

(n � N)�

3. Now let us consider the Lebesgue constants �n(w�Xn) (n � N). Let
yn � R be such that �n(w�Xn) = �n(w�Xn � yn), and consider the weighted
polynomial

(rnw )(x ) :=
nX
k=1

�
sgn qk �n (yn)

�
qk �n(x )�

Evidently

j(rnw )(x )j � �n (w�Xn � x ) � �n (w�Xn) = (rnw )(yn)�

that is krnwk = �n(w�Xn). Since j(rnw )(xk �n)j = 1 thus from the Theorem
we obtain

Corollary �� Let w � F(R)� E(R) or EXP[�1� 1]� Suppose that the

constant cw 
0 satis�es (6) and the point system Xn (n � N) is such that

�n(w�Xn) �e
cw

np
Tn (n � N)�

Then there exists c
0 such that

max
1�k�n

jxk �n j � an

�
1 + c

�
log�n(w�Xn)

nTn

�2�3
�

(n � N)�
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It is known that for the above weights there are such point systems for
which �n (w�Xn) 
 log n (n � N) (see [7], [2], [1]), and the order is the best
possible (see [10], [11]). Thus the “best” weighted Lagrange interpolation
point systems satisfy

max
1�k�n

jxk �n j � an

�
1 + c

�
log log n
nTn

�2�3
�

(n � N)

with some constant c
0 depending only on w .

Proof of Theorem� Fix a weight function w . Then for every rn � Pn
(n � N) we have

(3) j(rnw )(x )j � e
nUn�an

� jx j
an

�
krnwk (x � R)�

where Un�R is the “majorizing function” (see [3, Lemma 7.1], [5, (4.11)], [4,
(5.11)]).

Now we show that there exist the constants c
0 and D 
0 (they depend
only on w ) such that
(4)

Un�an (1 + �) � �c

	
�

�
�3�2Tn � if 0 � � � D

Tn
�2

1 + �
T

3�2
n � if D

Tn
� � �


+�� if I = R
1
an
� 1� if I = (�1� 1)

For the interval � � [0� D�Tn) this statement is Lemma 7.1(d) in [3] if
w � F(R); Theorem 4.3 of [5] for w � E(R) and Theorem 5.3 in [4] if
w � EXP[�1� 1].

Now let � � D�Tn . Then there is a  � (an � an(1 + �)) � I such that

(5) Un�an (1 + �) � �Q
��()(an�)2

2n

(see [5, p. 228], [4, p. 53–56], [3, Lemma 7.1] with R = an and use the
inequality log(1 + x ) � x if x � 0).

If w � F(R) then there are c1� c2 
0 such that c1Q
�() � Q ��() �

c2Q
�() (see [6, Definition 1]). Since anQ �(an) 
 n (n � N) (see [3, (5.5)])

thus we have

a2
nQ

��()
n

� c1
anQ

�(an)
n

� 1
1 + �

� c3
1 + �
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which proves (4) for Freud type weights. If w � E(R) or EXP[�1� 1] then we
obtain (4) in a similar way using that xQ ��(x ) is increasing for x � (0�+�)	I
(see [5, Lemma 2.1(ii)], [4, Lemma 3.1(ii)]) and

a2
nQ

��(an) 
 nT
3�2
n (n � N)

(see [5, Lemma 2.2(i)], [4, Lemma 3.2(i)]).

Since �3�2Tn 
 �2

1+�T
3�2
n (n � N) if � = D�Tn thus from (4) we obtain

that there exists cw 
0 such that

(6) j(rnw )(x )j � e
�cw

np
Tn krnwk (

jx j
an

� 1 � D

Tn
� rn � Pn � n � N)�

If rn � Pn satisfies (2) then j(rnw )(x )j�1 for jx j�an � 1 � D�Tn , i.e.
jy j�an � 1 �D�Tn . From (3) and (4) we obtain that

1 = j(rnw )(y)j � e
�c
� jyj
an �1

�3�2
nTn krnwk�

Hence, a simple rearrangement yields the statement of the Theorem.
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1. Introduction

In 1975, L� G� P�al [8] introduced the following interpolation process.

Let

(1�1) ���xn�n ��� ��x1�n �+�
be a system of distinct real points and put

(1�2) Wn (x ) =
nY
i=1

(x � xi �n)�

The roots yi �n (i = 1� � � � � n � 1) of W �
n(x ) are interscaled between the roots

of Wn (x ), i.e.,

(1�3) ���xn�n �yn�1�n ��� ��x2�n �y1�n �x1�n �+��

Pál proved that forgiven arbitrary numbers f�i �ngni=1 and f�i �ngn�1
i=1 there

exists a unique polynomial of degree � 2n � 1 satisfying the conditions:

(1�4) Rn(xi �n) = �i �n � i = 1� � � �� n; R�n(yi �n) = �i �n � i = 1� � � � � n � 1

and an initial condition Rn (a) = 0, where a is a given point, different from
the nodal points xi �n (i = 1� � � � � n , n = 1� 2� � � �).

Szili [10], firstly applied this method in the case for Wn (x ) = Hn (x )
(here Hn denotes the nth Hermite polynomial). Taking n even, he proved the
existence, uniqueness, explicit representation and the convergence theorem
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for the polynomial Rn(x ) satisfying the conditions (1.4) together with an
additional condition

(1�5) Rn(0) = �
nX

i=1

2�i �n

�
Hn(0)
H �

n(xi �n)

�2

�

If n is odd, the uniqueness fails to hold. Later I� Jo �o [5] improved his results
by sharpening the estimates of the fundamental polynomials.

In a recent paper, Z� F� Sebesty�en [9] modified the the above methods
by replacing the special condition (1.5) by an interpolatorial condition

(1�6) Rn(0) = �0�n for n even

or

(1�7) R�n(0) = �n�n for n odd�

Let
(1�8)

Ai �n(x ) =
H �

n (x )
H �

n (xi �n)
li �n(x ) + 2n

Hn (x )
H �

n(xi �n)

xZ
0

li �n(t)dt � 2

�
Hn(x )
H �

n (xi �n)

�2

+

+
2Hn(0)Hn(x )

H �
n (xi �n)2 +

H �
n(0)Hn(x )

xi �nH
�
n(xi �n)2 � i = 1� � � � � n

(1�9) B i �n (x )
Hn (x )
Hn(yi �n)

xZ
0

Li �n (t)dt � i = 1� � � � � n � 1�

For n even, taking

(1�10) A0�n(x ) =
Hn(x )
Hn(0)

he showed that

(1�11) Rn(x ) =
nX
i=0

�i �nAi �n (x ) +
n�1X
i=1

�i �nB i �n (x )

is the uniquely determined polynomial of degree � 2n � 1 satisfying the
conditions (1.4) and (1.6). For n odd, taking

(1�12) Bn�n(x ) =
Hn(x )
H �

n(0)
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and

(1�13)
Ai �n (x ) =

H �
n(x )

H �
n (xi �n)

li �n(x ) + 2n
Hn(x )
H �

n (xi �n)

xZ
0

li �n(t)dt � 2

�
Hn(x )
H �

n(xi �n)

�2

�

i = 1� � � � � n

for xi �n = 0, he showed that

(1�14) Rn (x ) =
nX
i=1

�i �nAi �n(x ) +
nX
i=1

�i �nB i �n (x )

is the uniquely determined polynomial of degree � 2n � 1 satisfying the
conditions (1.4) and (1.7). He also proved that for a function f : R � R
which is continuously differentiable satisfying

(1�15) lim
jx j��

x2r f (x )e�x2�2 = 0� r = 0� 1� 2� � � � � lim
jx j��

f �(x )e�x2�2 = 0

together with, for n even

(1�16)
� i �n = f (xi �n)� i = 0� � � � � n

� i �n = f �(xi �n)� i = 1� � � � � n � 1

and for n odd

(1�17)
�i �n = f (xi �n)� i = 1� � � � � n�

� i �n = f �(xi �n)� i = 1� � � � � n

following estimate holds

(1�18) e�x2 jf (x )� Rn(x )j = O(1)�

�
f ��

1p
n

�
� x � R�

where O does not depend on n and x . � (f �� � ) is the Freud’s modulus of
continuity for f �.

J� Bal�azs [2] and L� Szili [11] have earlier studied analogous modified
problems for weighted (0� 2)-interpolation and T� F� Xie [12], L� G� P�al [7]
have investigated such modifications in Pál type interpolation.

Considering the nodes as the interscaled zeros of Hn(x ) and H �
n (x ), Sri�

vastava and Mathur [6], taking n even, proved that there exists a unique
polynomial of degree � 3n � 2 sates ing the conditions:

(1�19)
Gn(xi �n) = gi �n � i = 1� � � � � n�

Gn(yi �n) = g�i �n � (wGn)��(yi �n) = g�i �n � i = 1� � � � � n � 1�
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where w (x ) = e�x2�2 and

(1�20) G �n (0) =
nX

i=1

gi �n
H ��

n (0)l2i �n(0)

H �
n(xi �n)

�

For n odd the uniqueness is not true. They also proved that for a function
f : R � R satisfying the requirements (1.15), together with

(1�21)

gi �n = f (xi �n)� i = 1� � � � � n�

g�i �n = f (yi �n) and g��i �n = O

�p
ne

�y2
i �n�

�
f ��

1p
n

��

the following estimate holds:

(1�22) e��x2 jf (x )�Gn(f � x )j = O(log n)�

�
f ��

1p
n

�
� � �

3
2
�

In [6] results have been obtained under a special condition (1.20), which
looks to be artificial. Also it has been proved that for n odd, either the
interpolatory polynomial does not exit or if it exists, they are infinitely many.
In this connection we raise the following:

Problem� For each positive integer n do there exist a weighted (0; 0� 2)-
interpolatory polynomial Gn of degree � 3n � 2 satisfying the conditions
(1.19) and

Gn (0) = g0 if n is even(1�23)

or

G �n (0) = g �0 if n is odd�(1�24)

If it exists what will be its explicit form and does it converse?

In this paper, we answer this problem in affirmative. In section 2, we
give some preliminaries and state new results in section 3. The estimates of
the fundamental polynomials and the convergence theorem have been proved
in sections 4 and 5 respectively.
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2. Preliminaries

Let Hn (x ) be the n th Hermite polynomial with usual normalization

(2�1)

+�Z
��

Hn (t)Hm(t)e�t2dt =
p
	2nn!
n�m � (n�m � N)

which satisfies the differential equation;

(2�2)
H ��

n (x )� 2xH �
n(x ) + 2nHn(x ) = 0�

H �
n(x ) = 2nHn�1(x )�

It is well known that xi �n roots of Hn(x ) satisfy the following relations:

(2�3)

���xn�n ��� ��x n
2 +1�n �0 �x n

2 �n
��� ��x1�n �+� (n = 2m)�

���xn�n ��� ��x n+1
2 �n

= 0 ��� ��x1�n �+� (n = 2m + 1)�

xi �n = �xn�i+1�n �
�
i = 1� 2� � � � �

n

2

�
�

Let li �n and Li �n denote the Lagrange fundamental polynomial corresponding
to the nodal points xi �n and yi �n respectively, then

li �n(x ) =
Hn(x )

H �
n (xi �n)(x � xi �n)

� i = 1� � � � � n� (2�4)

Li �n (x ) =
H �

n (x )
H ��

n (yi �n)(x � yi �n)
� i = 1� � � � � n � 1� (2�5)

For the roots of Hn(x ), we have

xi �n �
i2

n
�(2�6)

Hn(x ) = O(1)n�1�4
p

2nn!
�

1 + 3
p
jx j
�
ex

2�2� x � R�(2�7)

nX
i=1

e��x2
i = O(

p
n) and

n�1X
i=1

e��y2
i = O(

p
n)� 
 �0�(2�8)

nX
i=1

e
x2
i �n l2i �n(x ) = O(e2) and

n�1X
i=1

e
y2
i �nL2

i �n (x ) = O(ex
2
)(2�9)

jHn(0)j =
n!�
n
2

	
!

for n even(2�10)
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2n
��

n
2

	
!
	2

(n + 1)!
� n�1�2�(2�11)

The above results have been taken from [6], we shall also require the follow-
ing estimates given by Sebesty�en [9]

(2�12)
nX
i=1

e
x2
i �n�2jAi �n(x )j = O(

p
n)ex

2

and

(2�13)
nX

i=1

e
x2
i �n�2jB i �n (x )j = O(1)ex

2
�

where Ai �n (x ) and B i �n(x ) are given by (1.8) and (1.9) respectively. We shall

use the following notations in the sequel xi = ci �n , li = li �n , Ai = Ai �n ,

B i = B i �n .

3. New Results

Theorem �� Considering (1�3) as the roots of nodal points and the weight

function w (x ) = e�x2�2� there exists a unique polynomial Gn of degree �
� 3n � 2 satisfying the conditions (1�19) and (1�23) or (1�24) according as n
is even or odd�

Theorem �� Let

(3�1)
Ai (x ) =

H �
n(x )

H �
n (xi )

l2i (x )� 2
Hn(x )H �

n(x )

H �
n (xi )3

xZ
0

H �
n (xi )l

�
i (t)� xiH

�
n(t)

t � xi
dt �

i = 1� � � � � n�

(3�2)

Bi (n) =
Hn(x )
Hn (yi )

L2
i (x ) +

Hn(x )H �
n(x )

2nHn(yi )2



� xZ

0

L�i (t)� yiLi (t)

t � yi
dt�

�2n + 1� y2
i

2

xZ
0

Li (t)dt �
H �

n(0)

2ny2
i Hn(yi )

�
 � i = 1 � � � � n � 1
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and

(3�3) Ci (x ) = � Hn (x )H �
n(x )

4nw (yi )Hn(yi )2

xZ
0

Li (t)dt � i = 1� � � � � n � 1�

For n even� let

(3�4) A0(x ) =
Hn(x )H �

n(x )2

4n2x2Hn(0)3
+
Hn(x )H �

n(x )

4n2Hn(0)3

xZ
0

H �
n (t) + 2ntHn(t)

t3
dt

then

(3�5) Gn(x ) =
nX

i=0

giAi (x ) +
n�1X
i=1

g�i Bi (x ) +
n�1X
i=1

g��i Ci (x )

is the uniquely determined polynomial of degree � 3n � 2 satisfying the

conditions (1�19) and (1�23)�

For n odd� let

(3�6) Bn (x ) =
Hn(x )H �

n(x )

H �
n(0)2

then

(3�7) G�n (x ) =
nX

i=1

giAi (x ) +
nX

i=1

g�i Bi (x ) +
n�1X
i=1

g��i Ci (x )

is the uniquely determined polynomial of degree � 3n � 2 satisfying the

conditions (1�19) and (1�24)�

Theorem �� If f : R � R is a continuously di�erentiable function

satisfying the requirements (1�15) and (1�21)� then

(3�8) e�3x2�2jf (x )�Gn (f � x )j = O

�
�

�
f ��

1p
n

��
� for even n

and

(3�9) e�3x2�2jf (x )�G�n (f � x )j = O

�
�

�
f ��

1p
n

��
� for n odd�

We will prove only our main Theorem 3 as the proof of other theorems
is quite similar to that of theorems in [1].
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4. Basic Estimates of Fundamental Polynomials (n even)

Lemma �� For n even

jA0(x )j = O(1)e3x2�2�(4�1)
nX

i=1

ex
2
i jAi (x )j = O(

p
n)e3x2�2�(4�2)

where Ai (x ) and A0(x ) are given by (3�1) and (3�4) respectively�

Proof� Integrating the last term of (3.4), by parts and using

lim
t�0

H �
n(t) + 2ntHn(t)

t2
= lim

t�0

H ��
n (t) + 2ntH �

n(t) + 2nHn(t)
2t

=

= lim
t�0

(n + 1)H �
n(t)

t
= 0

together with (2.2) and (2.7), we get (4.1).

For n even, Ai (x ), i = 1� � � � � n given by (3.1), can be written in a
convenient form as:

Ai (x ) =
H �

n (x )
H �

n(xi )



�H �

n(x )
H �

n (xi )
li (x ) + 2n

Hn(x )
H �

n (xi )

xZ
0

li (t)dt �

�2

�
Hn (x )
H �

n (xi )

�2

+
2Hn (0)Hn(x )

H �
n(xi )2

�
� H �

n (x )
H �

n(xi )
Ai (x )�

where Ai (x ) is given by (1.8). Thus by (2.2) and (2.12), we have

(4�3)
nX

i=1

ex
2
i jAi (x )j =

nX
i=1

jHn�1(x )j
Hn�1(xi )j

ex
2
i �2ex

2
i �2jAi (x )j = O(

p
n)e3x2�2�

which completes the proof of the lemma.

Lemma �� For n even�

(4�4)
nX
i=1

ey
2
i jBi (x )j = O(

p
n)e3x2�2�

where Bi (x ) is given by (3�2)�
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Proof� By (2.2) and (2.5), it follows that

(4�5)
L�i (t)� yiLi (t)

t � yi
= �L

��
i (t)

2
+ yiL

�
i (t) +

H ��
n (t)

H ��
n (yi )

+ (1� n)Li (t)�

Hence Bi (x ), given by (3.2), can be written in a convenient form as, for yi�0

(4�6)

Bi (x ) =
Hn(x )
Hn (yi )



�L2

i (x ) +
H �

n(x )
2nHn(yi )

��
��L

�
i (x )

2
+
L�i (0)

2
+ yiLi (x )�

� H �
n (x )

2nHn(yi )
+ (n + 2� y2

i )

xZ
0

Li (t)dt

��
�
�
 =

=
Hn(x )
Hn (yi )



�L2

i (x )

2
+ (n + 2� y2

i )
H �

n(x )
2nHn(yi )

xZ
0

Li (x )dt+

+
Hn (x )

2Hn(yi )
Li (x ) +

H �
n(x )Hn(0)

4nHn(yi )2

�
 �

For yi = 0, by (3.2) and (4.5), we have

(4�7)

Bi (x ) =
Hn (x )
Hn(yi )

�
L2
i (x )

2
+

+(n + 2� y2
i )

H �
n(x )

2nHn(yi )

xZ
0

Li (t)dt +
Hn(x )

2Hn (yi )
Li (x )

�
 �

Thus
nX
i=1

ey
2
i jBi (x )j �

n�1X
i=1

���� Hn(x )
2Hn (yi )

���� ey2
i L2

i (x )+

+
(n + 1)

2n

n�1X
i=1

jHn (x )H �
n(x )jey2

i

Hn (yi )2

������
xZ

0

Li (t)dt

������+

+
n�1X
i=1

j1� y2
i j
jHn (x )H �

n(x )jey2
i

2nHn (yi )2

������
xZ

0

Li (t)dt

������+
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+
n�1X
i=1

ey
2
i H 2

n (x )

2Hn (yi )2
jLi (t)j +

n�1X
i=1

jHn(x )H �
n(x )jey2

i

4nyiHn(yi )2
jHn (0)j �

� I1 + I2 + I3 + I4 + I5�(4�8)

From (2.9), we have

(4�9) I1 = O(1)e3x2�2
n�1X
i=1

e�y2
i �2 = O(

p
n)e3x2�2�

By (2.13), we have

(4�10) I2 = O(1)
n�1X
i=1

2njHn�1(x )j
jHn(yi )j

ey
2
i jB i (x )j = O(

p
n)e3x2�2�

where B i (x ) is given by (1.9). Since j(1� y2
i )j = O(ey

2
i �2), hence

I3 = O(1)
n�1X
i=1

ey
2
i
jHn�1(x )j
jHn(yi )j

ey
2
i jB i (x )j = O(

p
n)e3x2�2�(4�11)

I4 = O(
p
n)e3x2�2�(4�12)

By (2.10), we have

(4�13) I5 = O(1)
n�1X
i=1

ey
2
i

2jHn�1(x )Hn(x )j
yiHn(yi )2

n!�
n
2

	
!

= O(1)e3x2�2�

Thus by using (4.9)–(4.13) in (4.8), the lemma follows.

Lemma �� For n even�

(4�14)
n�1X
i=1

ey
2
i �2jCi (x )j = O

�
1p
n

�
e3x2�2�

where Ci (x ) is given by (3�3)�

Proof� By (2.13), we have

n�1X
i=1

ey
2
i �2jCi (x )j =

n�1X
i=1

ey
2
i �2jHn�1(x )j
2jHn (yi )j

ey
2
i �2jB i (x )j = O

�
1p
n

�
e3x2�2�
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Proof of Theorem �� �n even	� By [3], Theorem 4 and [4] Theorem 1,
there exists a polynomial pn(x ) of degree � n , such that

e�x2�2jf (x )� pn(x )j = O

�
1p
n

�
�

�
f ��

1p
n

�
�(4�15)

e�x2�2jf �(x )� p�n(x )j = O(1)�

�
f ��

1p
n

�
�(4�16)

Further ([10], Lemma 4), we have for x � R

e�x2�2jpn(x )j = O(1)�(4�17)

e�x2�2jp�n(x )j = O(1)(4�18)

and

(4�19) e�x2�2jp��n (x )j = O(1)
p
n�

�
f ��

1p
n

�
for jx j�p2n + 1.

From the uniqueness of Gn (x ) in (3.5), it follows that

(4�20) pn(x ) =
nX

i=0

pn (xi )Ai (x ) +
n�1X
i=1

pn(yi )Bi (n) +
n�1X
i=1

(wpn)��(yi )Ci (x )�

Using lemmas 1, 2, 3 and (4.15)–(4.20), we obtain

e�3x2�2jf (x )�Gn (f � x )j � e�3x2�2jf (x )� pn (x )j+

+ e�3x2�2jpn (x )�Gn (f � x )j � O(1)e�x2
�

�
f ��

1p
n

�
1p
n

+

+ e�3x2�2
nX

i=0

jpn (xi )� f (xi )jjAi (x )j+

+ e�3x2�2
n�1X
i=1

jpn (yi )� f (yi )jjBi (x )j+

+ e�3x2�2
n�1X
i=1

j(wpn )��(yi )� g��i jjCi (x )j �

� O(1)

�
�

�
f ��

1p
n

�
+ e�3x2�2

n�1X
i=1

jg��i Ci (x )j+(4�21)
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+ e�3x2�2
n�1X
i=1

jw (yi )p
��
n (yi )jjCi (x )j + e�3x2�2

n�1X
i=1

jw �(yi )p�n(yi )jjCi (x )j+

+ e�3x2�2
n�1X
i=1

jw ��(yi )pn(yi )jjCi (x )j
�
�

By lemma 3 and (4.17)–(4.19), we have

e�x2�2
n�1X
i=1

jw ��(yi )pn(yi )jjCi (x )j = O(1)
1p
n
�(4�22)

e�x2�2
n�1X
i=1

jw �(yi )p�n(yi )jjCi (x )j = O(1)
1p
n

(4�23)

and

e�x2�2
n�1X
i=1

jw (yi )p
��
n (yi )jjCi (x )j = O(1)�

�
f ��

1p
n

�
�(4�24)

Thus by using (4.22)–(4.24) in (4.21), the theorem follows.

5. Basic Estimates of Fundamental Polynomials (n odd)

Lemma 
� For n odd�

(5�1)
nX

i=1

ex
2
i jAi (x )j = O(

p
n)e3x2�2�

where Ai (x ) is given by ������

Proof� Since x n+1
2 �n

= 0, is a zero of Hn (x ) (n odd) thus for xi�0, we

have

(5�2) Ai (x ) =
H �

n (x )
H �

n(xi )
Ai (x )�

Thus by (2.12), we have

nX
i=1

ex
2
i jAi (x )j =

nX
i=1

Hn�1(x )
Hn�1(xi )

ex
2
i jAi (x )j = O(

p
n)e3x2�2�
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For xi = 0, by (3.1), we have

(5�3) Ai (x ) =
H �

n(x )
H �

n (xi )
l2i (x )� 2

Hn(x )H �
n(x )

H �
n (xi )2

2Z
0

tH �
n(t)�Hn (t)

t3
dt �

Integrating the last term of (5.3), by parts, and using

lim
t�0

tH �
n(t)�Hn(t)

t2
= lim

t�0

H ��
n (t)
2

= 0

we have, by (1.13)

(5�4) Ai (x ) =
H �

n(x )
H �

n (xi )
Ai (x )�

Thus
nX
i=1

ex
2
i jAi (x )j = O(

p
n)e3x2�2�

hence the lemma is proved.

Lemma �� For n odd�

n�1X
i=1

ey
2
i jBi (x )j = O(

p
n)e3x2�2�(5�5)

jB0(x )j = O

�
1p
n

�
e3x2�2�(5�6)

and

n�1X
i=1

ey
2
i jCi (x )j = O

�
1p
n

�
e3x2�2�(5�7)

The proof of this lemma is quite similar to that of lemmas 2 and 3, so
we omit details.

The proof of Theorem 3 (n odd) can be obtained following the same steps
as in the case of n even. We omit details.
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2019. május 4. –23:07

ANNALES UNIV. SCI. BUDAPEST., 44 (2001), 53–64

ON MODIFIED WEIGHTED (0� 1� � � � � r � 2� r )-INTERPOLATION ON
AN ARBITRARY SYSTEM OF NODES

By

P. MATHUR and S. DATTA

Department of Mathematics and Astronomy, Lucknow University, Lucknow, India

�Received October ��� �����

1. Introduction

Recently, J� Bal�azs [2] showed that there exists a modified weighted
(0� 2)-interpolation polynomial Rn(x ) of degree � 2n � 1 satisfying the con-
ditions:

Rn(xi �n) = yi �n � i = 1� � � � � n�

R�n(xn�n) = yn�n

(wRn)��(xi �n) = y ��n�n � i = 1� � � � � n � 1

where yi �n , y �n�n , y ��i �n are arbitrary given real numbers, x1�n � � � � � xn�1�n are the

zeros of the polynomial Wn�1(x ), i.e.,

Wn�1(x ) =
n�1Y
i=1

(x � xi �n)

where w (x ) � C (2)(a� b) is such a weight function which satisfies the condi-
tions:

(wWn�1)��(xi �n) = 0� i = 1� � � � � n � 1

and

w (xi �n)�0� i = 1� � � � � n � 1�

Then Rn(x ) can be explicitly represented as:

Rn(x ) =
nX

i=1

yi �nAi �n (x ) +
n�1X
i=1

y ��i �nBi �n(x ) + y �n�nAn�n(x )
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where Ai �n(x ), Bi �n(x ) and An�n(x ) are basic interpolation polynomials each
of degree � 2n � 1.

This motivated us to consider the general problem of determining the
modified weighted (0� 1� � � � � r � 2� r )-interpolation (r � 2) polynomial on an
arbitrary system of nodes.

2. Definitions and New Results

Modified weighted (0� 1� � � �� r � 2� r )-interpolation (r � 2) means the
solution of the following problem:

Let the system of knots

(2�1) �� � a � xn�n ��� ��x1�n � b � +� (n � N� xi := xi �n)

be given in the finite or infinite open interval (a� b) and let w (x ) � C (r )(a� b)
be a weight function. Find a polynomial Sn (x ) of minimal possible degree
satisfying the conditions:

S (m)
n (xi ) = y (m)

i
� i = 1� � � � � n� m = 0� � � � � r � 2�(2�2)

S
(r�1)
n (xn) = y (r�1)

n �(2�3)

and �
w r�1Sn(x )

�(r )
(xi ) = y (r )

i
� i = 1� � � � � n � 1� n � N�(2�4)

where y (m)
i

, y (r�1)
n , y (r )

i
are arbitrary given real numbers.

Let Wn�1(x ) denote a polynomial of degree � n�1 having xi �n’s as the
zeros, i.e.,

(2�5) Wn�1(x ) =
n�1Y
i=1

(x � xi �n)�

If there exists a weight function w (x ) � C (r )(a� b) satisfying the conditions:

fw r�1W r�1
n�1 (x )g(r )(xi ) = 0� i = 1� � � � � n � 1�(2�6)

and

w (xi )�0� i = 1� � � � � n � 1(2�7)

then the following holds.
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Theorem �� If there exists a weight function w (x ) � C r (a� b) satisfying

the conditions (2�6) and (2�7) then there exists a unique modi�ed weighted

(0� 1� � � �� r � 2� r )�interpolation polynomial Sn(x ) of degree � nr � 1 corre�

sponding to the system of knots (2�1) and satisfying the conditions (2�2)� (2�3)
and (2�4)�

We note that, if the zeros of the polynomial Wn�1(x ) are the zeros of the
classical orthogonal polynomials, then the weight functions w (x ) � C r (a� b)
satisfying the conditions (2.6) and (2.7) do always exist. We will show this
in the sequel. To prove the above theorem we shall need the following

Wn�1(xn)�0�(2�8) �
W r�1

n�1

�(q)
(xi ) =

�
0� q �r � 1
(r � 1)!W �

n�1(xi )
r�1� q = r � 1,(2�9)

and �
l r�1
i

�(q)
(xi ) =

�
0� q �r � 1
(r � 1)!l �i (xi )

r�1� q = r � 1,(2�10)

where

(2�11) li (x ) =
Wn�1(x )

(x � xi )W �

n(xi )
i = 1� � � � � n � 1�

3. Determination of fundamental polynomials

Suppose that for the basic system of knots (2.1) the polynomial Wn�1(x )
of degree � n�1 is given by (2.5) and there exists a weight function w (x ) �
� C r (a� b) satisfying the conditions (2.6) and (2.7).

Let Atk (x ) (k = 1� � � � � n , t = 0� � � � � r ) denote polynomials of degree
� nr � 1 satisfying the conditions:
(3�1)���
��
A

(m)
tk (xj ) = �j k�mt � j � k = 1� � � � � n; m� t = 0� � � � � r � 2

A
(r�1)
rk

(xn) = 0� k = 1� � � � � n; t = 0� � � � � r � 2
(w r�1Atk )(r )(xj ) = 0� k = 1� � � � � n; j = 1� � � � � n � 1; t = 0� � � � � r � 2,

(3�2)

���
��
A(m)

(r�1)n(xj ) = 0� j = 1� � � � � n; m = 0� � � � � r � 2

A(r�1)
(r�1)n(xn) = 1�

(w r�1A(r�1)n)(r )(xj ) = 0� j = 1� � � � � n � 1,
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(3�3)

���
��
A

(m)
rk

(xj ) = 0� j =1� � � � � n�1� k =1� � � � � n�1� m = 0� � � � � r�2,

A(r�1)
rk

(xn) = 0� k = 1� � � � � n � 1,
(w r�1Ark )(r )(xj ) = �j k � k = 1� � � � � n � 1; t = 0� � � � � r � 2.

We give.the explicit forms of Atk (x ), k = 1� � � � � n , t = 0� � � � r in the following:

Lemma �� If for basic system of knots (2�1) there exists a weight function

w (x ) � C r (a� b) satisfying the condition (2�6) and (2�7)� then the polynomial

Atk (x )� satisfying the conditions (3�1) has the form�

For t = 0� � � � � r � 2� k = 1� � � � � n � 1� we have

(3�4)

Atk (x ) = atk (x � xk )r�1(x � xn)�l rk (x )+

+ W r�1
n�1 (x )

	

 xZ
xn

(y � xn)r�1qtk (y)dy + btk

xZ
xn

lk (y)dy+

+

xZ
xn

�
�r�2X

j=0

ej k (y � xn )j


AWn�1(y)dy

�
� +

r�2X
j=t+1

dj kAj k (x )�

where� last summation is zero for t = r � 2�

atk =
1

t!(xk � xn )r�1 �(3�5)

qtk (x ) =
atk

W �

n�1(xk )(x � xk )r�t�1

	


��
�l �k (xk )�

�

r�t�2X
j=1

cj k (x � xk )r�t�2

��
� lk (x )� l �k (x )

�
� �(3�6)

where ci j �s are given by� for s = 1� � � � � (r � t � 2)

(3�7) l �k (xk )l (s)
k (xk )� l

(s+1)
k (xk )�

sX
u=1

�
s

u

�
u!cuk l

(s�u)
k (xk ) = 0�
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(3�8)

btk = �
atk

(r � t)!w r�1W �

n�1(xk )r�1

�n
w r�1(x � xn )r�1l rk (x )

o(r�t)

xk
+

+ � r�1(r � t)(xk � xn )r�1

�
l �k (xk )l (r�t�1)

k
(xk )�

�

r�t�1X
v=1

�
r � t � 1

v

�
v !cvk l

(r�t�1�v )
k (xk )� l

(r�t)
k (xk )

��
�

e�j k s � j = 0� � � � � r � 2 are given by the equations�

(3�9)
iX

s=1

�
i

s

��
W r�1

n�1

�(i�s)

xn

�
btk l

(s�1)
k (xn) +

+
s�1X
m=0

�
s � 1
m

�
(Wn�1(x ))(s�1�m)

xn m!emk

�
= 0� 1 � i � r � 2;

and for i = r � 1�

atk (r � 1)!(xn � xk )t l rk (xn)+(3�10)

+W r�1
n�1 (xn)

�
btk l

(r�2)
k

(xn) +
r�2X
m=0

�
r � 2
m

�
m!(Wn�1(x ))(r�2�m)

xn emk

�
= 0

and dj k �s� j = t + 1� � � � � r � 2� are given by equations� for i = t + 1� � � � � r � 2

(3�11) aik

�
i

t

�
t!f(x � xn)r�1l rk (x )g(i�t)

xk
+

iX
j=t+1

dj k = 0�

For k = n � we have� when t = 0

(3�12) A0n(x ) =
W r�1

n�1 (x )

W r�1
n�1 (xn)

+ W r�1
n�1 (x )

xZ
xn

�
�r�2X

j=0

e�j k (y � xn)j


AWn�1(y)dy�
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where e�j k �s� j = 0� � � � � r � 2 are given by the relation

(3�13)

(W r�1
n�1 (x ))(m)

xn

W r�1
n�1 (xn)

+

+
mX
s=1

�
m

s

�
(W r�1

n�1 (x ))(m�s)
xn

�
sX

i=1

�
s

i

�
(Wn�1(x ))(s�i)

xn i!e�ik

�
= 0�

Also for t = 1� � � � � r � 2� we have

(3�14) Am (x ) = W r�1
n�1 (x )

xZ
xn

�
�r�2X

j=t

e��j k (y � xn )j


AWn�1(y)dy

where r��j k �s� j = t � � � � � r � 2 are given by the relation

(3�15)
mX
s=t

�
m

s

�
(W r�1

n�1 (x ))(m�s)
xn

�
sX
i=t

�
s

i

�
(Wn�1(x ))(s�i)

xn i!e��ik

�
= �mt

for m = t � � � � � r � 2�

Proof� First, we determine Ar�2�k (x ), by (3.4), for which the last
summation vanishes. Then Atk , t = 0� � � � � r � 3, k = 1� � � � � n � 1, can be
determined, in the terms of Ar�2�k (x ), from the recurrence relation (3.4).

Since qtk , given by (3.6), is a polynomial of degree � n�2, then Atk (x ),
given by (3.4), is a polynomial of degree � rn � 1. Obviously, by Leibnitz’s
theorem, for x = xj , j = 1� � � � � n � 1, by (2.9) and (2.10), we have for
k = 1� � � � � n � 1, t � m = 0� � � � � r � 2,

A
(m)
tk (xj ) =

�
0� t �m
� j k t = m
0 t �m , due to (2.10).

Now, for x = xn , we have

A
(m)
tk (xn) = atk

mX
s=1

�
m

s

�
f(x � xn)r�1g(s)

xn f(x � xk )t l rk (x )g(m�s)
xn +

+
mX
s=1

�
m

s

��
W r�1

n�1 (x )
�(m�s)

xn

�
bkt l

(s�1)
k (xn) +

+
sX

i=1

�
s � 1
i

��
Wn�1(x )

�(s�1�i)
xn

i!eik

�
�
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For 1 � m � r � 2, by (3.9), we have A(m)
tk

(xn) = 0. For m = r � 1, we have

A
(r�1)
tk

(xn) = atk (r � 1)!(xn � xk )r�2l rk (xn)+

+W r�1
n�1 (xn)

�
btk l

(r�2)
k (xn) +

r�2X
i=0

�
r � 2
i

��
Wn�1(x )

�(r�2�m)
xn

i!ei

�
= 0�

due to (3.10).

If the weight function w (x ) � C r (a� b) satisfies the condition (2.6) and
(2.7), then for j�k , (3.6), (2.9), we have�

w r�1Atk (x )
�(r )

xj
= atk

n
w r�1(x � xn)r�1(x � xk )t l rk (x )

o(r )

xj
+

+w r�1r !W �

n�1(xj )
r�1(xj � xn)r�1qtk (x ) =

= r !atkw
r�1(xj � xn)r�1

�
(xj � xk )t l �k (xj )

r �

�
W �

n�1(xj )
r�1l �k (xj )

W �

n�1(xk )r�1(xj � xk )r�t�1

�
= 0

due to

l �k (xj ) =
W �

n�1(xj )

(xj � xk )W �

n�1(xk )
� j = 1� � � � � n � 1�

In the case j = k , we have

lk (xj ) = 1� Wn�1(xk ) = 0 and
�
w r�1W n�1

r�1 (x )
�(r )

xk
= 0� k = 1� � � � � n � 1�

Also,

lim
x�xk

1

(x � xk )r�t�1

	


��
�l �k (xk )�

r�t�2X
j=1

cj k (x � xk )r�t�2

��
� lk (x )� l �k (x )

�
� =

=
1

(r � t � 1)!

�
l �k (xk )l (r�t�1)

k (xk )�

�

r�t�1X
v=1

�
r � t � 1

v

�
v !cvk l

(r�t�1�v )
k (xk )� l

(r�t)
k (xk )

�
�
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Then by (2.9), we have�
w r�1Atk

�(r )
(xk ) =

atk r !
(r � t)!

fw r�1(x � xn )r�1l rk (x )g(r�t)
xk

+

+r !w r�1W �

n�1(xk )r�1

�
btk +

atk (xk � xn)r�1

(r � t � 1)!W �

n�1(xk )r�1
�

�

�
l �k (xk )l (r�t�1)

k
(xk )�

�

r�t�1X
v=1

�
r � t � 1

v

�
v !cvk l

(r�t�1�v )
k

(xk )� l
(r�t)
k

(xk )

��
= 0�

This equality holds if we replace btk by the expression (3.8). Hence Atk (x ),
t = 0� � � � � r � 2, k = 1� � � � � n � 1, satisfies all the conditions given in (3.1).

If k = n , then obviously, for t = 0, A0n(xn) = 1. On differentiating (3.10),
by Leibnitz’s theorem, m = 1� � � � � r � 2 times, we have by (2.9), for x = xj ,
j = 1� � � � � n � 1

A
(m)
0n (xj ) = 0� j = 1� � � � � n � 1� m = 1� � � � � r � 2�

For x = xn , by (3.11), we have

A
(m)
0n (xn) =

�
W r�1

n�1 (x )
�(m)

xn

W r�1
n�1 (xn)

+

+
mX
s=1

�
m

s

��
W r�1

n�1 (x )
�(m�s)

xn

�
sX

i=1

�
Wn�1(x )

�(s�i)
xn

i!e�ik

�
= 0�

Also, �
w r�1A0n(x )

�(r )

xj
= 0� j = 1� � � � � n � 1�

Now, for t = 1� � � � � r � 2, A(m)
rn (xj ) = 0, j = 1� � � � � n� 1, m = 0� � � � � r � 2. For

x = xn and m = t � � � � � r � 2, we have

A
(m)
tn (xn) =

=
mX
s=t

�
m

s

��
W r�1

n�1 (x )
�(m�s)

xn

�
sX

i=t

�
s

i

��
Wn�1(x )

�(s�i)
xn

i!e��ik

�
= �mt
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by (3.13). Also,
�
w r�1Am (x )

�(r )

xj
= 0, j = 1� � � � � n � 1.

Thus Am (x ), t = 0� � � � � r � 2, as given in (3.10) and (3.12) satisfies all
the conditions of (3.1).

Lemma �� Ark (x )� k = 1� � � � � n � 1� has the form

(3�16)

Ark (x ) = W r�1
n�1 (x )

	

�rk

xZ
xn

(t � xn)r�2Wn�1(t)dt+

+	rk

xZ
xn

(t � xn)r�2lk (t)dt

�
� �

where

(3�17) 	rk =
1

r !w r�1(xk )r�2W �

n�1(xk )r�1

and

(3�18) �rk = �	rk
lk (xn)

Wn�1(xn)
�

Proof� Obviously, A(m)
rk (xj ) = 0, j = 1� � � � � n , m = 0� � � � � r � 2. On

differentiating (3.16), (r �1) times, by Leibnitz’s theorem, we have at x = xn

A(r�1)
rk

(xn) = (r � 2)!W r�1
n�1 (x )

�
�rkWn�1(xn) + 	rk lk (xn)

�
= 0

due to (3.18).

If the weight function w (x ) � C r (a� b) satisfies, the conditions (2.6) and
(2.7), then by (2.9) and (3.17), we have�

w r�1Ark (x )
�(r )

xj
= rw r�1W �

n�1(xj )
r�1

h
	rk (xj � xn)r�2lk (xj )

i
= �j k �

Hence Ark (x ), k = 1� � � � � n � 1, given by (3.16), satisfies all the conditions
given in (3.3).

Lemma �� A(r�1)n(x ) is given by

(3�19) A(r�1)n(x ) =
W r�1

n�1 (x )

(r � 1)!W r
n�1(xn)

xZ
xn

(t � xn)r�2Wn�1(t)dt �
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Proof� Obviously, A(m)
(r�1)n (xj ) = 0, j = 1� � � � � n , m = 0� � � � � r � 2 and

A
(r�1)
(r�1)n (xn) = 1. Since the weight function w (x ) � C r (a� b) satisfies the

conditions (2.6) and (2.7), hence
�
w r�1A(r�1)n(x )

�(r )

xj
= 0. Thus A(r�1)n(x )

given by (3.19), satisfies the conditions (3.2).

4. Proof of the Main Theorem

As the polynomials Atk (x ), t = 0� � � � � r , of degree � rn � 1 are basic
interpolation polynomials, hence the modified weighted (0� 1� � � �� r � 2� r )-
interpolation polynomial Sn (x ) of degree � rn � 1 in Theorem 1, can be
explicitly represented in the form

Sn(x ) =
nX

k=1

�
r�2X
t=0

y
(t)
k Atk (x )

�
+

n�1X
k=1

y
(r )
k Ark (x ) + y (r�1)

n A(r�1)n(x )�

Indeed, by Lemmas 1, 2 and 3, the polynomial Sn (x ) satisfies the conditions
(2.2), (2.3) and (2.4), hence the Theorem is proved.

5. Remarks

1. Now, we show that if the zeros of the polynomial Wn�1(x ) are the
zeros of the classical orthogonal polynomials of degree � rn � 1, then the
weight function w (x ) � C r (a� b) satisfying the conditions (2.6) and (2.7)
always exist. It is known that the zeros of the classical orthogonal polynomials
are real and simple.

In [2] J� Bal�azs gave such weight functions w for which

(5�1) w (xk )�0 and
�
wWn�1

�n (xk ) = 0� k = 1� � � � � n � 1�

where Wn�1 is the Jacobi, Laguerre of Hermite polinomial. So, we have only
to show that in the cases

(5�2)
�
w r�1W r�1

n�1 (x )
�(r )

xk
= 0� k = 1� � � � � n � 1�

We prove it by induction.
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For r = 1, (5.2) is true, obviously. It is also true for r = 2, by (5.1). Let
(5.2) be true for r = i , i.e.,

(5�3)
�
w i�1W i�1

n�1(x )
�(i)

xk
= 0� k = 1� � � � � n � 1

then we have to show that (5.2) holds for r = i + 1.�
w iW i

n�1(x )
�(i+1)

xk
=
n�
w i�1W i�1

n�1(x )
��
wWn�1(x )

�o(i+1)

xk
=

=
�
w i�1W i�1

n�1(x )
�(i+1)

xk

�
wWn�1(x )

�
xk

+

+ (i + 1)
�
w i�1W i�1

n�1(x )
�(i)

xk

�
wWn�1(x )

�
�

xk
+

+

�
i + 1

2

��
w i�1W i�1

n�1(x )
�(i�1)

xk

�
wWn�1(x )

�
��

sk
+ � � � = 0�

due to (2.5), (5.3), (5.1) and (2.9). Hence if the nodes are the zeros of classical
orthogonal polynomials then by Theorem 1 there exists a modified weighted
(0� 1� � � �� r�2� r )-interpolation polynomial Sn (x ) of degree � rn�1 satisfying
the conditions (2.2), (2.3) and (2.4).

2. (i) Bal�azs’s result [1] is a particular case of ours for r = 2.

(ii) Taking the special weight functions w (x ) = exp
�
�x2

2

�
and w (x ) =

= exp(�x2) and the nodes as the zeros of Hn(x ), n th Hermite polynomial, the
problem reduces to Datta and Mathur’s problems [2], [4] for r = 2 and
r = 3 respectively.

3. The convergence problem will be dealt in another paper.
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1. Introduction

J� Bal�azs on the suggestion of P� Tur�an initiated the study of weighted
(0� 2)-interpolation, which means the determination of a polynomial Gn (x ) of
degree � 2n � 1 such that

(1�1) Gn (�i �n) = ai �n � (wGn)��(�i �n) = bi �n ; i = 1� 2 � � � � n

where ai �n , bi �n are arbitrary given numbers and �i �n are the zeros of the

n th-ultraspherical polynomial P (�)
n (x ) (� ��1) with weight function w (x ) =

= (1 � x2)(1+�)�2, x � [�1� 1]. He proved that generally there do not exist
any polynomial of degree � 2n � 1 satisfying the conditions (1.1). However,
taking n even, he proved the existence, uniqueness, explicit representation
and convergence theorem for the polynomial Gn (x ) of degree � 2n satisfying
(1.1) together with

(1�2) Gn (0) =
nX
i=1

ai �n l
2
i �n(0)�

If n is odd, the uniqueness is not true. L� Szili [9] studied an analogous

problem on the nodes as the zeros of the n th Hermite polynomial Hn (x ) with

weight function w (x ) = e�x
2�2. Later, I� Jo �o [5] sharpened these results. In

an earlier paper [3] authors have improved I. Joó’s result by replacing the
condition (1.2) with an interpolatory condition Gn (0) = y0, where y0 is an
arbitrary given number in the case of n even and obtained that the necessary
and sufficient condition for the existence of weighted (0� 2)-interpolation in
the case of n odd is Gn(0) = y �0.
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K� K� Mathur and R� B� Saxena [7] extended the study of weighted
(0� 2)-interpolation to the case of weighted (0� 1� 3)-interpolation, which means
to determine a polynomial Tn (x ) of degree � 3n � 1 such that

(1�3) Tn (xi �n) = yi �n � T �n (xi �n) = y �i �n � (wTn)���(xi �n) = y ���i �n ; i = 1� � � � � n�

where yi �n , y �i �n , y ���i �n are arbitrary given numbers and weight function w (x ) =

= e�x
2

(x � R) and xi �n’s are the zeros of Hermite polynomial Hn(x ) given
by:

(1�4) ���xn�n ��� ��x1�n �� (n � N)�

They proved that generally no polynomial of degree � 3n � 1 satisfying the
conditions (1.3) exists, as such taking an additional condition:

(1�5) Rn(0) =
nX
i=1

h�
1 + 3x2

i �n

�
yi �n � xi �ny

�
i �n

i
l3i �n(0)�

where 0 is not a nodal point belonging to (1.4). They showed that there do
exists a unique polynomial of degree � 3n (n even) and established its explicit
representation and convergence. If n is odd, uniqueness fails to hold.

The object of this paper is to get an analogous result by replacing the
artificial looking, condition (1.5) by an interpolatory condition Rn(0) = y0,
where y0 is an arbitrary given number, in the case of n even. Further, what
will be the necessary and sufficient condition for the existence and uniqueness
of the (0� 1� 3)-interpolation in the case of n odd? If it exists what will be its
explicit form and does it converge?

Here, we answer these questions in affirmative taking the nodes as the

zeros of n th Hermite polynomial Hn (x ).

In section 2, we have given preliminaries. New results have been stated
in section 3. Sections 4 and 5 are devoted to the basic estimates of the
fundamental polynomials and the proof of our main theorem for n odd and n
even respectively.

2. Preliminaries

Let Hn be the n th Hermite polynomial with usual normalisation

(2�1)

+�Z
��

Hn(t)Hm(t)e�t
2
dt = �1�22nn!�n�m n�m � N
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which satisfies the differential equation:

(2�2)
H ��
n (x )� 2xH �

n(x ) + 2nHn(x ) = 0�

H �
n(x ) = 2nHn�1(x )�

It is well known that xi �n (the roots of Hn (x )) satisfy the following relations:

(2�3)

�����
����

���xn�n ��� ��x n+1
2
�0 �x n

2 �n
��� � x1�n �� (n = 2m)�

���xn�n ��� ��x n+1
2 �n

= 0 ��� ��x1�n �� (n = 2m + 1)�

xi �n = �xn�i+1�n
�
i = 1� 2� � � � �

	n
2


�
�

(2�4)

�����
����
H ��
n (xi �n) = 2xi �nH

�
n (xi �n)�

H ���
n (xi �n) = 2[2x2

i �n � (n � 1)]H �
n(xi �n)�

H
(4)
n (xi �n) = 4xi �n(3� 2n + 2x2

i �n )H �
n(xi �n)�

Let li �n denote the fundamental polynomial of Lagrange interpolation corre-
sponding to the nodal point xi �n . Then

li �n(x ) =
Hn (x )

(x � xi �n)H �
n(xi �n)

(i = 1� � � � � n)�(2�5)

li �n(xj�n) =
n

0 for i	j
1 for i = j

�(2�6)

l �i �n(xj�n) =

��
�

H �

n (xj �n )

(xj �n�xi �n )H �

n (xi �n )
for j	i

xi �n for j = i
(2�7)

l ��i �n(xj�n) =

���
��

2H �

n (xj �n
(xj �n�xi �n )H �

n (xi �n )

h
xj �n � 1

xj �n�xi �n
i

j	i

4x2
i �n�2(n�1)

3 j = i

(2�8)

and

l ���i �n(xj�n) =

��
�

1
xj �n�xi �n

�
H ���

n (xj �n )

H �
n (xi �n )

� 3l ��i �n(xj �n)


j	i

xi �n(2x2
i �n + 3� 2n) j = i .

(2�9)

For the roots of Hn(x ), we have

x2
i �n �

i2

n
� i = 1� � � � � n�(2�10)
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Hn(x ) = O(1)n�1�4
p

2nn!
�

1 + 3
p
jx j
�
ex

2�2� x � R�(2�11)

nX
i=1

e
�x2

i �n

H �
n (xi �n)2 = O

�
1

2n+1n!

�
� 0 �� �1�(2�12)

nX
i=1

e
x2
i �n l2i �n(x ) = O(ex

2
)�(2�13)

jHn(0)j =
n!�n
2

�
!

for n even�(2�14)

2n
��

n
2

�
!
�2

(n + 1)!
� n�1�2�(2�15)

Also

(2�16)

xZ
0

xi �n li �n(t)� l �i �n(t)

t � xi �n
dt =

1
2

(l �i �n(x )�l �i �n(0))�x li �n(x )+n

xZ
0

li �n(t)dt �

If 
i �n = 1
3 (x2

i �n � 2(n � 1)), then

xZ
0

(
i �n(t � xi �n) + xi �n)li �n(t)� l �i �n(t)

(t � xi �n)2 dt =(2�17)

=
nxi �n

3

xZ
0

li �n(t)dt � 1
6

(l ��i �n(x )� l ��i �n(0))+

+
xi �n

2
(l �i �n(x )� l �i �n(0))� 1

3
(x2
i �n + n + 2)(li �n(x )� li �n(0))+

+
1

3H �
n(xi �n)

(H �
n(x )�H �

n (0))� xi �n

3H �
n(xi �n)

(Hn(x )�Hn(0))�

3. New Results

Let n be odd in Theorems 1, 2, 3.

Theorem �� Let the nodal points are the roots of n th Hermite polynomial

Hn (x ) and the weight function is w (x ) = e�x
2

(x � R)�
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Then there exists a unique polynomial Rn(x ) of degree � 3n satisfying

the conditions (1�2) and R��n (0) = y ��0 � where y ��0 is an arbitrary given number�

and� 0 is a nodal point�

Theorem �� For k = 1� � � � � n �

Ak (x ) = l3k (x )� 3xkBk (x )+(3�1)

H 2
n (x )

H �
n(xk )2

�
� xZ

0

(xk + �k (t � xk ) + 
k (t � xk )2)lk (t)� l �k (t)

(t � xk )2 dt

�
� �

where

(3�2) �k =
x2
k � 2(n � 1)

3
and 
k =

xk (2x2
k � 3n)

3
;

(3�3)

Bk (x ) = (x � xk )l3k (x ) +
H 2
n (x )

H �
n(xk )2

�
� xZ

0

(xk + Sk (t � xk ))lk (t)� l �k (t)

(t � xk )

�
� dt �

where

Sk =
1
3

(n + 2(1� x2
k ))�

Ck (x ) =
ex

2
k H 2

n (x )

6H �
n (xk )2

xZ
0

lk (t)dt ;(3�4)

and

(3�5) D0(x ) =
H 2
n (x )

2H �
n (0)2 �

Then

(3�6) Rn(x ) =
nX
k=1

ykAk (x ) +
nX
k=1

y �kBk (x ) +
nX
k=1

y ���Ck (x ) + y ��0D0(x )

is a uniquely determined polynomial of degree � 3n satisfying the conditions

of Theorem 1�
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Theorem �� Let f : R � R be a twice continuously di�erentiable

function� such that

(3�7)

lim
jx j��

x2r f (x )e�x
2

= 0; r = 0� 1� � � � �

lim
jx j��

e�x
2
f (r )(x ) = 0; r = 1� 2�

Then the weighted (0� 1� 3)�interpolatory polynomials Rn(x ) �n = 3� 5� 7� � � ��
given by (3�6) together with

(3�8)

yk = f (xk )� y �k = f �(xk )

y ���k = O

�
ex

2
k �2n�

�
f �� 1p

n

��
and

y ��0 = f ��(0)

satisfy the estimate�

(3�9) e�x
2 jf (x )� Rn(f � x )j = O(1)�

�
f �� 1p

n

�
�

where O does not depend on n and x � Here � (f �� � ) denotes the Freud	s

modulus of continuity of f ��

In the case of n even, analogous to Theorem 1, there do exist a weighted
(0� 1� 3)-interpolatory polynomial R�n(x ) of degree � 3n satisfying the condi-
tions (1.2) and R�n(0) = y�0 , where y�0 is an arbitrary given number. Further,
let
(3�10)

A�k (x ) =

��������
�������

H 2
n (x )

H 2
n (0)

for k = 0 (x0 = 0)

l4k (x )� 3xkB
�
k (x )� H 2

n (x )
x2
k H

�

n (xk )2
lk (0)+

+ H 2
n (x )

H �

n (xk )2

xR
0

(xk +��k (t�xk )+��k (t�xk )2)lk (t)�l�k (t)

(t�xk )2
dt for k = 1� � � � � n ,

where

��k =
x2
k � 2(n � 1)

3
and 
�k = �xk

�
n � 2

3
x2
k

�
� k = 1� � � � � n�(3�11)
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B�k (x ) = (x � xk )l3k (x ) +
H 2
n (x )

xkH
�
n (xk )2 lk (0)+

+
H 2
n (x )

H �
n(xk )2

xZ
0

(xk + S�k (t � xk ))lk (t)� l �k (t)

(t � xk )
dt ; k = 1� � � � � n�(3�12)

where

S�k =
1
3

�
n + 2(1� x2

k )
�

(3�13)

and

C �k =
ex

2
k H 2

n (x )

H �
n (xk )2

xZ
0

lk (t)dt � k = 1� � � � � n�(3�14)

Then

(3�15) R�n(x ) =
nX
k=0

y�kA
�
k (x ) +

nX
k=1

y ��B�k (x ) +
nX
k=1

y ����C �k (x )

is a uniquely determined polynomial of degree � 3n satisfying the conditions
(1.2) and Rn(0) = y�0 .

Theorem �� Let f : R � R be a twice continuously di�erentiable

function satisfying the requirements (3�7) and the numbers y�k � y
�
k
�
and y�k

���
are such that

(3�16)

y�k = f (xk ) k = 0� � � � � n

y�k
� = f �(xk ) k = 1� � � � � n

and

y�k
��� = O

�
ex

2
k �2n�

�
f �� 1p

n

��
�

Then for interpolatory polynomial R�n(x ) �n = 2� 4� 6� � � �� given by (3�15)� we

have the estimate�

(3�17) e�x
2 jf (x )� R�n(f � x )j = O(1)�

�
f �� 1p

n

�
� x � R�

where O does not depend on n and x � and �
�
f �� 1p

n

�
is the Freud	s modulus

of continuity�
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We shall prove only our main Theorem 3 and 4, as the proofs of the other
theorems are quite similar to that of theorems in [1].

4. Basic Estimates with Respect to the Fundamental Polynomials
(n odd)

Lemma �� ([6], Lemma 1.) If �i �i = 1� � � �� n� are the Christo�el�

numbers on Hermite nodes� then

�i � e�x
2
i

1

n1�6 � i1�3
� e�x

2
i Φn (xi )� i1� � � � �

n

2
�

where Φ(xi ) = xi � xi+1 �certainly x1 �x2 ��� ��xn �� �i = �n�i+1�

Lemma �� Let n be odd� then

jD0(x )j = O(ex
2
)� x � R�(4�1)

sup
x�R

e�
3x2

2

nX
i=1

ex
2
i �2jCi (x )j � 1

n
�(4�2)

Proof� By using (2.2) and (2.11) in (3.5), (4,1) follows.

Without loss of generality, we can assume that x 	 0. Using Lemma 1,
we get

(4�3)
jH �

n (xi )j = 2njHn�1(xi )j = 2n � �1�4
q

2n�1(n � 1)!jhn�1(xi )j =

= �1�4
p

2
p

2nn!��1�2
i 
 cex

2
i �2
p

2nn!Φ�1�2
n (xi ); i = 1� � � � � n�

We have by (3.4)

(4�4) jCi (x )j 
 ex
2
i �2 jHn (x )j

jH �
n (xk )j jB i (x )j�

where

(4�5) B i (x ) =
ex

2
i �2Hn (x )
H �
n (xi )

xZ
0

li (t)dt

and from [6]

(4�6)
nX
i=1

ex
2
i �2jB i (x )j = O

�
ex

2�2
p
n

�
�
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We remark that (4.6) also holds for n odd. Thus

nX
i=1

ex
2
i �2jCi (x )j =

nX
i=1

ex
2
i �2jHn (x )j
jH �

n(xi )
ex

2
i �2jB i (x )j =

=
X

jxi j�
p
n

� � � +
X

jxi j	
p
n

� � � =

= O(1)
ex

2

p
n

X
jxi j�

p
n

ex
2
i �2jB i (x )j + O(1)

ex
2

n1�4

X
jxi j	

p
n

Φ
1
2
n (xi )e

x2
i
2 jB i (x )j =

= O(1)
e3x2�2

n
�

where we used jH �
n (xi )j 	 ex

2
i �2p2nn!n1�4, jxi j �

p
n , given in [5].

Lemma �� For n odd

(4�7)
nX
i=1

ex
2
i jBi (x )j = O

�
e3x2�2

�
� x � R�

Proof� From (3.3), due to (2.16), we have

(4�8)

Bi (x ) =
Hn(x )
H �
n (xi )

�
�Ai (x )� 7n

3
Hn (x )
H �
n (xi )

xZ
0

li (t)dt�

�5
3

(1� x2
i )
Hn(x )
H �
n(xi )

xZ
0

li (t)dt

�
�

where

(4�9)

Ai (x ) =
l2i (x )

2
+ (1� x2

i )
Hn (x )
H �
n(xi )

xZ
0

li (t)dt +
nHn (x )
H �
n (xi )

xZ
0

li (t)dt+

+
H �
n (x )

2H �
n (xi )

li (x )� x
Hn (x )
H �
n (xi )

li (x )� Hn (x )
2H �

n(xi )
l �i (0) for xi	0
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and

(4�10)

Ai (x ) =
l2i (x )

2
+ (1� x2

i )
Hn(x )
H �
n(xi )

xZ
0

li (t)dt +
nHn(x )
H �
n(xi )

xZ
0

li (t)dt+

+
H �
n (x )

2H �
n(xi )

li (x )� x
Hn (x )
H �
n(xi )

li (x ) for xi = 0.

By [[6], lemma 4], we have

(4�11)
nX
i=1

ex
2
i �2jAi (x )j = O(1)ex

2p
n�

(4�12) n

nX
i=1

jHn (x )jex2
i �2

jH �
n (xi )j

������
xZ

0

li (t)dt

������ = O(1)ex
2p

n

and

(4�13)
nX
i=1

j(1� x2
i )jjHn (x )jex2

i �2

jH �
n(xi )j

������
xZ

0

li (t)dt

������ = O(1)ex
2p

n�

(4.11)–(4.13) also hold for n odd. Thus by (4.8), (4.7) follows.

Lemma �� For n odd

(4�14)
nX
i=1

ex
2
i jAi (x )j = O(1)e3x2�2pn� x � R�

Proof� Ai (x ), given by (3.2), can be represented alternatively as follows.

For xi	0

(4�15) Ai (x ) = l3i (x )� 3xiBi (x ) +
H 2
n (x )

H �
n(xi )2 I �

where

(4�16)

I =
2xi
3

(2n � x2
i )

xZ
0

li (t)dt �
1
6

�
l ��i (x )� l ��i (0) +

xi
2

(l �i (x )� l �i (0))
�
�

� 1
3

(x2
i + n + 2)li (x ) +

1
3H �

n(xi )
(H �

n(x )�H �
n(0))� xi

3H �
n (xi )

Hn (x )
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and for xi = 0

(4�17) Ai (x ) = l3i (x )� 3xiBi (x ) +
H 2
n (x )

H �
n (xi )2 J�

where

(4�18)

J =
2xi
3

(2n � x2
i )

xZ
0

li (t)dt �
1
6
l ��i (x ) +

xi
2
l �i (x )�

� 1
3

(x2
i + n + 2)li (x ) +

1
3H �

n (xi )
(H �

n(x )�H �
n(0))� xiHn (x )

3H �
n(xi )

�

Hence

(4�19)
nX
i=1

e
x2
i
2 jAi (x )j = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9�

where

(4�20) I1 =
nX
i=1

ex
2
i l2i (x )jli (x )j = O

�p
ne3x2�2

�
�

(4�21) I2 = 3
nX
i=1

jxi j + ex
2
i jBi (x )j = O

�p
ne3x2�2

�
�

Using (jxi j = O(
p
n) and Lemma 2

(4�22)

I3 =
2
3

nX
i=1

jxi jj(2n � x2
i )jex2

i
H 2
n (x )

H �
n(xi )2

������
xZ

0

li (t)dt

������ =

= O
�
n3�2

� nX
i=1

jCi (x )j = O

�p
ne3x2�2

�
�

I4 =
1
6

nX
i=1

ex
2
i
H 2
n (x )

H �
n(xi )2 jl

��
i (x )j�
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From (2.6), we have
(4�23)

I4 =
1
6

nX
i=1

ex
2
i
H 2
n (x )

H �
n (xi )2

����� (x (x � xi )� 1)H �
n(x )

(x � xi )2H �
n (xi )

+
li (x )

(x � xi )2 � nli (x )

����

�

� 1
6

nX
i=1

ex
2
i

�
jx (x � xi )� 1j

����� H
2
n (x )

H �
n(xi )2

����� l2i (x ) + (1 + n(x � xi )
2)jl3i (x )j

�
=

=
nX
i=1

jx jex2
i
jH 2

n (x )H �
n(x )j

H �
n(xi )2 jli (x )j + O(n)

nX
i=1

ex
2
i
H 2
n (x )

H �
n (xi )2 jli (x )j =

= jx j2njHn�1(x )Hn(x )j
2nn!

nX
i=1

Φ(xi )jli (x )j + O(n)
H 2
n (x )

2nn!

nX
i=1

Φ(xi )jli (x )j�

If jx j 	 2
p
n , then jHn (x )je�x2�2

p
nn!

= O(1)e�cn , therefore, we can assume that

x � 2
p
n . Hence

(4�24)

I4 = O(1)ex
2p

n

nX
i=1

Φn (xi )jli (x )j =

= O

�p
nex

2
���� X

jxi j	2
p

log n

� � � +
X

jxi j�2
p

log n

� � �

�
�� �

Here

(4�25)
X

jxi j	2
p

log n

Φn(xi )jli (x )j � c
1

n1�6

X
jxi j	2

p
log n

jli (x )j � c
ex

2�2

n1�6

and

(4�26)

X
jxi j�2

p
log n

Φn(xi )jli (x )j 
 1p
n

X
jxi j�2

p
log n

jli (x )j �

� 1p
n

nX
i=1

jli (x )j � cp
n

�
log n + ex

2�2
�
�
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where we used [5], Hilfssatz 4, Satz, 11. Thus by (4.24), (4.25) and (4.26),
we have

(4�27) I4 = O(1)

�
e3x2�2n�

1
6

�
�

(4�28)

I5 =
1
2

nX
i=1

ex
2
i
H 2
n (x )

H �
n (xi )2 jxi j

���� H �
n(x )

(x � xi )H �
n(xi )

� li (x )
x � xi )

���� �
� 1

2

nX
i=1

ex
2
i jxi j

jHn (x )H �
n(x )j

H �
n(xi )2 jli (x )j + 1

2

nX
i=1

jxi jex
2
i
jHn (x )j
jH �

n(xi )j
l2i (x ) =

= O(1)

�
e3x2�2

p
n
�
�

(4�29)

I6 �
1
3

nX
i=1

ex
2
i
H 2
n (x )

H �
n(xi )2

(n + 2 + x2
i )jli (x )j =

= O(n)
nX
i=1

ex
2
i
H 2
n (x )

H �
n(xi )2

jli (x )j = O

�
e3x2�2pn

�
�

(4�30)

I7 =
1
6

nX
i=1

ex
2
i
H 2
n (x )

H �
n(xi )2

�
2jH �

n (x )j + jH �
n(0)j

jH �
n (xi )j


=

= O(n)
nX
i=1

ex
2
i
H 2
n (x )jHn�1(x )j

H �
n(xi )2jH �

n (xi )j
= O(n)H 2

n (x )jHn�1(x )j
nX
i=1

ex
2
i

jH �
n (xi )3j =

= O(n)H 2
n (x )jHn�1(x )

�
� X
jxi j�

p
n

+
X

jxi j	
p
n

�
� =

= O

�
e3x2�2

n1�4

�
(2nn!)3�2

(2nn!)3�2

�
�� X
jxi j�

p
n

e

n�3�4

x2
i
�2 + e

1
n�2

X
jxi j	

p
n

Φ3�2
n (xi )

�
�� =

= O

�
e3x2�2
p
n

�
�
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(4�31)

I8 =
1
3

nX
i=1

jxi jex
2
i
H 3
n (x )

H �
n(xi )3 =

= O(
p
n)jH 3

n (x )
nX
i=1

ex
2
i

1

jH �
n (xi )3j = O

�
e3x2�2
p
n

�
�

(4�32)

I9 =
1
6

nX
i=1

ex
2
i j2� 3x2

i j
H 2
n (x )

jxi jH �
n (xi )2 jl

�
i (0)j �

� 1
3

nX
i=1

ex
2
i j1� x2

i j
H 2
n (x )jH �

n(0)j
x2
i jH �

n (xi )3j +
1
6

nX
i=1

ex
2
i jxi j

H 2
n (x )jH �

n(0)j
H �
n(xi )3j =

= O(n)H 2
n (x )jHn�1(0)j

nX
i=1

e3x2
i �2

jH �
n (xi )3j+

+ O(n3�2)H 2
n (x )jHn�1(0)j

nX
i=1

ex
2
i

1

jH �
n (xi )3j =

= O

�
1

n2

�
+ O

�p
nex

2
�
� C

p
ne3x2�2�

Using (4.19)–(4.32), we get the proof of (4.14).

Lemma � ([6], Lemma 5]� If f � C 1(R)�

lim
x ��	� x2r f (x )w (x ) = 0� r = 0� 1� � � �

and

lim
x�	� f �(x )w (x ) = 0�

then there exists a polynomial pn (x ) of degree � n � such that for x � R�

w (x )jf (x )� pn(x )j = O(1)
1p
n
�

�
f �� 1p

n

�

w (x )jf �(x )� p�n(x )j = O(1)
1p
n
�

�
f �� 1p

n

�
�

Further �[9], Lemma 4�� we have for x � R

w (x )jpn(x )j = O(1)

w (x )jp�n(x )j = O(1)
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and for jx j�
p

2n + 1

w (x )jp��n (x )j = O(1)
p
n�

�
f �� 1p

n

�
�

Also �[7], Lemma 4�� we have for jx j�
p

2n + 1

w (x )jp���n (x )j = O(n)�

�
f �� 1p

n

�
�

Proof of Theorem �� Let n be odd. From the uniqueness of polynomial
Rn(x ) in (3.6), it follows that every polynomial Sn(x ) of degree � 3n satisfies
the relation:

Sn(x ) =
nX
i=1

Sn (xi )Ai (x ) +
nX
i=1

S �n (xi )Bi (x )+

+
nX
i=1

(wSn )���(xi )Ci (x ) + S ��n (0)D0(x )�

Let pn(x ) be a polynomial of degree � 3n satisfying Lemma 5, then we have

e�3x2�2jf (x )� Rn(x )j�e�3x2�2jf (x )� pn(x )j + e�3x2�2jpn(x )� Rn(x )j =

= O(1)

�
e�x

2
e�x

2�2jf (x )� pn (x )j + e�3x2�2

�����
nX
i=1

(f (xi )� pn (xi ))Ai (x )

�����+

+e�3x2�2

�����
nX
i=1

(f �(xi )� p�n (xi ))Bi (x )

�����+

+e�3x2�2

�����
nX
i=1

(y ���i � (wpn)���(xi ))Ci (x )

����� + e�3x2�2jf ��(0)� p��n (0)jjD0(x )j
�
�

Using lemmas 3, 4 and 5, we have

e�3x2�2jf (x )� Rn(x )j = O(1)

�
�

�
f �� 1p

n

�
+ e�3x2�2

nX
i=1

jy ���i Ci (x )j+

+e�3x2�2
nX
i=1

j(wpn)���(xi )Ci (x )j
�
�
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By lemmas 2, 5 and (3.8), we have

e�3x2�2jf (x )� Rn (x )j = O(1)�

�
f �� 1p

n

�
+

+O(n)�

�
f �� 1p

n

�
� e�3x2�2

�
nX
i=1

jCi (x )jex2
i +

nX
i=1

jCi (x )j
�

=

= O(1)�

�
f �� 1p

n

�
�

Hence the theorem is proved.

5. Basic Estimates of Fundamental Polynomials
(n even)

For n even, A�i (x ) and B�i (x ), given by (3.10) and (3.12), can be written
in a convenient form as:

(5�1) A�i (x ) = l3i (x )� 3xiB
�
i (x ) +

H 2
n (x )

H �
n(xi )2 I �

H 2
n (x )

x2
i H

�
n(xi )2

li (0)�

where I is (4.16) and

(5�2) B�i (x ) = Bi (x ) +
H 2
n (x )

xiH
�
n(xi )2

li (0)�

where Bi (x ) is given by (4.8).

Lemma 	� For n even�

nX
i=1

ex
2
i jA�i (x )j = O

�
e3x2�2pn

�
�(5�3)

nX
i=1

ex
2
i jB�i (x )j = O

�
e3x2�2

�
�(5�4)

and

nX
i=1

ex
2
i jC �i (x )j = O

�
e3x2�2

n

�
�(5�5)

Proof� The proof of this lemma is similar to that of Lemmas 2, 3 and 4,
so we omit details.
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Proof of Theorem �� Following the same steps as in the proof of The-
orem 3, the theorem follows. We omit details.
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1. Introduction

In this paper we shall be concerned with the second order forced nonlin-
ear differential equation with damping

(1�1) (r (t)y �(t))� + p(t)y �(t) + q(t)f (y(t))g(y �(t)) = e(t)� t � t0�

where r , q , f , g , e are to be specified in the following text.

We recall that a function y : [t0� t1) � (���+�), ti �t0 is called a
solution of Eq. (1.1) if y(t) satisfies Eq. (1.1) for all t � [t0� t1). In the sequel
it will be always assumed that solutions of Eq. (1.1) exist for any t0 � 0. A
solution x (t) of Eq. (1.1) is called oscillatory if it has arbitrary large zeros,
otherwise it is called nonoscillatory.

When r (t)� 1, p(t) � 0 and e(t) � 0, Eq. (1.1) reduces to the equation

(1�2) y”(t) + q(t)f (y(t))g(y �(t)) = 0�

which has been studied by Grace and Lalli [7]. They mentioned that though
stability, boundedness, and convergence to zero of all solutions of Eq. (1.2)
have been investigated in the papers of Burton and Grimmer [1], Grace
and Spikes [5, 6], Lalli [11], and Wong and Burton [19], not much has
been known regarding the oscillatory behavior of Eq. (1.2) except for the
result by Wong and Burton [19, Theorem 4] regarding oscillatory behavior
of Eq. (1.2) in connection with that of the corresponding linear equation

(1�3) y”(t) + q(t)y(t) = 0�

*Supported by the NNSF of China and the Foundation for University Key Teacher by

the Ministry of Education of China.
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Recently, Rogovchenko [17] presented new sufficient conditions, which
ensure oscillatory character of Eq. (1.2). They are different from those of
Grace and Lalli [7] and are applicable to other classes of equations which
are not covered by the results of Grace and Lalli [7]. However, all the
mentioned above oscillation results involve the interval of q and hence require
the information of q on the entire half-line [t0�+�). For related results refer
to [2, 10, 13–16].

When p(t) � 0 and g(y) � 1, Eq. (1.1) reduces to the equation

(1�4) (r (t)y �(t))� + q(t)f (y(t)) = e(t)�

Numerous oscillation criteria have been obtained for Eq. (1.4); see Keener

[9], Rainkin [16], Skidmore and Bowers [20], Skidmore and Leighton

[21], and Teufel [22]. In these papers, the authors established oscillation
criteria for a more general nonlinear equation by employing a technique
introduced by Kartsatos [8] where it is additionally assumed that e(t) be the
second derivative of an oscillatory function h(t) and their oscillation results
require the information of q on the entire half-line [t0��).

However, from the Sturm Separation Theorem, we see that oscillation is
only an interval property, i.e., if there exists a sequence of subintervals [ai � bi ]
of [t0��), as ai ��, such that for each i there exists a solution of equation

(1�5) (r (t)y �(t))� + q(t)y(t) = 0� t � t0

that has at least two zeros in [ai � bi ], then every solution of Eq. (1.5) is
oscillatory, no matter how “bad” Eq. (1.5) is (or r and q are) on the remaining
parts of [t0��).

Ei�Sayed [4] applied this idea to oscillation and established an interval
criterion for oscillation of a forced second order linear differential equation

(1�6) (r (t)y �(t))� + q(t)y(t) = e(t)� t � t0�

Theorem A� Suppose that there exist two positive increasing divergent

sequences fang� fang and two sequences fc+
ng� fc�n g such that c+

n � c
�
n are

positive numbers and

(1�7)

V�
n =

a�n +��
p

c�nZ
a�n

�
c�n [1� r (t)] cos2

�q
c�n (t � a�n

�
+

+ [q(t)� c�n ] sin2
�q

c�n (t � a�n )

��
dt = 0�
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for all n � n0� where n0 is a �xed positive integer� Suppose further that e(t)
satis�es

(1�8) e(t)

����
��	
� 0� t �



a+
n � a

+
n + �p

c+
n

�
�

� 0� t �


a�n � a�n + �p

c�n

�
�

for all n � n0� Then Eq� (1�6) is oscillatory�

We note that the result is not very sharp, because it was proved with the
aid of a comparison theorem of Leighton [12] in the form given by Coppel

[3, Theorem 8, p11]. Recently, Wong [18] proved a more general oscillation
result for Eq. (1.6).

Theorem B� Suppose that for any T � t0� there exist T � s1 �t1 �
� s2 �t2 such that

(1�9) e(t)

�� 0� t � [s1� t1]
� 0� t � [s2� t2]�

Denote D(si � ti ) = fu � C 1[si � ti ] : u(t) �� 0� u(si ) = u(ti ) = 0g� i = 1� 2� If
there exists u � D(si � ti ) such that

(1�10) Qi (u) =

tiZ
si

(qu2 � ru �)2 � 0�

for i = 1� 2� then Eq� (1�6) is oscillatory�

Motivated by the ideas of Ei�Sayed [4] and Wong [18], in this paper
we obtain, by using a generalized Riccati technique which is introduced by
Li [13] for the unforced equations and a new integral averaging technique, we
obtain several new interval criteria for oscillation, that is, criteria given by the
behavior of Eq. (1.1) (or of r , q , f , g and e) only on a sequence of subintervals
of [t0��). Finally, several examples that dwell upon the importance of our
results are also included.

Hereinafter, we assume that

(H1) the functions r : [t0��), (0��) and p : [t0��) � R are continuous;

(H2) the function q : [t0��) � [0��) is continuous and q(t) �� 0 on any
ray [T��) for some T � t0;

(H3) the function f : R � R is continuous and yf (y) �0 for y�0;
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(H4) the function g : R � R is continuous and g(y) � K �0 for y�0.

In the sequel we say that a function H := H (t) belongs to a function class

D(si � ti ) = fH � C 1[si � ti ] : H (t)�0, H (si ) = H (ti ) = 0g, i = 1� 2, denoted by
H � D(si � ti ), i = 1� 2.

2. Main Results

Theorem �� Let assumptions (H1)�(H4) hold� Suppose that

(2�1) f �(y) � � �0 for y�0

and that for any T � t0� there exist T � s1 �t1 � s2 �t2 such that (1�9)

holds� If there exist H � D(si � ti ) and g � C 1([t0��)� (0��)) such that

(2�2)

t1Z
s1

H 2(t)�(t)dt � 1
4�

tiZ
s1

r (t)v (t)



�2H �(t) +

p(t)
r (t)

H (t)

�2

dt �

for i = 1� 2� where v (t) = exp(�2�
tR
g(s)ds) and

�(t) = v (t)[Kq(t) + �r (t)g2(t)� p(t)g(t)� (r (t)g(t))�]�

then every solution of Eq� (1�1) is oscillatory�

Proof� Suppose that y(t) is a nonoscillatory solution which is positive,
say y(t) �0 when t � T0 for some T0 depending on the solution y(t). Denote

(2�3) u(t)v (t)r (t)

�
y �(t)
f (y(t))

+ g(t)

�
� t � T0�

It follows from (1.1) and (2.1) that u(t) satisfies

u �(t) =

= �2�g(t)u(t) + v (t)

�
[r (t)y �(t)]�

f (y(t))
� r (t)

[y �(t)]2f �(y(t))

f 2(y(t))
+ [t(r )g(t)]�


�

� �2�g(t)r (t)v (t)

�
y �(t)
f (y(t))

+ g(t)

�
� v (t)Kq(t) +

v (t)e(t)
f (y(t))

�

� r (t)v (t)
[y �(t)]2�

f 2(y(t))
+ v (t)[r (t)g(t)]�� v (t)p(t)

y �(t)
f (y(t))

=



2019. május 4. –23:07

INTERVAL OSCILLATION CRITERIA 87

= �2�g(t)v (t)r (t)
y �(t)
f (y(t))

� 2�r (t)v (t)g2(t)� v (t)Kq(t) +
v (t)e(t)
f (y(t))

�

� r (t)v (t)
[y �(t)]2�

f 2(y(t))
+ v (t)[r (t)g(t)]�� v (t)p(t)

y �(t)
f (y(t))

=

=
�u2(t)
v (t)r (t)

� p(t)
r (t)

u(t)� �(t) +
v (t)e(t)
f (y(t))

�

That is,

(2�4) �(t) � �u �(t)� �u2(t)
v (t)r (t)

� p(t)
r (t)

u(t) +
v (t)e(t)
f (y(t))

�

By assumption, we can choose s1, t1 � T0 so that e(t) � 0 on the interval
I = [s1� t1] with s1 �t1. On the interval I , u(t) satisfies by (2.4),

(2�5) �(t) � �u �(t)� �u2(t)
v (t)r (t)

� p(t)
r (t)

u(t)�

Let H � D(s1� t1) be given as in hypothesis. Multiplying (2.5) by H 2 and
integrating over I , we have

(2�6)

t1Z
s1

H 2(t)�(t)dt � �
t1Z

s1

H 2(t)

�
u �(t) + �

u2(t)
r (t)v (t)

+
p(t)
r (t)

�
dt �

Integrating (2.6) by parts and using the fact that H (s1) = H (t1) = 0, we obtain

t1Z
s1

H 2(t)�(t)dt � �
t1Z

s1

H 2(t)

�
u �(t) + �

u2(t)
r (t)v (t)

+
p(t)
r (t)

�
dt =

= �
t1Z

s1

�r
�

r (t)v (t)
H (t)u(t) +

1
2

s
r (t)v (t)
�

�
�2H �(t) +

p(t)
r (t)

H (t)

��2

dt+

+

t1Z
s1

r (t)v (t)
4�



�2H �(t) +

p(t)
r (t)

H (t)

�2

dt �

�

t1Z
s1

r (t)v (t)
4�



�2H �(t) +

p(t)
r (t)

H (t)

�2

dt �
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which contradicts the condition (2.2). This contradiction proves that y(t) is
oscillatory.

When y(t) is eventually negative, we see H � D(s2� t2) and e(t) � 0 on
[s2� t2] to reach a similar contradiction. The proof is complete.

When p(t) � 0, by Theorem 1, we have the following corollary.

Corollary �� Let assumptions (H1)�(H4) and (2�1) hold� Suppose that

for any T � t0� there exist T � s1 �t1 � s2 �t2 such that (1�9) holds� If

there exist H � D(si � ti ) and g � C 1([t0��)� (0��)) such that

(2�7)

tiZ
si

H 2(t)�(t)dt � 1
�

tiZ
si

r (t)v (t)[H �(t)]2dt �

for i = 1� 2� where v (t) = exp

�
�2�

tR
g(s)ds

�
and

�(t) = v (t)[Kq(t) + �r (t)g2(t)� (r (t)v (t))�]�
then every solution of Eq� (1�1) is oscillatory�

We remark that, if we take g(t) = 0, then v (t) = 1, �(t) = q(t). Hence
Corollary 1 also reduces to Theorem B of Wong if f (y) = y .

For the case when f (y) is not monotonous or has no continuous deriva-
tive, the following result holds.

Theorem �� Suppose that (H1)�(H4) hold� Let assumption (2�1) in The�

orem be replaced by

(2�8)
f (y)
y

� c�0 for y�0�

where c is a constant� Suppose that q(t) � 0 and that for any T � t0� there

exist T � s1 �t1 � s2 �t2 such that (1�9) holds� If there exist H � D(si � ti )

and g � C 1([t0��)� (0��)) such that

(2�9)

tiZ
si

H 2(t)�(t)dt � 1
4

tuZ
si

r (t)v (t)



�2H �(t) +

p(t)
r (t)

H (t)

�2

dt �

for i = 1� 2� where v (t) = exp

�
�2

tR
g(s)ds

�
and

�(t) = v (t)[Kcq(t) + r (t)g2(t)� p(t)g(t)� (r (t)g(t))�]�
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then every solution of Eq� (1�1) is oscillatory�

Proof� Suppose that y(t) is a nonoscillatory solution which is positive,
say y(t) �0 when t � T0 for some T0 depending on the solution y(t). Denote

(2�10) u(t) = v (t)r (t)

�
y �(t)
y(t)

+ g(t)

�
� t � T0�

It follows from (1.1) and (2.8) that u(t) satisfies

u �(t) = �2g(t)u(t) + v (t)

�
[r (t)y �(t)]�

y(t)
� r (t)

[y �(t)]2

y2(t)
+ [r (t)g(t)]�


�

� �2g(t)r (t)v (t)

�
y �(t)
y(t)

+ g(t)

�
� v (t)Kcq(t) +

v (t)e(t)
y(t)

�

� r (t)v (t)
[y �(t)]2

y2(t)
+ v (t)[r (t)g(t)]�� v (t)p(t)

y �(t)
y(t)

=

= �2g(t)v (t)r (t)
y �(t)
y(t)

� 2r (t)v (t)g2(t)� v (t)Kcq(t) +
v (t)e(t)
y(t)

�

� r (t)v (t)
[y �(t)]2

y2(t)
+ v (t)[r (t)g(t)]�� v (t)p(t)

y �(t)
y(t)

=

= � u2(t)
v (t)r (t)

� p(t)
r (t)

u(t)� �(t) +
v (t)e(t)
y(t)

�

That is,

(2�11) �(t) � �u �(t)� u2(t)
v (t)r (t)

� p(t)
r (t)

u(t) +
v (t)e(t)
y(t)

�

By assumption, we can choose s1, t1 � T0 so that e(t) � 0 on the interval
I = [s1� t1] with s1 �t1. On the interval I , u(t) satisfies by (2.11),

(2�12) �(t) � �u �(t)� u2(t)
v (t)r (t)

� p(t)
r (t)

u(t)�

Similar to the proof of Theorem 1, we can obtain a contradiction. The
proof is complete.

If p(t) � 0, then, by Theorem 2, we have the following corollary.

Corollary �� Let the assumptions (H1)–(H4) and (2�8) hold� Suppose

that q(t) � 0 and that for any T � t0� there exist T � s1 �t1 � s2 �t2 such
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that (1�9) holds� If there exist H � D(si � ti ) and g � C 1([t0��)� (0��)) such
that

tiZ
si

H 2(t)�(t)dt �
tiZ

si

r (t)v (t)[H �(t)]2dt �

for i = 1� 2� where v (t) = exp

�
�2

tR
g(s)ds

�
and

�(t) = v (t)[Kcq(t) + r (t)g2(t)� [r (t)g(t)]�]�

then every solution of Eq� (1�1) is oscillatory�

3. Examples

In this section we will show the applications of our oscillation criteria
by two examples. We will see that the equations in the examples are os-
cillatory based on the results in Section 2, though the oscillation cannot be
demonstrated by the results of Wong [18].

Example �� Consider the following nonlinear differential equation

(
p
ty �(t))� � 2y �(t) +

5

4
p
t(1 + sin4pt)y(t)(1 + y4(t)) =

=
1p
t
(sin

p
t � cos

p
t)� t � 1�(3�1)

Here the zeros of the forcing term 1p
t
(sin

p
t�cos

p
t) are

�
n� + �

4

�2. Clearly,

f (y) = y(1 + y4) and f �(y) = 1 + 5y4 � 1 = ��

Let H (t) = sin
p
t . For any T � 1, choose n sufficiently large so that�

n� + �
4

�2 � T and set s1 =
�
n� + �

4

�2 and t1 =
�
(n + 1)� + �

4

�2 in (2.2).
Pick up g(t) = 0, then v (t) = 1. It is easy to verify that

�
(n+1)�+�

4

�2Z
�
n�+�

4

�2

H 2(t)�(t)dt =

�
(n+1)�+�

4

�2Z
�
n�+�

4

�2

sin2pt 5

4
p
t(1 + sin4pt)dt =
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=

(n+1)�+�

4Z
n�+�

4

sin2 s
5

4s(1 + sin4 s)
2sds =

(n+1)�+�

4Z
n�+�

4

5
2

sin2 s
1

1 + sin4 s
ds =

=

(n+1)�+�

4Z
n�+�

4

5
2

sin2 s
1

1 + sin2 s(1� cos2 s)
ds �

(n+1)�+�

4Z
n�+�

4

5
2

sin2 s

1 + sin2 s
ds =

=

(n+1)�+�

4Z
n�+�

4

5
2

sin2 s + 1� 1

1 + sin2 s
ds =

5
2
� �

(n+1)�+�

4Z
n�+�

4

5
2

1

1 + sin2 s
ds �

� 5�
2
� 5

2

(n+1)�+�

4Z
n�+�

4

1
2j sin sjds �

5�
2
� 5�

4
=

5�
4
�

where we have used the inequality 1 + sin2 t � 2 sin t , and

1
4�

t1Z
s1

r (t)v (t)



�2H �(t) +

p(t)
r (t)

H (t)

�2

dt =

=
1
4

�
n�+�+�

4

�2Z
�
n�+�

4

�

p
t



�2

cos
p
t

2
p
t
� 2

p
t sin

p
t

�2

dt =

=
1
4

�
n�+�+�

4

�Z
�
n�+�

4

�
s



�cos s

s
� 2
s

sin s

�2

ds =

=
1
2

�
n�+�+�

4

�Z
�
n�+�

4

�
[cos2 s + 2 sin 2s + 4 sin2 s]ds =

5
4
��

which implies that (2.2) holds for i = 1.
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Similarly, for s2 =
�
(n + 1)� + �

4

�2 and t2 =
�
(n + 2)� + �

4

�2, we can
show that (2.2) holds. It follows from Theorem 1 that every solution of
Eq. (3.1) is oscillatory. Observe that y(t) = sin

p
t is such a solution. How-

ever, the results of Wong [18] fail for the oscillation of Eq. (3.1).

Example �� Consider the following nonlinear differential equation

(3�2)

�p
ty �(t)

�� � 2y �(t) +
10(1 + sin2pt)p
t(9 + sin2pt)y(t)

�
1
8

+
1

1 + y2(t)

�
=

=
1p
t
(sin

p
t � cos

p
t)� t � 1�

Let f (y) = y
h

1
8 + 1

1+y2

i
, then

f �(y) =
(y2 � 3)2

8(1 + y2)2
�

Clearly, the condition, f �(y) � � �0 for y�0 does not hold. Hence, Theorem
1 is not valid for Eq. (3.2). However,

f (y)
y

=
1
8

+
1

1 + y2 �
1
8

= K �0�

Similar to the proof of Example 1, we see that the assumptions of Theorem
2 are satisfied. Hence, every solution of Eq. (3.2) is oscillatory. Observe that
y(t) = sin

p
t is an oscillatory solution. Similarly, the results of Wong [18]

are not valid for the oscillation of Eq. (3.2).
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1. Introduction and first results

Let K2 denote the family of compact convex sets K in the Euclidean

plane E2. For K � K2, let A(K ), r (K ), D(K ) and � (K ) be the area, the
inradius, the diameter and the minimal width (that is, the smallest distance
between two parallel support lines) of K , respectively.

For an arbitrary lattice L and a set K , the lattice point enumerator is
denoted by G(K�L) = card(int(K ) � L). A convex set K is called a lattice�

point�free convex set with respect to L if G(K�L) = 0. Further, K is a
covering set if

K + L = fK + g� g � Lg = E2�

A great number of results concerning covering sets with respect to the

integer lattice Z2 are known. However there are relatively few results on
covering sets with respect to an arbitrary lattice L ([6], [7], [8], [9], [10]).
The following elegant result was obtained by Awyong and Scott in [2]: an
inequality concerning the inradius and the area of a planar lattice-point-free

convex set, in the case where L is the integer lattice Z2.

Theorem �� Let K be a compact� planar� convex set with G(K�Z2) = 0�
Then

(1) (2r � 1)A � 2(
p

2� 1)�

This work is supported in part by Dirección General de Investigación (MCYT) BFM2001-

2871.
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with equality when and only when K is congruent to the diagonal square

shown in Figure ��

��4

Figure �

The d-dimensional analog was solved by Awyong, Henk and Scott in
[1]. In this paper, we generalize Theorem 1 to rectangular lattices, using then
this result to obtain, in the last section, a more general inequality for arbitrary
lattices, and some other related results.

Before stating the main theorem, let us introduce some notation. We
denote by Γuv the rectangular lattice generated by the vectors (u� 0) and (0� v ),
with 0 �u � v .

Now, we define the rombhus Qr as follows:

Let P = (u�2� v�2) � E2, and BP (r ) be the disc centered in P and with
radius r . Following the notation of Figure �, for each fixed r we denote by
Qr the rombhus with sides tangent to the disc BP (r ), which pass through the
points P1 = (u� v ), P2 = (0� v ), P3 = (0� 0) and P4 = (u� 0) respectively, and
with angle � � arctan(u�v ).

r
�

P

P1P2

P3 P4

l1

Figure �� Optimal rombhus

This set will have an important role in our results. It is easy to check that

A(Qr ) =
2(u2 + v2)2r2

(2ur � v
p
u2 + v2 � 4r2)(2vr + u

p
u2 + v2 � 4r2)

�
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Let us also denote by buv (r ) the function

(2) buv (r ) =
2(u2 + v2)2(2r � v )r2

(2ur � v
p
u2 + v2 � 4r2)(2vr + u

p
u2 + v2 � 4r2)

�

We prove the following result:

Theorem �� Let r� denote the unique solution of the equation

(3) uv (r + v )
p
u2 + v2 � 4r2 + r [v (3u2 + v2)� 8r2(r + v ) + 4u2r ] = 0�

For each K �K2 with G(K�Γuv ) = 0 it holds�

i) If v � 2u then (2r (K )� v )A(K ) � 1
2uv

2�

ii) If v �2u then (2r (K )� v )A(K ) � buv (r�)�

These inequalities are tight in the following sense�

i) 1
2uv

2 cannot be replaced by 1
2uv

2 � � � because the equality would be

attained for the case r (K ) = v�2� when K is the in�nite strip�

ii) Now� equality holds when K = Qr� �up to congruence��

2. Proof of the Theorem

The proof of the theorem will be established by proving two previous
lemmas, the second of which is a result from elementary calculus.

Lemma �� Let K � K2 be a convex domain such that G(K�Γuv ) = 0�
Then there exists another convex domain K s � K2 containing no points of

Γuv � such that�

i) A(K s ) = A(K ) and r (K s) � r (K )

ii) K s is symmetric about the lines x = u�2� y = v�2�

Proof� Let K � be the convex domain which is obtained from K by
Steiner symmetrization with respect to the line x = u�2. It is well known
that Steiner symmetrization preserves the convexity and the area, and does
not decrease the inradius [3]. Therefore, K � is a convex domain with A(K �) =
= A(K ), and r (K �) � r (K ). Now, we have to see that G(K ��Γuv ) = 0.

Let us suppose that K � contains the lattice point of Γuv , mu + nv , with
m� n � Z. Then, because of the symmetry of K � about x = u�2, the line y = nv
would intersect K � in a line segment of length greater than u . So, this line
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would also intersect K in a line segment with the same length, which implies
that G(K�Γuv ) 	0, contradicting the hypothesis. Hence, G(K ��Γuv ) = 0.

We can use an analogous argument, but now symmetrizing about the line
y = v�2, to obtain a convex domain K s with A(K ) = A(K s ), r (K ) � r (K s )
and G(K s �Γuv ) = 0. By construction, K s is symmetric about the lines
x = u�2 and y = v�2, and the lemma is proved.

Lemma �� Let

h(r ) = 2uv (r + v )
p
u2 + v2 � 4r2 + 2r [v (3u2 + v2)� 8r2(r + v ) + 4u2r ]�

with 0 �u � v and r � (v�2�
p
u2 + v2�2]� Then�

i) If v � 2u � h(r ) �0�

ii) If v �2u � h(r ) vanishes exactly in an only point r� � (v�2�
p
u2 + v2�2]�

Proof� Let us denote by

h1(r ) = (r + v )
p
u2 + v2 � 4r2�

h2(r ) = r [v (3u2 + v2) � 8r2(r + v ) + 4u2r ]�

Then, h(r ) = 2uvh1(r ) + 2h2(r ).

It is easy to compute that when r � (v�2�
p
u2 + v2�2], it holds

h ��1 (r ) = 4
8r3 � (u2 + v2)(3r + v )

(u2 + v2 � 4r2)3�2
�0�

so, h1(r ) is a concave function, and moreover, h �1(r ) is strictly decreasing.
Analogously, we can check that

h ��2 (r ) = �96r2 � 48vr + 8u2 �0�

and then, h2(r ) is a concave function and h �1(r ) is strictly decreasing.

Hence, we can deduce that the original function h(r ) is concave and its
first derivative h �(r ) is strictly decreasing. So, h �(r ) �h �(v�2). Now,

h
�p

u2 + v2�2
�

= �(v2 � u2)
p
u2 + v2

�p
u2 + v2 + v

�
� 0�

h(v�2) = 2v2(4u2 � v2) and

h �(v�2) = 8v (2u2 � 3v2)�

Then we obtain that
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i) If v � 2u , h(v�2) � 0 and also h �(v�2) � 0. So, h �(r ) �0 and therefore
h(r ) is strictly decreasing and negative.

ii) If v �2u , h(v�2) 	0. Then, there exists an r� � (v�2�
p
u2 + v2�2] such

that h(r�) = 0, and this point is unique because of the strict concavity
of h(r ).

Now we can prove our theorem.

Let us define the functional f (K ) = (2r (K )�v )A(K ). Applying Lemma 1

to the set K , we may obtain a new convex set K s �K2 with G(K s �Γuv ) = 0,
satisfying the conditions:

i) A(K s ) = A(K ) and r (K s) � r (K ),

ii) K s is symmetric about the lines x = u�2, y = v�2.

Then, it is clear that f (K ) � f (K s ). So, it suffices to prove the theorem

for sets K �K2 which are symmetric about the lines x = u�2 and y = v�2.

To fully utilize the symmetry of K about the lines x = u�2 and y = v�2,
we move the origin to the point P = (u�2� v�2).

Obviously, the area of a lattice-point-free convex set K � K2 with
respect to Γuv can be arbitrary large. However, the inradius of such a set

is bounded above by
p
u2 + v2�2. Besides, if r (K ) � v�2, then (2r (K ) �

� v )A(K ) � 0 and the result is trivially true. Hence, we may assume that

v�2 �r (K ) �
p
u2 + v2�2.

Since int(K ) does not contain the points

P1 =
�u

2
�
v

2

�
� P2 =

�
�u

2
�
v

2

�
�

P3 =
�
�u

2
��v

2

�
� P4 =

�u
2
��v

2

�
�

it follows by the convexity of K that for each i = 1� � � �� 4, K is bounded by a
line li passing through Pi , with slopes m(l2) = m(l4) = �m(l1) = �m(l3) � 0
(by the symmetry of K ). So, K lies within a rhombus Q determined by the
lines li , i = 1� � � �� 4. Since K � Q , clearly A(K ) � A(Q) and r (K ) � r (Q) =
= rQ , and we have f (K ) � f (Q). It is therefore sufficient to maximize f (K )

over the set of all rhombi Q � K2, determined by the lines li , i = 1� � � �� 4.
But moreover; if the acute angle � determined by the line l1 and the OX -axis
(see Figure �) is not greater than arctan(u�v ), then Q = QrQ .
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But if � 	arctan(u�v ), it is not difficult to compute that the area of such
a rhombus Q in terms of its inradius rQ takes the value

A(Q) =
2(u2 + v2)2r2

Q�
2urQ + v

q
u2 + v2 � 4r2

Q

��
2vrQ � u

q
u2 + v2 � 4r2

Q

� �
Since u � v , we can obtain easily that�

2urQ � v
q
u2 + v2 � 4r2

Q

��
2vrQ + u

q
u2 + v2 � 4r2

Q

�
�

�
�

2urQ + v
q
u2 + v2 � 4r2

Q

��
2vrQ � u

q
u2 + v2 � 4r2

Q

�
�

Then, the rhombus QRQ (with the same inradius as Q) has area strictly

greater than the area of Q . Therefore, again f (Q) � f (QrQ ), and so, we have

just to maximize f (K ) over the set of all rhombi Qr .

We had gotten the area of Qr , as a function of r , so

f (Qr ) = (2r (Qr ) � v )A(Qr ) = buv (r ) =

=
2(u2 + v2)2(2r � v )r2�

2ur � v
p
u2 + v2 � 4r2

��
2vr + u

p
u2 + v2 � 4r2

� �
But buv (r ) can be written in the following way

buv (r ) = 2(u2 + v2)
r2
�

2ur + v
p
u2 + v2 � 4r2

�
(2r + v )

�
2vr + u

p
u2 + v2 � 4r2

� �
and then, it is not difficult to see that

b�uv (r ) =
2(u2 + v2)2r

(2r + v )
�

2vr + u
p
u2 + v2 � 4r2

�2p
u2 + v2 � 4r2

h(r )�

where h(r ) is the function defined in Lemma 2.

i) If v � 2u , Lemma 2 assures us that h(r ) �0; so buv (r ) is strictly
monotonously decreasing, and then

buv (r ) �lim
r�v�2

buv (r ) =
1
2
uv2�
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Clearly, this bound can not be replaced by a 1
2uv

2 � � , because the

equality would be attained when r = v�2, i.e., when K is the infinite
strip.

ii) If v �2u , because of the proof of Lemma 2, we can assure that there
exists a unique solution r� of the corresponding equation (3); so buv (r )
attains its maximum value for r = r�. Hence, in this case,

buv (r ) � buv (r�)�

and the equality holds when K = Qr� (up to congruence).

This completes the proof of the theorem.

3. Some results for arbitrary lattices

Let us denote by L2 the set of lattices L � E2 with detL
0. Further, for

L � L2 let �i = �i (L) be the successive minima of L, i.e., �i (L) = �i (B
2� L) =

= minf� 	0 j dim aff(�B2 � L) � ig, and let �i = �i (L) be the covering

minima of the lattice L, i.e., �i (L) = �i (B
2� L) = minf� 	0 j �B2 + g� g � L,

meets every flat F of E2 with dim(F ) = 2� ig.

We remember also that a basis fb1� b2g of L is reduced (in the sense of
Minkowski) if

i) b1 � fv � L n f0g : kvk is minimalg
ii) b2 � fv � L n f0g : b1� v are a basis of L, kvk is minimalg

iii) b1 � b2 � 0.

For the sake of brevity we will represent by  the maximum  =
= maxf�1� 2�1g and by � the minimum � = minf�i � 2�1g. Moreover, we
denote by b��(r ) the corresponding function defined by (2) when u = � and

v = . We will prove the following result.

Theorem �� Let r� denote the unique solution of the equation

(4) �(r + )
q
�2 + 2 � 4r2 + r [(3�2 + 2) � 8r2(r + ) + 4�2r ] = 0

For each K �K2 and L � L2� with G(K�L) = 0 it holds�

i) If  � 2� then (2r (K )� )A(K ) � 1
2�

2�

ii) If �2� then (2r (K )� )A(K ) � b��(r�)�

The inequalities are tight�
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Remark �� Because of 2�1 �
p

3
2 �1 (see [5]), it will never hold �1 	

	2(2�1). So, when  = maxf�1� 2�1g = �1, we will have just the upper
bound (2r�)A � b2�1�1

(r�). Thus, for an arbitrary lattice, we will have the

following three possible cases:

i) If �1 � �1 then (2r (K )� 2�1)A(K ) � 2�1�
2
1 .

ii) If �1 ��1 � 2�1 then (2r (K )� 2�1)A(K ) � b�12�1
(r�).

iii) If 2�1 � �1 �4�1 then (2r (K )� �1)A(K ) � b2�1�1
(r�).

with r� each solution of the corresponding equations we obtain from (4).

For instance, in the case of the integer lattice Z2, �1 = 2�1 = 1, and we

obtain r� =
p

2�2. So, the upper bound for the relation (2r � 1)A takes the

value b11(
p

2�2) = 2(
p

2 � 1), which was proved by Awyong and Scott

in [2].

From this theorem, we can obtain as an obvious consequence the follow-
ing corollary.

Corollary �� Let K �K2 and L � L2 be given such that

(2r (K )� )A(K ) 	max

�
1
2
�2� b��(r�)

�
�

Then K is a covering set�

We also prove an inequality relating the inradius and the diameter of a

lattice-point-free convex set K �K2.

Proposition �� Let K be a convex set ofK2 and L � L2� with G(K�L) =
= 0� Then�

(2r (K )� 2�1)(D(K )� �1) � 2�1�1�

The limiting in�nite strip shows that the stated bound is best possible�

Corollary �� Let K �K2 and L � L2 be given such that

(2r (K )� 2�1)(D(K )� �1) 	2�1�1�

Then K is a covering set�

We observe that this inequality can be rewritten as

�1
D(K )

+
�1
r (K )

�1�

So, the following corollary generalizes the previous one:
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Corollary �� Let K �K2 and L � L2 be given such that

�1
D(K )

+
�1
r (K )

�k� k � Z�

Then� G(K�L) � k2� i�e�� fK + g j g � Lg is� at least� a k2�fold covering

of E2�

3.1. Proof of Theorem 3

Let fb1� b2g be a reduced basis of L in the sense of Minkowski, with
kb1k = �1(L), and let � be the acute angle between b1 and b2 (so that
2�1(L) = kb2k sin � ). Let v1 = b1, and let v2 be a vector of length 2�1, which
is perpendicular to v1. Let now Γ denote the rectangular lattice determined
by the basis fv1� v2g.

We reduce the problem to rectangular lattices and symmetric convex
bodies. To this end, let K � be the Steiner symmetral of K with respect to
the line x = �1�2. Then, K � is a convex domain with A(K �) = A(K ), and
r (K �) � r (K ). We have to see that G(K ��Γ) = 0. For, let us suppose that K �

contains the Γ lattice point, mv1 + nv2, with m , n � Z. Then, the symmetry
of K � about x = �1�2 assures that the line y = 2�1n intersects K � in a line
segment of length greater than �1. Thus, this line also intersects K in a line
segment with the same length, which implies that G(K�L) 	0, contradicting
the hypothesis. Hence, G(K ��Γ) = 0. Now, we use an analogous argument
but symmetrizing about the line y = �1, and we obtain a convex set K s with
the same area, greater or equal inradius, and such that G(K ��Γ) = 0.

Now, we may identify Γ with the rectangular lattice Γ�� generated by the

vectors (�� 0) and (0� ) (note that either Γ�� = Γ or Γ�� = ���2(Γ), where

���2 is the rotation by ��2 at the origin). Then, applying Theorem 2 to K s

and Γ�� � Γ, we obtain finally

(2r (K )� )A(K ) � (2r (K s) � )A(K s ) �
� 1

2�
2� if  � 2�

b��(r�) if  �2� .

This concludes the proof of the theorem.
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3.2. The inradius-diameter results

Proof of Proposition �� We will write � (K ) = � , r (K ) = r and
D(K ) = D .

In [9] the following result is proved:

(5) (� � 2�1)(D � �1) � 2�1�1

with equality when and only when K is a triangle of diameter D and width
� = 2�1D�(D � �1).

Since � � 2r , we have

(2r � 2�1)(D � �1) � (� � 2�1)(D � �1) � 2�1�1�

Taking the infinite strip to be the limit of a sequence of triangles which
give the equality in (5), when � tends to 2r we have

lim
��2r

(2r � 2�1)(D � �1) =

= lim
��2r

(2r � 2�1)

�
��1

� � 2�1
� �1

�
= lim

2r�2�1
2r�1 = 2�1�1�

So, the stated bound is best possible.

Proof of Corollary �� The proof of Corollary 3 follows an analogous
proof by Hammer [4], and we repeat it here for opportunity.

If k = 0 the result is trivial. So, let us suppose that k � 1, and consider

the similarity transformation K 	 K � = 1
kK . Obviously, D(K �) = 1

kD(K )

and r (K �) = 1
k r (K ). Now let fb1� b2g be a basis of L with kbik = �i , i = 1, 2,

and let R = m1b1 +m2b2 be a lattice point with 0 � mi � (k � 1)�i , i = 1, 2.

Now, let us consider the translate K �� of K � given by K �� = K � � 1
k R.

We have:
�1

D(K ��)
+

�1
r (K ��)

=
�1

D(K �)
+

�1
r (K �)

=
k�1
D(K )

+
k�1
r (K )

=

= k

�
�1

D(K )
+

�1
r (K )

�
�1�

By Proposition 1, K �� contains a lattice point T . Hence, K � contains

the point T + 1
kR, and so, the original domain K contains the lattice point

U = k
�
T + 1

k R
�

= kT + R. But taking into account 0 � mi � (k � 1)�i , we
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could have selected each mi i = 1, 2 in k different ways. So, R might have

been chosen in k2 different ways. Therefore, K contains at least, k2 distinct

lattice points in its interior, i.e. G(K�L) � k2.
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For a Banach space X , let X � denote its dual and BX denote its closed
unit ball. For 1 � p ��, let p� denote its conjugate, i.e., 1�p + 1�p� = 1. For
1 � p ��, let �p(X ) denote the space of absolutely p-summable sequences
on a Banach space X , i.e.,

�p(X ) =

��
�x = (xn)n � X

N : kxk(p) =

�
�X
n=1

kxnk
p

�1�p

��

��
� �

where if p = �, let

�
�P
n]1=

kxnk
p

�1�p

= sup
n
kxnk. Then (�p(X )� k � k(p)) is a

Banach space (cf. [2, 7]). Let

c0(X ) =
n
x = (xn)n � XN : lim

n
xn = 0

o
�

Then c0(X ) is a closed subspace of ��(X ). For 1 � p ��, let �p[X ] denote
the space of weakly p-summable sequences on a Banach space X , i.e.,

�p[X ] =

	
x = (xn)n � X

N :
�X
n=1

jx�(xn)jp �� �x� � X �




and for �x � �p[X ], let

kxk[p] = sup

��
�
�
�X
n=1

jx�(xn)jp
�1�p

: x� � BX �

��
� �
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Then (�p[X ]� k � k[p]) is a Banach space (cf. [2, 7, 8]). Here notice that if

p = �, let

�
�P
n=1

jx�(xn)jp
�1�p

= sup
n
jx�(xn)j. For 1 � p � �, let �phX i

denote the space of strongly p-summable sequences on a Banach space X ,
i.e.,

�phX i =

	
x = (xn)n � X

N :
�X
n=1

jx�n (xn)j�� �(x�n )n � �p�[X
�]




and for �x � �phX i, let

kxkhpi = sup

	�����
�X
n=1

x�n (xn)

����� : (x�n )n � B�
p�

[X �]



�

Then (�phX i� k � khpi) is a Banach space (cf. [2]). Let

c0hX i =
n
x = (xn)n � ��hX i : lim

n
kx (i �n)kh�i = 0

o
�

where x (i �n) = (0� � � � � 0� xn+1� xn+2� � � �). Then c0hX i is a closed subspace
of �phX i.

Definition �� Let X , Y be Banach spaces. A Banach space operator
u : X � Y is called strongly �-summing if there exists a constant c �0
such that for any x1, x2, � � � , xn � X and y�1 , y�2 , � � � , yn � Y �,

(1)
nX

k=1

jhuxk � y
�
k ij � c � sup

1�k�n
kxkk � sup

y�BY

nX
k=1

jy�k (y)j�

Let D�(u) denote the infimum taken over all possible c as above. Then
D�( � ) is a norm (see [2]).

Recall that a Banach space operator u : X � Y is called absolutely
1-summing if there exists a constant c �0 such that for any x1, x2, � � � ,
xn � X ,

(2)
nX

k=1

kuxkk � c � sup

	
nX

k=1

jx�(xk )j : x� � BX



�

Let �1( � ) denote the absolutely 1-summing norm (see [4, p.31]). By Theorem
2.2.2 in [2], we have
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Theorem �� (i) A Banach space operator u : X � Y is absolutely

1�summing if and only if its adjoint operator u� : Y � � X � is strongly

��summing� In this case� �1(u) = D�(u�)�

(ii) A Banach space operator u : X � Y is strongly ��summing if and

only if its adjoint operator u� : Y � � X � is absolutely 1�summing� In this

case� �1(u�) = D�(u)�

Let X , Y be Banach spaces. For a continuous linear operator u : X �
� Y , define

�

u : xN � yN �
(xn)n �� (uxn)n �

Then
�

u is a linear operator. Define

	 : x0 �X � xN �
nP

k=1
sk � xk ��

�
nP

k=1
s(k )
i xk

�
i

�

Then 	 is well-defined linear map (see [1]). Let X , Y , Z , W be Banach
spaces and let u : X � Z and v : Y � W be Banach space operators.
Define

u � v : X �Y � Z �W�
nP

k=1
xk � yk ��

nP
k=1

(uxk ) � (vyk )�

Let c0
�

�X denote the completion of c0�X with respect to the injective

tensor norm k � k�, and let c0
�

�Y denote the completion of c0 � Y with
respect to the projective tensor norm k � k� (cf. [5, p. 223–227]).

Theorem �� Let u : X � Y be a Banach space operator� Then the

following are equivalent�

(i) u is strongly ��summing�

(ii) idc0(��(X )) 	 ��hY i� i�e�� u sends each bounded sequence in X to

strongly ��summable sequence in Y �

(iii)
�

u(c0(X )) 	 c0hY i�

(iv) (idc0 �u)(c0
�

�X ) 	 c0
�

�Y � where idc0 is the identity operator

on c0�
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Furthermore� in this case�
�

u : ��(X ) � ��hY i�
�

u : c0(X ) � c0hY i�

and idc0 �u : c0
�

�X � c0
�

�Y are continuous with

(3)

k
�

u k��(X )���hyi = k
�

u kc0(X )�c0hY i
= k idc0 �uk

c0
�

	X�c0
�

	Y
= D�(u)�

Proof� (i) 
 (ii): It is easy to show that for �x = (xn)n � ��(X ) and
�y� = (y�n )n � �1[Y �],

�X
n=1

jhuxn � y
�
n ij � D�(u) � kxk(�) � ky

�k[1]�

Since y� is arbitrary in �1[Y �],
�

u(x ) = (uxn)n � ��hY i and

(4) k
�

u k��(X )���hY i � D�(u)�

(ii) follows.

(ii) 
 (iii): By Closed Graph Theorem, we can show that
�

u is continu-
ous. So

(5) k
�

u(x )kh�i � k
�

u k��(X )���hY i � kxk(�)� �x � ��(X )�

Thus for �n � N,

k
�

u(x )(i �n)kh�i � k
�

u k��(X )���hY i � kx (i �n)k(�)� �x � ��(X )�

If x � c0(X ), then lim
n
kx (i �n)k(�) = 0. So lim

n
k
�

u(x )(i �n)kh�i = 0, i.e.,

�

u(x ) � c0hX i. (iii) follows.

(iii) 
 (i): By Closed Graph Theorem, we can show that
�

u is continu-
ous. So

(5) k
�

u(x )kh�i � k
�

u kc0(X )�c0hY i
� kxk(�)� �x � c0(X )�

Now for any x1, � � � , xn � X , y�1 , � � � , y�n � Y
�, let x = (x1� � � � � xn � 0� 0� � � �)

and y� = (s1y
�
1 � � � � � sn � y

�
n � 0� 0� � � �) where sk = signhuxk � y

�
k i for k = 1� � � � � n .

Then x � c0(X ) and y� � �1[Y �]. So
nX

k=1

jhuxk � y
�
k ij = jh

�

u(x )� y�ij � k
�

u(x )kh�i � ky
�k[1] �
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� k
�

u kc0(X )�c0hY i
� kxk(�) � ky

�k[1] =

= k
�

u kc0(X )�c0hY i
� sup

1�k�n
kxkk � sup

y�BY

nX
k=1

jy�k (y)j�

Thus u is strongly �-summing and

(6) D�(y) � k
�

u kc0(X )�c0hY i
�

(i) follows.

(iii) 
 (iv): For �z =
nP

k=1
s(k ) � xk � c0 �X ,

(7)

	 ((idc0 �u)z ) = 	

�
nX

k=1

s(k ) � uxk

�
=

�
nX

k=1

s(k )uxk

�
i

=

=

�
u

�
nX

k=1

s(k )
i xk

��
i

=
�

u

�
	

�
nX

k=1

s(k ) � xk

��
=
�

u(	z )�

By [7] (also see [3]), 	 (c0
�

�X ) = c0(X ) with the isometry 	 . So by (5) and
Theorem 9 in [1],

k(idc0 �u)zk� = k	 ((idc0 �u)z )kh�i = k
�

u(	z )kh�i �

� k
�

u kc0(X )�c0hY i
k	zk(�) = k

�

u kc0(X )�c0hY i
kzk��

So idc0 �u is a continuous operator from (c0 � X� k � k�) to (x0 � Y� k �

� k�). Thus idc0 �y can be norm-preserved extended to c0
�

�X . Therefore,

(idc0 �u)(c0
�

�X ) 	 c0
�

�Y and

(8) k idc0 �uk
c0

�

	X�c0
�

	Y
� k

�

u kc0(X )�c0hY i
�

(iv) follows.

(iv) 
 (iii): Let x � c0(X ). Since 	 (c0
�

�X ) = c0(X ), �z � c0
�

�X

such that 	 (z )x . By (iv), (idc0 �u)z � c0
�

�Y . So by (7) and Theorem 9
in [1],

�

u(x ) =
�

u(	z ) = 	 ((idc0 �u)z ) � c0hY i�
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Thus (iii) follows. Furthermore,

k
�

u(x )kh�i = k(idc0 �u)zk� �

� k idc0 �uk
c0

�

	X�c0
�

	Y
kzk� = k idc0 �uk

c0
�

	X�c0
�

	Y
kxk(�)�

Therefore,

(9) k
�

u kc0(X )�c0hY i
� k idx0 �uk

c0
�

	X�c0
�

	Y
�

Now combining (4), (6), (8), (9) and noticing that k
�

u kc0(X )�c0hY i
�

� k
�

u k��(X )���hY i, (3) holds. The proof is completed.

Corollary �� (i) A Banach space operator u : X � Y is absolutely

1�summing if and only if (idc0 �u
�)(c0

�

�Y �) 	 c0
�

�X �� In this case�

idc)�u
� : c0

�

�Y � � c0
�

�X � is continuous and k idc0 �u
�k = �1(u)�

(ii) A Banach space operator u : X � Y satis�es that

(idc0 �u)(c0
�

�X ) 	 c0
�

�Y

if and only if its adjoint operator u� : Y � � X � is absolutely 1�summing� In

this case� idc0 �u : c0
�

�X � c0
�

�Y is continuous and k idc0 �uk = �1(u�)�
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2019. május 4. –23:07

A CHARACTERIZATION OF ADJOINT 1-SUMMING OPERATORS 113

[5] J� Diestel and J� Uhl� Vector Measures, Math. Surveys Vol. 15, Amer� Math�

Soc�� Providence, 1977.
[6] A� Grothendieck� Produits tensoriels topologiques et espaces nucléaires,

Memoires Amer� Math� Soc�� 16 (1955).
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1. Introduction

We show how some theorems on projection matrices can be applied to
give short proofs for the properties of the pseudoinverse and pseudosolution
of under- or overdetermined linear system of equations. First, we recall some
statements on projections and prove a maximum theorem for projections that
map onto the same subspace. The symmetric projection is unique and the
distance between a vector and a subspace can be given with the aid of a
symmetric projection. As a by-product, one can give projections mapping
onto the range space or null space of a matrix, and formulae for the distances
from these subspaces.

On the basis of these results it is then possible to give short derivations
for the pseudoinverse and its properties. With the suggested simplifications it
will be easy to teach a short but full pseudoinverse theory in undergraduate
or graduate courses. The given remarks may be used as exercises.

Notations� Matrices will be denoted by capital letters and vectors by
lower case letters, aT denotes the transpose of a . Real matrices and vectors
are used throughout as it is straightforward to restate the results in complex
variables.

2. Projections

We first recall some basic knowledge on projections and then prove our
theorems. Let S � Rn be a subspace. P � Rn�n is a projection onto S if
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range(P) = S , and P2 = P . Moreover, if PT = P then the projection is called
symmetric or orthogonal. The only invertible projection is the identity I . To

see this, multiply P2 = P with P�1. Both P and I � P are projections.

Only the first application of P may produce a new vector Px , all subse-

quent applications will leave it unchanged, Pk x = Px , k �1. This property
explains the phrase: P is idempotent� that is, any positive integer power of P
is equal to itself.

Examples for projections:

P1 =
daT

aTd
� aTd �= 0�

This is a rank one projection. The effect of I�P1 on x is the following: vector

x is projected along line d onto the plane aTx = 0: (I � P1)x = x � d
�
aTx
aTd

�

and aT(I � P1)x = 0. Another example – generalizing the former – is

P2 = I �A(DTA)�1DT� where D�A � Rm�n and DTA is invertible.

Now P2x is orthogonal to the column vectors of D . P2 is symmetric or
orthogonal if D = A holds.

Observe that P1P2 = P2 if P1 and P2 are mapping onto the same subspace.

Theorem �� The symmetric projection is unique among projections map�

ping onto S �

Proof� Indirectly assume P1 �= P2 are two symmetric projections onto S .
Then

P1P2 = P2 � P2 = PT
2 = PT

2 P
T
1 = P2P1 = P1�

a contradiction. (Cf. [4], Sect. 2.6.1.)

Theorem �� Let H (S ) be the set of projections that map onto the sub�

space S of Rm � Moreover� let Ps be the unique symmetric projection onto S �
Then for any vector x �� S and Px �= 0

max
P�H (S )

xTPx

kPxk2
= kPsxk2

holds� The maximum is also reached by any projections P̃ that satisfy P̃x =
= �Psx � ��0�
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Proof� The theorem states that the angle between x and Px �= 0 is
smallest if P = P̃ . If Ps , P � H (S ) then PsP = P , and applying Cauchy’s
inequality leads to

xTPx

kPxk2
=
xTPsPx

kPxk2
�
kPsxk2 kPxk2

kPxk2
= kPsxk2 �

where equality still holds for the projections P̃ .

Theorem �� The Euclidean distance of vector x �� S from subspace S is

k(I � Ps )xk2� where Ps is the symmetric projection onto S �

Proof� If P is a projection onto S then the distance of x from S is given
by the minimum of k(I � �P)xk2 with respect to � �0 and P . We have
seen in Theorem 2 that the smallest angle between x and �Px is reached for
symmetric P � H (S ) hence the minimum distance takes place between x and
�Psx . But we have

kx � �Psxk
2
2 = kxk2

2 � (2�� �2) kPsxk
2
2

from where it is seen by differentiation that the minimum with respect to �is
reached for � = 1so that the distance vector (I � Ps )x and Psx are mutually
orthogonal to each other.

Now we recall two lemmas from standard linear algebra.

Lemma �� Let L be a matrix of full column rank� If LB = LC then

B = C follows�

Proof� We have L(B �C ) = 0. Any linear combinations of the columns
of L may result in zero only if the columns of B � C are zero, thus B =
= C follows.

Lemma �� Assume A � Rm�n � Then ATA is positive semide�nite� If A

is of full column rank� then ATA is positive de�nite�

Proof� Set y = Ax , then xTATAx = yTy � 0. For definiteness observe
thatx = 0follows from y = 0 if A is of full column rank.

Examples� (i) Let m � n � k , A � Rm�n and A1 � Rm�k such
that A1 has the maximal number of linearly independent columns of A that

is, rank(A) = k holds. Then for B � Rm�k and invertible BTA1 define a
projection by

P(A1� B) = A1(BTA1)�1BT�
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Actually this is a mapping onto range(A1)=range(A). It is orthogonal if A1 =
= B , and then the inverse of ATA1 exists by Lemma 2. The Euclidean
distance of x from range(A) is given by k(I � P(A1� A1))xk2.

(ii) Similarly, let A2 � Rk�n have the maximal number of linearly
independent rows of A. Then the projection onto range(AT) is given by

P(AT
2 � C

T) where CAT
2 is assumed to be invertible and C � Rk�n . The

projection onto nul(A) is I �P(CT� AT
2 ) and the Euclidean distance of y from

nul(A) is
��P(AT

2 � A
T
2 )y

��
2.

3. Short theory of the pseudoinverse

There is a lot of books on the theoretical and computational aspects of
the pseudoinverse. We mention here [1], [2], [4], [6]. These works, of course,
go into much deeper details on generalized inverse theory than what will be
addressed here. The computational aspects are handled e.g. in [4]. Reference
64 of [2] contains a bibliography of 1775 items on the theory, so the interested
reader may consult them for details. Among Hungarian student texts, we
mention [5] that gives a comprehensive theory of the pseudoinverse in Ch. 2.
See also [3] and [7].

Now assume that we have a rank factorization of matrix A � Rm�n � A =
= LU , where L � Rm�r and U � Rr�n so that rank(A) = r . We may think
of an LU�factorization, but it is also possible to choose L = Q and U = R
from the QR�factorization of A.

For the derivation of the pseudoinverse A+ we start from the four defining
Penrose equations:

1� AA+A = A� 2� A+AA+ = A+�
3� AA+ = (AA+)T� 4� A+A = (A+A)T�

Lemma �� AA+ and A+A are symmetric projections�

Proof� Multiply eq. 1 by A+ from either side and observe equations 3
and 4. The same conclusions come from eq. 2 by multiplying with A�

Theorem �� To every matrix A there exists uniquely the pseudoinverse

A+ = U +L+� where L+ = (LTL)�1LT� U + = U T(UU T)�1 and LU is an

arbitrary rank factorization of A�

Proof� We begin with uniqueness. Assume indirectly that there are two
different pseudoinverses, A+

1 and A+
2 . By applying Lemma 3 and Theorem
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1 on uniqueness, we have A+
1A = A+

2A and AA+
1 = AA+

2 and that leads to
contradiction:

A+
1 = (A+

1A)A+
1 = A+

2(AA+
1) = A+

2AA
+
2 = A+

2 �

The unique pseudoinverse will be given constructively. Observe that

range(A) = range(L) hence AA+ = LL+ = L(LTL)�1LT is the unique

symmetric projection to there and L+ = (LTL)�1LT follows by Lemma 1.
Similarly, range(AT) = range(U T) holds so that the symmetric projection to

there is A+A = AT(A+)T = U T(U +)T = U +U = U T(UU T)�1U from
where one gets U + = U T(UU T)�1.

We have L+L = Ir and UU + = Ir that is, L+ is a left inverse and U + is
a right inverse. With these

AA+ = LL+ = LUU +L+ and A+A = U +U = U +L+LU�

from where one concludes that A+ = U +L+.

Remarks� If A has full column rank, then L = A and U = In is an
appropriate choice, and A+ = (ATA)�1ATfollows. With the QR�factorization

of A = QR, one gets A+ = R�1QT. If A has full row rank then L = Im

and U = A suffice, and then A+ = AT(AAT)�1. If now AT = QR then
A+ = Q(RT)�1. Finally, if A is rank deficient, then as a simple method, we
take A = Q1BQ2 where Q1, Q2 are orthogonal matrices and B is an upper

bidiagonal matrix. In that case A+ = QT
2 (B)�1QT

1 . Sometimes numerical rank
determination is a delicate process, for details, see [4].

Theorem �� Let P be a projection onto range(A)� Then the linear system

Ax = b is consistent i� Pb = b�

Proof� Necessity. If the system is solvable then b � range(A) and Pb = b
should hold. For sufficiency assume P = UV T is a rank factorization of P .
Then range(A)=range(U ) because P is mapping onto range(A). Hence there
exist a matrix Z such that U = AZ . Then

b = Pb = UV Tb = AZV Tb

such that x = ZV Tb is a solution.

Remark� With the rank factorization of P = UV T, it is possible to give
an explicit formula for Z . From A = PA = UV TA it is seen that U and
BT = V TA gives a rank factorization of A, i.e. BT is a full row rank matrix.
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Now choose a matrix C such that BTC is invertible (for example, CT = BT

suffices). Then

AC (BTC )�1 = UBTC (BTC )�1 = U

from where Z = C (BTC )�1.

The pseudoinverse helps us to decide if a linear system is solvable. The
consistency condition b = AA+b yields the solution x+ = A+b immediately.

Theorem �� Assume the linear system Ax = b is consistent� Then the

general solution is given by

xg = xp + (I �A+A)t � t � Rn

where xp is a particular solution and (I �A+A)t is the general solution of the

homogeneous system Ax = 0�

Proof� Assume x1, x2 are two solutions. Then A(x2 � x1) = 0 shows
that the difference of two solutions is a solution of the homogeneous system
and those solutions are in null(A). The pseudosolution x+ may serve as a
particular solution.

If the linear system is inconsistent, then we can make it consistent by
orthogonally projecting b onto range(A):

AA+Ax = Ax = AA+b�

The pseudosolution again is x+ = A+b.

Theorem 	� The pseudosolution has the following properties� kb �Axk2
is minimal for x = x+� kx+k2 is minimal among the possible solutions�

Proof� kb �Ax+k2 = kb �AA+bk2 is nothing else than the distance of
vector b from range(A) by Theorem 3. The general solution for both cases
(consistent or inconsistent systems) is expressible by

xg = x+ + (I �A+A)t = A+AA+b + (I �A+A)t

so that it is the sum of two orthogonal vectors. Hence
��xg

��2
2 = kA+bk2

2 +

+ k(I �A+A)tk2
2 which is minimal if t = 0.

Remarks� Demanding either the first or the second Penrose condition is
enough for AAg or AgA to be a projection, where Ag denotes a generalized
inverse. If the first and third Penrose equation is fulfilled then Agb is a least
squares solution. In case of a consistent system the fulfilment of the second
and fourth condition is enough to get a minimum norm solution.
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1. Introduction and Preliminaries

A subsemigroup Q of a semigroup S is called a quasi-ideal of S if
SQ � QS � Q , and by a bi�ideal of S we mean a subsemigroup B of S
such that BSB � B . Quasi-ideals are a generalization of left ideals and
right ideals and bi-ideals are a generalization of quasi-ideals. The notion of
quasi-ideal was first introduced by O� Steinfeld in [7]. In fact, the notion of
bi-ideal was given earlier. This can be seen in [3] and [2], page 84.

For a nonempty subset A of a semigroup S , (A)q and (A)b denote the
quasi-ideal and the bi-ideal of S generated by A, respectively, that is, (A)q
is the intersection of all quasi-ideals of S containing A and (A)b is the
intersection of all bi-ideals of S containing A ([8], page 10 and 12).

Proposition ���� ([2], page 84–85) For any nonempty subset A of S �

(A)q = S1A �AS1 and (A)b = AS1A �A�

Let BQ denote the class of all semigroups whose sets of bi-ideals and
quasi-ideals coincide. It is known that the following semigroups belong
to BQ: regular semigroups ([6]), left[right] simple semigroups ([4]) and
left[right] 0-simple semigroups ([4]). Not only these semigroups are in BQ.
A nontrivial zero semigroup is an obvious example. In fact, J� Calais [1]
has characterized the semigroups in BQ as follows: A semigroup S is in BQ
if and only if (x � y)q = (x � y)b for all x , y � S . It is not easy to see from
this characterization whether a given semigroup belongs to BQ. Since every
quasi-ideal of a semi-group S is a bi-ideal, it follows that (x )b � (x )q for
every x � S . Therefore we have
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Proposition ���� For an element x of a semigroup S � if (x )b is a quasi�

ideal of S � then (x )b = (x )q �

Let X be a nonempty set. It is well-known that the partial transformation
semigroup on X , the full transformation semigroup on X and the one-to-one
partial transformation semigroup on X (the symmetric inverse semigroup on
X ) are all regular, so they all belong to BQ ([6]). Let TX denote the full
transformation semigroup on X . The author has shown in [5] that transfor-
mation semigroup fa � TX j X n X� is infiniteg where X is infinite, is not
regular and neither left simple nor right simple but always belongs to BQ.
Let GX , MX and EX denote respectively the symmetric group on X , the
semigroup of all one-to-one transformations of X and the semigroup of all
onto transformations of X . Then GX � BQ. For a � TX , � is said to be

one�to�one at x � X if (x�)��1 = fxg and let C (�) be the set of all x � X
such that � is not one-to-one at x . A transformation � � TX is said to be
almost one�to�one if C (�) is finite. Hence if � � TX is almost one-to-one,

then for every x � X , (x�)��1 is finite. By an almost onto transformation

of X we mean � � TX whose X nX� is finite. Let AMX and AEX denote
the set of all almost one-to-one transformations of X and the set of all almost
onto transformations of X , respectively. Note that GX � MX � AMX

and GX � EX � AEX , and if X is finite, then MX = EX = GX and
AMX = AEX = TX . Also, we have

Proposition ���� AMX and AEX are subsemigroups of TX �

Proof� Let �� � � AMX and x � X n (C (�) � C (�)��1). Then x �

X nC (�) and x� � X nC (�). Thus we have (x�)��1 = fxg and (x��)��1 =

= fx�g, and hence (x��)(��)�1 = (x��)��1��1 = fxg. Therefore x �

� X n C (��). This proves that X n (C (�) � C (�)��1) � X n C (��), so

C (��) � C (�) � C (�)��1 = C (�) � (C (�) � X�)��1. Since � and � are

almost one-to-one, C (�) � (C (�) �X�)��1 is finite. Thus �� � AMX .

Since for �� � � TX ,

X nX�� = (X n X�) � (X� nX��) � (X nX�) � (X n X�)�

it follows that AEX is a subsemigroup of TX .

As was mentioned above, if X is finite, then MX , EX , AMX and AEX
belong to BQ. The aim of this paper is to show that if X is infinite, then
all MX , EX , AMX and AEX contain at least k bi-ideals which are not
quasi-ideals where k = jX j.
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2. Main Results

We start by proving the following result for MX and AMX .

Theorem ���� If X is an in�nite set� then the cardinality of the set of all

bi�ideals in MX which are not quasi�ideals and the cardinality of the set of

all bi�ideals in AMX which are not quasi�ideals are at least jX j�

Proof� Assume that SX is MX or AMX . Since X is infinite, then
jX � Nj = jX j where N denotes the set of all positive integers. Therefore
there is a bijection from X � N onto X and for clarity in what follows, we
write its images as s(t � n) for t � X and n � N . For each t � X , let

At = s(t � N)

and note that fAt j t � X g forms a partition of X . For each t � X , define
�t : X � X by

x�t =

�
s(t � 2n)� if x = s(t � n) for some n � N ,
x otherwise

and note that �t �MX and

X�t = X n fs(t � n) j n is oddg�

Clearly, X�t�X�t � for distinct t , t � � X . Now let Bt = (�t )b, the bi-ideal of
SX generated by �t . Then by Proposition 1.1, Bt = �tSX�t � f�tg and note
that X� � X�t for all � � Bt . Thus if Bt = Bt � , then X�t = X�t � and hence
t = t �. Therefore Bt�Bt �, for distinct t , t � � X . Thus jfBt j t � X gj = jX j.
We assert that no Bt is a quasi-ideal of SX . To show this by Proposition 1.2,
that is, to show that Bt�(�t)q , fix t � X and define �� � : X � X by

x� =

�
s(t � n + 1)� if x = s(t � n) for some n � N ,
x otherwise,

x� =

�
s(t � n + 2) if x = s(t � n) for some n � N ,
x otherwise.

Then �� � �MX and

s(t � n)��t = s(t � 2n + 2) = s(t � n)�ty for all n � N ,

x��t = x = x�t� for all x � X nAt .

Therefore �t���t = �t� � SX�t � �tSX = (�t )q . If ��t � Bt , then
��t = �t	�t for some 	 � SX and hence � = �t	 since �t is one-to-one.
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Thus C (	) = � if SX = MX and C (	) is finite if SX = AMX . By the
definitions of �t and � , we have

(2�1�1) X n fs(t � 1)g = X� = X�t	 = (X n fs(t � n) j n is oddg)	�

Since js(t � 1)	�1j � 1 if SX = MX and s(t � 1)	�1 is finite if SX = AMX , it

follows that fs(t � n) j n is oddg n s(t � 1)	�1 is an infinite set. From (2.1.1),
we have

(fs(t � n) j n is oddg n s(t � 1)	�1)	 � (X n fs(t � n) j n is oddg)	�

Consequently, fs(t � n) j n is oddg n s(t � 1)	�1 � C (	) which is a contradic-
tion. Hence ��t � Bt . That is, fBt j t � X g is a family of bi-ideals in SX as
required by the theorem.

From Theorem 2.1 and the fact that MX = GX and AMX = TX if X is
finite, the following corollary is obtained

Corollary ���� Let SX be MX or AMX � Then SX � BQ if and only

if X is �nite�

Theorem ���� If X is an in�nite set� then the cardinality of the set of all

bi�ideals in EX which are not quasi�ideals and the cardinality of the set of all

bi�ideals in AEX which are not quasi�ideals are at least jX j�

Proof� Assume that SX be EX or AEX . For t � X and n � N, let At

and s(t � n) be defined as in the proof of Theorem 2.1. Next, for t � X , define
�t : X � X by

x�t =

��
�
s
�
t � n2

�
if x = s(t � n) for some even n � N ,

s(t � 1) if x = s(t � n) for some odd n � N,
x otherwise.

Then �t � EX for every t � X and �t��t � for distinct t , t � � X (since s is
one-to-one). Now, let Bt = (�t )b, the bi-ideal of SX generated by �t . Then
Bt = �tSX �t � f�tg by Proposition 1.1. Observe that Bt�Bt � for distinct
t � t � � X . For, if not, then �t � = �t��t for some � � SX . Since x�t � = x for
all x � At , we have that

(s(t � 1)�)�t = (fs(t � n) j n is oddg)�t��t =

= (fs(t � n) j n is oddg)�t � = fs(t � n) j n is oddg
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which is impossible because � and �t are functions. Hence jfBt j t � X gj =
= jX j. We assert that no Bt is a quasi-ideal of SX . To see this by Proposition
1.2, that is, Bt�(�t)q , fix t � X and define � , � : X � X by

x� =

��
�
s(t � n 	 2) if x = s(t � n) and n � N n f1� 2g,
s(t � 1) if x = s(t � 2),
x otherwise,

x� =

�
s(t � n 	 1) if x = s(t � n) and n � N n f1g,
x otherwise.

Then � , � � EX and

x��t = x = x�t� for all x � X n At ,

s(t � n)��t = s(t � 1) = s(t � n)�t� for n � f1� 2� 3g,

s(t � n)��t = s

�
t �
n 	 2

2

�
= s(t � n)�t� for even n � Nnf1� 2� 3g,

s(t � n)��t = s(t � 1) = s(t � n)�t� for odd n � N nf1� 2� 3g,

Consequently, �t���t = �t� and hence �t� � SX�t � �tSX = (�t )q . If
�t� � Bt , then �� = �t	�t for some 	 � SX , and hence � = 	�t since �t is
onto. It follows that 	 must fix X nAt pointwise. In addition, since

(At n fs(t � 1)� s(t � 2)g)	�t = (At n fs(t � 1)� s(t � 2)g)� = At n fs(t � 1)g�

it follows from the definition of �t that

(At n fs(t � 1)� s(t � 2)g)	 = fs(t � n) j n is even and n 
2g�

Therefore we have

(2�3�1) (X n fs(t � 1)� s(t � 2)g)	 = (X nAt ) � fs(t � n) j n is even and n 
2g�

Since 	 � SX , we have that X nX	 = � if SX = EX and X nX	 is finite if
SX = AEX . But we obtain from (2.3.1) that

X n X	 = (fs(n� t) j n is oddg � fs(2� t)g) n fs(t � 1)� s(t � 2)g	

which is an infinite set since 	 is a function, so we have a contradiction.
Hence ��t �� Bt . That is, fBt j t � X g is a family of bi-ideals in SX as
required by the theorem.

From Theorem 2.3 and the fact that EX = GX and AEX = TX if X is
finite, we have

Corollary ���� Let SX be EX or AEX � Then SX � BQ if and only if

X is �nite�
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1. Introduction

Splitting procedures can lead to a substantial reduction of the compu-
tational work when large-scale problems are to be treated. Therefore, such
procedures are often used in the numerical solution of many boundary value
problems for differential equations describing real-life processes, see [3, 9, 5,
11, 16, 21, 13, 18]. A detailed theoretical study and analysis of the splitting
procedure can be found in [8, 10].

An important example of real-life modelling is the problem of large-scale
air pollution transport. Mathematical models of this kind are usually presented
as a system of three-dimensional time-dependent partial differential equations
which describe the processes of advection, diffusion, deposition, pollutant
emission sources and chemical reactions. The environmental problems are
becoming more and more important for the modern society, and their impor-
tance will certainly increase in the near future. High pollution levels (high
concentrations and/or depositions of certain chemical species) may cause
damages to plants, animals and humans. Moreover, some ecosystems can
also be damaged (or even destroyed) when the pollution levels are very high.
This is why the pollution levels must be carefully studied and controlled in
the efforts to make it possible (i) to predict the appearance of high pollution
levels and/or (ii) to decide what can be done to prevent the exceedance of
prescribed critical levels. The control of the pollution levels in different highly
developed and densely populated regions of Europe and North America is
an important task for the modern society. Its importance has been steadily
increasing during the last two decades. The necessity to establish reliable
control strategies for air pollution levels will become even more important in
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the next two-three decades. Large scale air pollution models can be used to
design reliable control strategies.

The numerical treatment of such mathematical models includes operator
or time splitting. This procedure has several advantages: 1. the obtained
sub-systems are easier to treat numerically than the original system; 2. we can
exploit the special properties of the different sub-systems and apply the most
suitable numerical method for each; 3. if each numerical method preserves
the main qualitative properties then so does the global model. It is known that
splitting procedures work well in the computer treatment of many air pollution
models, [22, 12, 23]. At the same time, little attention has been devoted to
the analysis of splitting procedures used in practice and to the question why
splitting usually leads to good results.

As it was mentioned above, splitting procedures are used in order to
facilitate the choice of efficient numerical methods in the treatment of the
different operators involved in the model under consideration. Assume that
the selected methods are not only efficient, but also sufficiently accurate.
Then the success of splitting is determined by the splitting error. The recent
paper [5] presents an analysis of operator splitting in air pollution models.
By using the Lie operator formalism, a general expression is derived for a
three-term splitting procedure in the pure initial value case. The procedure
is called Strang splitting procedure in [5], however it has been introduced
independently in 1968 by [6] and [16]. Therefore, it is reasonable to call it
Marchuk–Strang splitting procedure. The splitting error for the advection–
diffusion–reaction problem is analysed in the above mentioned reference [5].
Different conditions for reducing the errors, which are caused by the splitting
procedures, are discussed there. Sufficient conditions, for which the splitting
errors vanish, are also derived. These conditions are too strong and, thus,
rather unrealistic when large models are used to treat practical problems. For
example, it is obtained that if the velocity field u and diffusion matrix k are
independent of the space coordinates x, then there is no splitting error when
advection and di�usion are splitted. The recent work [20] presents numerical
methods, which are proposed for several splitted problems.

The splitting errors in the numerical treatment of the splitted problem
are closely related to the requirement for L-commutativity of the operators
involved in the splitting procedure. More precisely, the errors due to the ap-
plication of splitting procedures disappear when the corresponding operators
L-commute. This is why the L-commutativity of operators will be a major
tool in the derivation of the results.

The goals of this work are:
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� to analyse the L-commutativity of operators used in the mathematical
model for studying large-scale air pollution transport,

� to formulate conditions under which the splitting errors vanish,

� to investigate the splitting errors of two widely used splitting procedures.

The paper is organized as follows. In Section 2 the definitions of the
commutator operator and the L-commutativity are given. In Section 3 we
define the operators associated with processes of advection� di�usion� depo�

sition� emission and chemistry� The necessary and sufficient conditions for
the L-commutativity of the operators are studied in Section 4. In Section 5
we introduce two different splitting procedures: the splitting procedure based
on the separation of the physical processes involved in the Danish Eulerian
Model (it will be called the DEM splitting in this paper, but this is done only
in order to facilitate the references to it and, at the same time, to keep in
mind that this procedure is used in a particular air pollution model) and the
Marchuk–Strang splitting. It is also shown how the Lie operator formalism
can be used to analyse the structure of the splitting error. Some concluding
remarks are given in Section 6.

2. Background definitions

Throughout this paper we use the following notations. Let S denote

some normed space of functions of type R
4 � R

m with the variables x =

= (x1� x2� x3) � R
3 and t � R

+
0 . Clearly, any element f(x� t) � S can be

identified with the set of functions fl (x� t) � T, l = 1� 2� � � � � m , where the

notation T stands for the set of mappings of type R4 � R. The notation Slin
will be used for the linear functions in S.

Assume that A : S � S is a given operator. Such an operator can be
identified with m operators of type S � T, called components of the operator
A. We always assume that the operators A : S � S are differentiable in
Frechet sense [14] and the derivative operator is denoted by A�. In the sequel
g � S, �1(x� t), �2(x� t), � � � , �m (x� t) � T, k1(x� t), k2(x� t), k3(x� t) � T, k(x� t)
is a mapping of type R4 � R

3�3 and has the form of a diagonal matrix

k(x� t) = diag(k1(x� t)� k2(x� t)� k3(x� t))�

The functions u1(x� t), u2(x� t), u3(x� t) � T define a vector field

u(x� t) = (u1(x� t)� u2(x� t)� u3(x� t))

of type R4 � R
3 .
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Let p � Rm . The functions Rl (x�p), l = 1� 2� � � �� m are mappings of type

R
m+3 � R, therefore the mapping

R(x�p) = (R1(x�p)� R2(x�p)� � � �� Rm (x�p))

is a mapping of type Rm+3 � R
m .

As usual, for the scalar valued function f (x� t) � T the notation �i f means
the partial derivative w.r.t. the i-th component. The differential operator r
will be applied also in the usual way. It acts always with respect the space
variables x1, x2 and x3. That is, for a scalar valued function f (x� t) � T the
symbol rf means the gradient operator w.r.t. x in the sense

rf (x� t) = (�1f (x� t)� �2f (x� t)� �3f (x� t))�

For a three-dimensional vector field f(x� t) = (f1(x� t)� f2(x� t)� f3(x� t)) the sym-
bol r�f yields the divergence operator that is

r�f(x� t) = �1f1(x� t) + �2f2(x� t) + �3f3(x� t)�

We remark that for an elements f � S the r operator acts componentwise,
that is rf � S and (rf)l = r(fl ), l = 1� 2� � � �� m . The same notation is used

for the Laplace operator Δ = r2. The use of the r operator to the function
of type f (x� p1(x)� p2(x)� � � �� pm (x)) may lead to some misunderstanding. To
avoid this, we introduce the operator rx as

(1) rx(x1� x2� x3� p1(x)� p2(x)� � � �� pm (x)) = (�1f � �2f � �3f )�

that is it acts w.r.t. the first three variables of the function f , while rf means
the gradient vector of the composite function

h(x) = f (x� p1(x)� p2(x)� (x)� � � �� pm (x))�

that is

(2) rf (x1� x2� x3� p1(x)� p2(x)� � � � � pm (x)) =

�
�f

�x1
�
�f

�x2
�
�f

�x3

�
�

We would like to emphasize that the right-hand sides of expressions (1) and
(2) are usually different because

�f

�xi
= �i f +

mX
k=1

�f

�pk

�pk
�xi

� i = 1� 2� 3�

The multiplication of two elements of the space R3 means the standard scalar
product. E.g. for f � h � T the notation rfrh yields �1f �1h+�2f �2h+�3f �3h
which will be applied in the sequel.
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The following properties of the r operator can be easily verified:

� For a scalar function f � T and a vector field g the relation

(3) r�(f g) = (rf )g + fr�g

holds.

� Due to (3) we have

(4) r�(f (Mg)) = (rf )(Mg) + fr�(Mg)�

where M is any matrix.

� For a scalar function f (x� p1(x)� p2(x)� � � � � pm � (x)) and a vector function
g the following relation holds:

(5) r�(f g) = fr�g + grxf +
mX
j=1

(�j+3f )(rpj )g�

For the function R(x�p) = (R1(x�p)� R2(x�p)� � � �Rm (x�p)) we introduce
two Jacobi matrices: the first is defined w.r.t. the variables x1, x2, x3 and
denoted by Rx(x�p), the second one w.r.t. the variables p1� p2� � � �� pm , and

denoted by Rx(x�p). Consequently, they are matrices of type R
m�3 and

R
m�m , respectively, and are defined by the formulas

(Rx(x�p))i �j = �jRi (x�p)� i = 1� 2� � � � � m and j = 1� 2� 3�

and

(6) (Rp(x�p))i �j = �3+jRi (x�p)� i � j = 1� 2� � � � � m�

Here and further we assume the required smoothness of the functions in the
definitions.

3. Operators used in air pollution models and their L-commutativity

First we define the operators Ai : S � S, (i = 1� 2� 3� 4� 5), appearing in
air pollution models as follows:

� (A1(c))l := �r�(ucl ), l = 1� 2� � � �� m , c � S, which is associated with the
process advection�

� (A2(c))l := r�(krcl ), l = 1� 2� � � �� m , c � S, which is associated with the
process di�usion�

� (A3(c))l := �l cl , l = 1� 2� � � �� m , c � S, which is associated with the
process deposition�
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� (A4(c))l := gl , l = 1� 2� � � � � m , c � S, which is associated with the process
emission�

� (A5(c))j := Rl (x� c), l = 1� 2� � � �� m , c � S, which is associated with the
process chemistry�

In the following the L�commutativity of two differentiable operators plays
a central role.

Assume that A�B : S � S are differentiable on S. We define the operator
EA�B : S � S as follows:

(7) EA�B(s) := (B�(s) � A)(s) � (A�(s) � B)(s)� s � S�

Definition ���� The operator EA�B is called the commutator of the op-
erators A and B. The element EA�B(s) � S is called the commutator error of
the operators A and B for the element s � S.

Obviously, EA�B = �EB�A. Let �A�B denote the subspace of those
elements in S for which the commutator error turns into zero, that is �A�B =

= fs � S : EA�B(s) = 0g.

Definition ���� We say that the operators A and B L-commute on �0 if
�0 = �A�B. If �A�B = S, then we say that the operators A and B L-commute,
that is the operators A and B L-commute if the relation

(8) EA�B(s) = 0� �s � S

holds.

Remark ���� If A and B are linear operators then A�(s) = A and B�(s) = B
for any s � S. In this case (8) turns into the formula B �A = A �B, hence the
L-commutativity is equivalent to the usual commutativity.

Our goal is to analyse the L-commutativity of any pairs of the operators
Ai , i = 1� 2� � � �� 5. To this aim we compute their derivatives.

The operators Ai , i = 1� 2� 3 are linear. Therefore, the following relations
hold for their derivatives:

(9) A�

i (c) = Ai � �c � S� i = 1� 2� 3�

Furthermore, the following relation follows from the fact that the operator A4
is constant:

(10) A�

4(c) = 0� �c � S�

The derivative of A5 at the point c � S is the Jacobi matrix Rc(x� c) and it
acts as follows:

(11) A�

5(c)(c) = Rc(x� c)c� �c � S�
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It is necessary to emphasize here the following fact: due to the special struc-
tures of the first four operators (the l -th component of these operators depend
only on cl ), it is sufficient to study componentwise the L-commutativity
properties of the pairs (Ai �Aj ), where i � j = 1� 2� 3� 4. This observation is
used to facilitate the proofs of some of the following theorems.

Some su�cient conditions for the L-commutativity of some of the oper-
ators defined above can be found in the literature. For instance,

1. if u and k are independent of x, then the operators A1 and A2;

2. if r�u = 0 and R is independent of x, then the operators A1 and A5;

3. if R is independent of x and linear in c, then the operators A2 and A5

L-commute [5].

However, the necessity of these strong and unrealistic conditions is not
clear. For example, the condition 1 (especially, the independence of u of x)
is very unrealistic because the velocity field u can strongly depend on both
x and t . Therefore, it is worthwhile to examine the possibility to relax these
assumptions by replacing them by some weaker, more realistic conditions.
E.g. the condition r�u = 0 is much more realistic because it describes the
continuity principle in the lower layers of the atmosphere. We shall analyse
the commutativity in the next section under this natural condition, too. We
shall also give some exact (necessary and sufficient) conditions for the L-
commutativity of the operators Ai and Aj (i � j = 1� � � �� 5).

4. Condition of L-commutativity of the operators in air pollution models

In this section, we shall derive conditions for the L-commutativity of
different pairs of the operators Ai , Aj , i � j = 1� 2� 3� 4� 5. For the sake of
brevity, we shall use the notations Ei �j := EAi �Aj

and �i �j := �Ai �Aj
.

4.1. L-commutativity of the advection and diffusion operators

As was stated in the previous section, it is sufficient to treat these op-
erators componentwise. This means that if an arbitrary component of the
advection operator L-commutes with the corresponding component of the
diffusion operator, then the operators will be L-commutative. By use of this
fact, we obtain that the commutator operator reads

(12) (E1�2(c))l := r�[kr(�r�(ucl ))] + r�[u(r�(krcl ))]�
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for all l = 1� 2� � � �� m .

In the following we examine the commutator under the condition

(13) k is independent of x and r�u = 0.

Then, by using the properties of the r operator, after straightforward, but
tedious calculations we obtain that (12) yields the relation

(14) (E1�2(c))l = �2
3X

s=1

3X
r=1

ks (�s�rcl )(�sur ) �
3X

s=1

3X
r=1

ks (�rcl )(�
2
s ur )�

The equations (E1�2(c))l = 0, l = 1� 2� � � �� m define a system of second order
PDE’s and the set of its solution is �1�2 � S.

As one can easily check in case u is independent of x, the velocity field
is divergencefree (continuity assumption) and the relation �1�2 = S (that is
the L-commutativity of the operators A1 and A2) holds. On the other hand,
if one of the following conditions are satisfied:

� u is linear,

� k1 = k2 = k3 = const. and the functions u1, u2 and u3 are harmonic
functions w.r.t. x [4], i.e., Δu = 0,

then Slin � �1�2 that is the operators A1 and A2 L-commute on the linear
elements. (The latter choices can be interpreted as an approximation to the
general case.)

4.2. L-commutativity of the advection and deposition operators

Due to property (3), in a similar way as in Subsection 4.1, we obtain

(15) (E1�3(c))l = �l [�r�(clu)] + r�[u(�l cl )] = cl (r�l )u�

By using the relation (15) we get: the operators A1 and A3 are L-commuting
if and only if the gradient of each deposition function is orthogonal to the
velocity field, that is the condition

(16) (r�l )u = 0

holds for l = 1� 2� � � �� m .
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4.3. L-commutativity of the advection and emission operators

By using the formula (3), we obtain

(17) (E1�4(c))l = r�(glu) = (rgl )u + glr�u�

which implies the following: The operators A1 and A4 are L-commuting if
and only if the condition

(18) r�(glu) = 0

holds for l = 1� 2� � � �� m . If the continuity condition r�u = 0 is assumed,
then the commutativity holds if and only if the gradients of each emission
functions are orthogonal to the velocity field, that is the condition

(19) (rgl )u = 0

holds for l = 1� 2� � � �� m .

4.4. L-commutativity of the advection and chemistry operators

For the commutator of the advection and chemistry operators we can
write:

(20) (E1�5(c))l = �
mX
j=1

(Rc(x� c))l �jr�(cju) + r�(Rl (x� c)u)�

Using (3) and the notation (6), we obtain

(21)
mX
j=1

(Rc(x� c))l �jr�(cju) =
mX
j=1

�Rl (x� c)
�cj

((rcj )u + cj � ru)�

Further, applying the formula (5) we get

(22) r�(Rl (x� c)u) = Rl (x� c)r�u +
mX
j=1

�Rl (x� c)
�cj

(rcj )u + urxRl (x� c)�

Combining (21) and (22) with (20), for the l -th component of the commutator
we obtain

(23) (E1�5(c))l = �
mX
j=1

�Rl (x� c)
�cj

cjr�u + Rl (x� c)r�u + urxRl (x� c)�
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Consequently, the operators A1 and A5 L-commute if the relations

(24) r�u = 0 and urxRl (x� c) = 0

hold for all l = 1� 2� � � �� m and c � S. Obviously, under the continuity
assumption r�u = 0, a fixed element c � S belongs to �1�5 (that is A1 and
A5 are L-commuting on this element) if and only if the conditions

(25)
3X
i=1

ui (x� t)�iRl (x� c(x� t)) = 0 �l = 1� 2� � � � � m

are satisfied. Therefore, in case of explicit independence of the functions Rl

of the variable x, that is in the case Rl (x� c) = Rl (c), the conditions in (25)
are fulfilled for all c � S, so, under these assumptions the operators A1 and
A5 are L-commuting.

4.5. L-commutativity of the diffusion and deposition operators

By use of the relation (4) we obtain

(E2�3(c))l = �l [r�(krcl )]�r�[kr(�l cl )] =

= �(r�l )(krcl ) � clr�[k(r�l )] � (rcl )kr�l �(26)

This means that the operators A2 and A3 L-commute if the condition

(27) r�l = 0

is satisfied for all l = 1� 2� � � �� m . Therefore in case �l = const the operators
A2 and A3 L-commute on any element of S.

4.6. L-commutativity of the diffusion and emission operators

For this case we get the relation

(28) (E2�4(c))l = �r�[krgl ]�

which means the following: The operators A2 and A4 are L-commuting if
and only if the condition

(29)
�

�x1

�
k1
�gl
�x1

�
+

�

�x2

�
k2
�gl
�x2

�
+

�

�x3

�
k3
�gl
�x3

�
= 0

is satisfied for all l = 1� 2� � � �� m . Clearly, if rgl = 0 for all l = 1� 2� � � �� m ,
then the operators A2 and A4 are L-commuting.
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On the base of (29) we can formulate an important for the practice corol-

lary, which gives the necessary and sufficient condition of L-commutativity

of the diffusion and emission operators: if k1(x� t) = k2(x� t) = k3(x� t) = const

then the operators A2 and A4 are L-commuting if and only if rg = 0 that is

the components of the given g � S are harmonic functions.

4.7. L-commutativity of the diffusion and chemistry operators

For the commutator operator we have

(30) (E2�5(c))l =
mX
j=1

�j+3Rl (x� c)r�(krcj ) �r�(krxRl (x� c))�

A cumbersome calculation gives the following result:

(E2�5(c))l = �r�(krxRl (x� c))�
mX
j=1

(rx�j+3Rl (x� c))(krcj )�

�
mX
j=1

mX
r=1

((�r+3�j+3Rl (x� c))rcr )(krcj )�(31)

By use of (31) clearly we have: under the conditions �1R1(x� c)) =

= �2Rl (x� c)) = �3Rl (x� c)) = 0 and �r+3�j+3Rl (x� c) = 0 for all r� j � l =
= 1� 2� � � �� m the operators A2 and A5 L-commute. Consequently, in case

R(x� c) = R(c) and R(c) � Slin the operators L-commute.

4.8. L-commutativity of the deposition and emission operators

Obviously, the following relationships are valid for all l = 1� 2� � � �� m:

(32) (E3�4(c))l = ��l gl �

Consequently, the operators A3 and A4 are not L-commuting in any realistic

case.
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4.9. L-commutativity of the deposition and chemistry operators

Clearly, by definition

(33) (E3�5(c))l =
mX
j=1

[�j+3Rl (x� c)]�j cj � �lRl (x� c)�

Assume that �1 = �2 = � � � = �m = � . Then we have

(34) (E3�5(c))l = �

�
� mX
j=1

(�j+3Rl (x� c))cj � Rl (x� c)

�
� �

Obviously, the splitting error turns into zero for all c � S if and only if the
relation

(35)
mX
j=1

�Rl (x� c)
�cj

cj = Rl (x� c)

is satisfied for all l = 1� 2� � � �� m . Let us examine the case Rl (x� c) = Rl (c).
Then for all fixed l , (35) yields a partial differential equation of first order.
This equation has the general solution

(36) Rl (c1� c2� � � � � cm ) = cm�l

�
c1
cm

�
c2
cm

� � � � �
cm�1

cm

�
�

where �l : Rm�1 � R is any continuously differentiable function for all
l = 1� � � �� m . Therefore, we obtained: under the conditions �1 = �2 = � � � =
= �m = � and R(x� c) = R(c) the operators A3 and A5 are L-commuting if and
only the functions Rl (c1� � � �� cm) have the form (36) for all l = 1� � � �� m .

4.10. L-commutativity of the emission and chemistry operators

By definition

(37) (E4�5(c))l =
mX
j=1

[�j+3Rl (x� c)]gj �

Consequently, the operators A4 and A5 L-commute if and only if g lies in the
null space of the Jacobian Rc(x� c), that is g � ker Rc(x� c).
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4.11. Summarizing the L-commutativity of the operators

Here we give a short summary of the results obtained in the previous
sections.

� The commutator error E3�4 does not vanish in any realistic case.

� Under the assumptions

(38) r�u = 0� r�l = 0� rg = 0� R(x� c) = R(c)

the commutator errors E1�3, E1�4, E1�5, E2�3 and E2�4 vanish.

� Under the further conditions

(39) k(x) = const� u� R� c are linear, �1 = � � � = �m = const.

the commutator errors E1�2, E2�5 and E3�5 are also zero.

� If in addition g � ker JR, then even the operators A4 and A5 L-commute.

Clearly, these results cover those of [5], however, for certain pairs of
operators they give more general conditions for the L-commutativity than the
requirements formulated there. For instance, if u is linear (not necessarily
constant), then for concentration functions of a special from (linear functions)
the operators A1 and A2 L-commute.

Finally we remark that the assumptions of the linearity can be interpreted
in the following way, too. The operators Ai , i = 1� 2� � � �� 5, are defined on the
linear finite elements and the derivation is understood in generalized sense.
We define the operators Ai , 1� 2� � � �� 5, as the mappings which are obtained
after the semidiscretization of the weak form of the original fully continuous
PDE’s, in the linear finite element spaces. Then the functions g and u in the
definition of the operators can be considered as the projections of the original
functions into the linear finite element subspace.

5. Application of the splitting error analysis in air pollution models

In this section we present two examples of air pollution models in which
the above results can be applied: the Danish Eulerian Model (DEM) [22] and
the advection – diffusion – reaction model as defined in [5].

For the first model a splitting procedure based on a separation of the
physical processes is used. This way of implementing a splitting procedure
in air pollution modelling was first proposed in [8]. We shall use the abbre-
viation DEM splitting in this paper in order (i) to facilitate the references to
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this splitting and (ii) to emphasize the fact that it has been used in the Danish
Eulerian Model.

For the second model we shall use a symmetrical splitting proposed
simultaneously in [6, 7] and [16]. We refer to this splitting procedure as the
Marchuk–Strang splitting procedure in this paper. A very good description of
this way of splitting, which is particularly oriented to air pollution models, is
given in [12].

5.1. Air pollution models and mathematical formulation of the
long-range transport of air pollutants

The air pollution models must satisfy several important requirements [22,
12, 23]:

1. The mathematical models must be defined on large space domains, be-
cause the long range transport of air pollution is an important environ-
mental phenomenon, and high pollution levels are not limited to the areas
where the high emission sources are located.

2. All relevant physical and chemical processes must be adequately de-
scribed in the models used.

3. Enormous files of input data (both meteorological data and emission data)
are needed.

4. The output files are also very big, and fast visualization tools must be
used in order to represent the trends and tendencies, hidden behind many
megabytes (or even many gigabytes) of digital information, so that even
non-specialists can easily understand them.

All important physical and chemical processes must be taken into account
when an air pollution model is to be developed. Systems of partial differential
equations (PDE’s) are often used to describe mathematically an air pollution
model. Consider a three-dimensional space domain Ω and assume that x 	
	 (x1� x2� x3) � Ω. Then the PDE systems are of the following type:
(40)
�cl (x� t)

�t
=A(x� t)cl (x� t)+f (x� t)� t � [0� T ]� cl (x� 0)=cl0(x)� l =1� � � � � m

where

A(x� t)cl 	 �r�(ucl ) + r�(krcl ) � (�1 + �2)cl � l = 1� � � � � m�(41)

r�(ucl ) =
�(u1cl )
�x1

+
�(u2cl )
�x2

+
�(u3cl )
�x3

� l = 1� � � � � m�(42)
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r(krcl ) =
�

�x1

�
k1
�cl
�x1

�
+

�

�x2

�
k2
�cl
�x2

�
+

�

�x3

�
k3
�cl
�x3

�
� l = 1� � � � � m�(43)

The vector-function f (x� t) is defined as a sum

f (x� t) = g + R�(44)

where

g 	 (g1� � � �� gm )T �

R 	 (R1� � � �� Rm )T �

and

Rl = Rl (x� c1� c2� � � � � cm )� l = 1� 2� � � �� m�(45)

The different quantities that are involved in the mathematical model have the
following meaning:

� cl denotes the concentration of the l -th species;

� u1, u2 and u3 are velocities;

� k1, k2 and k3 are diffusion coefficients;

� the functions gl describe the emission sources in the space domain;

� �1l and �2l are the dry and wet deposition coefficients, respectively;

� the nonlinear functions Rl (c1� c2� � � �� cm) describe the chemical reactions.

The functions Rl , representing the chemical reactions in which the l -th
pollutant is involved are of the form

Rl (c1� c2� � � � � cm ) = �
mX
j=1

�l j cj +
mX
j=1

mX
k=1

	l j k cj ck � l = 1� 2� � � � � m�

This is a special kind of nonlinearity (it is seen that the chemical terms
are described by quadratic functions), but it is not clear if this property can
efficiently be exploited. To the authors’ knowledge, it is not exploited in the
existing large scale air pollution models.

The models defined by (40)–(45) are traditionally used to calculate some
concentration fields by using both meteorological and emission data as input
[23]. This gives an answer to the question: what are the concentration lev-
els and/or the deposition levels caused by the existing emissions under the
particular meteorological conditions that take place in the time-period under
consideration? However, it is much more important to study the question:
how can the concentrations be kept under certain critical levels?
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5.2. Splitting and its role

It is very difficult to treat directly the system (40). Therefore, some kind
of splitting is to be used. Splitting, or problem decomposition, is commonly
used during the first step of the numerical treatment of large air pollution
models (as in many other large-scale scientific and engineering problems).
The big problem, the model described by the system of equations (40), is
divided into several smaller problems through some splitting procedure. These
smaller problems might have special properties that can be exploited in the
numerical solutions. For example, the systems of linear algebraic equations
that arise, after splitting, from the diffusion part of the model normally have
banded, symmetric, and positive definite matrices. On the other hand, it is not
easy to evaluate the error that arises from the splitting techniques used.

Splitting according to the major physical processes is very popular; see,
for example, [9], [12] and [22]. Such splitting procedures lead often to a num-
ber of sub-models which are to be treated cyclicly at every time-step [22]. In
the DEM [22] these sub-models are describing the horizontal advection (46),
the horizontal diffusion (47), the chemical reactions including the emissions
(48), the deposition (49) and the vertical exchange (50), so there are five
splitted systems of the form

�c
(1)
l

�t
= �

�(u1c
(1)
l )

�x1
�

�(u2c
(1)
l )

�x2
(46)

�c(2)
l

�t
=

�

�x1

�
k1
�c(2)

l

�x1

�
+

�

�x2

�
k2
�c(2)

l

�x2

�
(47)

�c(3)
l

�t
= gl + Rl (c

(3)
1 � c

(3)
2 � � � � � c

(3)
m )(48)

�c
(4)
l

�t
= �(�1l + �2l )c

(4)
l

(49)

�c
(5)
l

�t
= �

�(u3c
(5)
l

)

�x3
+

�

�x3

�
k3
�c

(5)
l

�x3

�
�(50)

The values c(j )
l , j = 1� � � �� 5 are connected through the initial conditions, that

is c
(j )
l is used as an initial condition for c(j+1)

l , j = 1� � � � � 4, and for the next
time-step the process continues cyclicly. We shall call the splitting procedure
(46)–(50) DEM splitting procedure�
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An alternative of the above splitting procedure can be the already men-
tioned symmetrical Marchuk�Strang splitting scheme [6, 7, 16]. Usually, this
splitting scheme is applied to a model of air pollution transport, where the
deposition and emission parts are included into the reaction part of the prob-
lem operator. So, instead of (40) we consider an advection-diffusion-reaction
problem

(51)
�c(x� t)
�t

= A(c(x� t))� t � (0� T ]� c(x� 0) = c0(x)�

where

A(c(x� t)) = A1(c(x� t)) + A2(c(x� t)) + A5(c(x� t))�

and it is assumed that into A5(c(x� t)) the deposition and emissions are in-
cluded. In the Marchuk–Strang splitting the problem (51) is split by ordering
the operators A1, A2 and A5 symmetrically in the following way:

�c(1)(x� t)
�t

= A1(c(1)(x� t))� t �
	

0�



2

i
� c(1)(x� 0) = c0(x)�(52)

�c(2)(x� t)
�t

= A2(c(2)(x� t))� t �
	

0�



2

i
� c(2)(x� 0) = c(1)

	
x�



2



�(53)

�c(3)(x� t)
�t

= A5(c(3)(x� t))� t � (0� 
]� c(3)(x� 0) = c(2)
	

x�



2



�(54)

�c(4)(x� t)
�t

= A2(c(4)(x� t))� t �
	

0�



2
� 

i
� c(4)

	
x�



2



= c(3)

	
x�



2



�(55)

�c(5)(x� t)
�t

= A1(c(5)(x� t))� t �
	


2
� 

i
� c(5)

	
x�



2



= c(4)

	
x�



2



�(56)

Let us now suppose that one can solve both the original problem and the
splitted subproblems exactly. In this case it is possible to express the splitting
error with the help of the so-called Lie operator formalism, as will be shown
in the next chapter.

5.3. Lie operator formalism and splitting error

In this chapter, following the technique of [15] and [5], we shall derive
the local splitting error of the Marchuk-Strang splitting procedure and give
the results of a similar error analysis for the DEM splitting. We will see that
in terms of the local error the order of the Marchuk–Strang splitting scheme
is higher than that of the DEM splitting.
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First we need to introduce the concept of Lie operator, since it plays an
important role in the derivation of the error formula.

Let A be a generally non-linear operator of type S � S. With this
given operator we associate a new operator, which we will denote by A

and call it the Lie operator associated to A. This operator acts on the space
of differentiable operators S � S and maps each operator F into the new
operator AF , such that for any element c � S,

(57) (AF )(c) = (F �(c) �A)(c)�

It is easy to see that the Lie operator is linear.

Let us consider the initial value problem

(58)
�c

�t
(x� t) = A(c(x� t))� on (0� T ]� c(x� 0) = c0(x)�

and denote by A the Lie operator associated to the particular operator A
of problem (58). Let F be any differentiable operator S � S. Applying
the operator AF to the solution c(x� t) of (51) and using the chain-rule of
differentiating, one obtains the relation

(59) (AF )(c(x� t)) =
�

�t
F (c(x� t))�

from which by induction follows also that

(60)
� i

�t i
F (c(x� t)) = (A�F )(c(x� t))� i = 2� 3� � �

Assume that the solution c(x� t) of (51) is an analytic function. Then, using
its Taylor series expansion, one can easily show that

(61) c(x� 
) = (e�A� I )(c0(x))�

where I is the identity operator S � S.

Applying now to each of the subproblems the corresponding exponen-
tiated Lie operator and composing them in the order defining the Marchuk–
Strang splitting procedure (52)–(56), for the solution ĉ of the splitted problem
at time 
 one can get

ĉ(x� 
) =

�
e

1
2 �A1e

1
2 �A2e

1
2 �A5e

1
2 �A2e

1
2 �A1I

�
(c0(x))�

In order to compute the product of exponentials on the right-hand side, we can
use the well-known Baker–Campbell–Hausdorff (BCH) theorem [19]. This
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claims that for any pair of linear operators X , Y the product eX eY can

locally be written as the exponential eZ of the Lie operator

(62) Z = X +Y +
1
2

[X�Y ]+
1
12

([X�X�Y ]+[Y�Y�X ])+
1
24

[X�Y�Y�X ]+� � ��

where [X�Y ] is the commutator [X�Y ] = XY � YX and [X�X�Y ] is

recursively defined by [X�X�Y ] = [X� [X�Y ]] etc. Substituting X = 1
2
A1

etc. and applying (62) four times, we obtain that the Marchuk–Strang solution
ĉ can be expressed as

ĉ(x� 
) =
	
e�ÂI



(c0(x))�

where the new Lie operator Â has the form

(63) Â = A1 + A2 + A5 + 
2
EA + O(
4)

with

EA = �
1

24
[A1�A1�A2] �

1
24

[A1�A1�A5]+

+
1

12
[A2�A2�A1] �

1
24

[A2�A2�A5] +
1

12
[A5�A5�A1]+(64)

+
1

12
[A5�A5�A2] +

1
12

[A2�A5�A1] +
1

12
[A5�A2�A1]�

Remark ���� If A1 and A2 are Lie operators, then [A1�A2] = 0 is equiv-
alent to EA1�A2

= 0, where A1 and A2 are the operators belonging to the Lie

operators A1 and A2, respectively.

In order to characterize the error at time 
 that arises if we apply operator
splitting on the interval [0� 
], we can use the notion of the local splitting error,
defined as the difference between the exact solution of the splitted problem
and the exact solution of the original problem [17, 20]. According to the
above considerations, for the Marchuk–Strang splitting scheme this local error
can be given as

(65) ErrSp (
) :=
	
e�ÂI � e�AI



(c0(x))�

Applying now (63) and the definition of the exponential, we obtain that the
behaviour of the error function as 
 � 0 is as follows:

ErrSp (
) = 
3(EAI )(c0(x)) + o(
4)�
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i.e. the local splitting error of the Marchuk–Strang scheme is o(
3). Therefore,
we say that the Marchuk–Strang splitting is a second order splitting scheme
[17].

A similar analysis shows that the local error of the DEM splitting is only

o(
2), which means that in the above sense the Marchuk–Strang splitting
scheme provides a one order higher approximation to the original problem
than the DEM splitting.

We remark that if we apply operator splitting on the interval [k
� (k+1)
],
k = 1� 2� � � �, then (65) becomes

(66) ErrSp (
) :=
	
e�ÂI � e�AI



(ĉ(x� k
))�

where clearly ĉ(x� k
) contains some error due to applying splitting in the first
k steps.

6. Concluding remarks

Analyzing the splitting error both for the DEM and the Marchuk–Strang
splitting procedure, one can conclude:

� If all the pairs (Ai � Aj ), where i � j = 1� 2� 3� 4� 5 and i�j , in the DEM
splitting procedure L-commute, then no splitting error occurs.

� If all the pairs (Ai � Aj ), where i � j = 1� 2� 5 and i�j , in the Marchuk–
Strang splitting procedure applied to the advection – diffusion – reaction
problem commute, then no splitting error occurs.

� The splitting error in the DEM splitting procedure is of first order if at
least one pair (Ai � Aj ), where i � j = 1� 2� 5 and i�j , does not commute.

� The splitting error in the Marchuk–Strang splitting procedure is of second
order if at least one pair (Ai � Aj ), where i � j = 1� 2� 5 and i�j , does not
commute.

� As we proved in Section 4, for the realistic situations the splitting errors
for the operators A3 and A4 do not vanish. On the other hand, for the
other cases under the assumptions

r�u = 0� r�l = 0� rg = 0� R(x� c) = R(c)

the splitting errors are equal to zero for each pair of operators in the
air pollution modeling with the exception of (A1�A2), (A2�A5), (A3�A5)
and (A4�A5). If additionally we assume the linearity of u, R and the
solution c, �l = � = const. and k(x) = const. then the splitting errors
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exist only for the operators A4 and A5. Since for the linear elements
JR := Rc(c) � R

m�m is a constant matrix therefore under the condition
g � ker JR even the last commutator is equal to zero.

� The diurnal cycle strongly influences the commutators leading to a rel-
atively small local splitting error over nightly periods. Specific circum-
stances determine actual values of the splitting error.
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1. Introduction

The well known theorem of Lagrange states that every non-negative
integer n is the sum of four squares. In other words the sequence S = f1� 4� � � �

� � � � n2� � � �g is bases of order four. Wirsing defined the notion of thin bases; A

is thin bases of order h if A(x ) �c�x1�h ; (c��0), where A(x ) is the counting

function of A. Let us note if A is a bases of order h then A(x ) ��x1�h . By a
non-constructive method Wirsing proved [1] that S has a subbases S � which

is almost thin, proving S �(x ) = O(x1�4(log x )1�4). Later J� Spencer [2] gave
a short proof for it, using the Janson’s inequality, which is an important tool
of probabilistic method.

Let us mention it is not even known an explicit subsequence S � of S for
which S �(x ) = o(

p
x ).

A related question would be the following: let A = fa1 ��� � �an �
��� �g � N . A is said to be complete if there exists ΔA such that for every
n � ΔA we have

n � Σ(A) = fS (B) : S (B) =
X

b�B

b; B is a finite subset of A� S (�) = 0g�

Clearly if jAj = k then jΣ(A)j � 2k . This implies if A is complete then

2A(x ) � x � ΔA i.e. for x � x0 A(x ) � log2(x � ΔA).

1 Research partially supported by Hungarian National Foundation for Scientific Research,

Grant No. T025617 and No. TO29759 and by DIMACS (Center for Discrete Mathematics and

Theoretical Computer Science) NSF-STC-91-19999.
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The related notion of thin bases is the following

Definition� A� is said to be thin complete subsequence of A if A� is
complete and

A�(x ) = (1 + o(1)) log2 x �

We shall show that a wide class of complete sequences have a thin
complete subsequence and not merely the sequence of squares S . We prove

Theorem� Let A = fa1 �a2 ��� �g be a complete sequence of inte�

gers� Assume that limn�� an+1�an = 1� Then A contains a thin complete

subsequence�

The proof will be completely constructive.

Let X = fx1 �x2 ��� �g. Let us denote

(X ) = sup
i
fxi+1 � xig�

(So that if G(X ) �� then it indicates the size of the biggest gap in X )

Proof of the Theorem� We need some lemmas.

Lemma �� Let X = fx1 ��� � �xn ��� �g � N � Assume that for every

i = 1� 2� � � �

(1) xi+1 � x1 + � � � + xi �

Then G(Σ(X )) � x1�

The proof of Lemma 1 is easy or see [3].

Lemma �� Let A be a complete sequence of integers� Let A1 = f2ΔA �
�a �1 �a �2 ��� �g be an in�nite subsequence of A for which a �i+1�a

�

i � 2 i =

= 1� 2� � � �� Let A2 = A 	 [1� a �1) and assume there are elements b1� b2 �
� A such that ΔA � b2 � b1 �a �1 � ΔA� Furthermore assume the sets

A1� A2� fb1g� fb2g are pairwise disjoint� Then B = A1
S
A2
Sfb1g

Sfb2g
is complete�

Proof of Lemma �� Let A1 = f2ΔA �a �1 �a �2 ��� �g.

First we prove that for every i = 1� 2� � � �

(2) a �i+1 � a �1 + a �2 + � � � + a �i �
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by induction on i . For i = 1 (2) is trivial. Furthermore by a �i+2 � 2a �i+1 we
get

a �i+2 � 2ai+1 � (a �1 + � � � + a �i ) + a �i+1�

which provides the inductive steps. So A1 fulfills (1), hence

(3) G(Σ(A1)) � a �1�

We claim that for every n � ΔA + a �1 + b1 + b2 := ΔB , n � Σ(B)� Assume now
contrary to the assertion there exists an n � ΔB and n 
� Σ(B)� Let t be the
subsript defined by

(4) a �t �n � (b1 + b2) �a �t+1

(clearly the equality cannot hold). Now (n � b1)� (n � b2) = b2 � b1, thus

(5) ΔA �(n � b1)� (n � b2) �a �1 � ΔA�

Furthermore Σ(A2) = Σ(A) 	 [1� a �1) and so Σ(A1) + Σ(A2) � Σ(A1) + [1� a �1).
Thus by (3) we conclude that Σ(A1)+Σ(A2) contains a set which is the union
of blocks of consecutive integers with length at lest a �1�ΔA and gaps at most
ΔA. So (5) implies that there is an i = 0 or 1 such that n�bi � Σ(A1)+Σ(A2)
and thus n � Σ(A1) + Σ(A2) + bi � Σ(B) a contradiction.

Lemma �� Let A = fa1 �a2 ��� � �an ��� �g be an infinite sequence
of integers. Assume that limn�� an+1�an = 1� Then for every � � 1 real
number and K � N there exits a subsequence A� = fK �ak1

�ak2
��� ��

�akn ��� �g of A such that

(6) akn+1
� akn � K

and

(7) lim
n��

akn+1

akn
= 1�

Proof of Lemma �� Let

(8) A� = faK �a2K ��� ��amK ��� �g�
It is obvious that aK � K . Furthermore for every m , a(m+1)K � amK � K
and

lim
n��

a(m+1)K

amK
= lim
n��

amK+1
amK

� � � a(m+1)K

a(m+1)K�1
= 1�
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Hence every subsequence of A� satisfies (6). Let now ak1
= aK and assume

that the elements ak1
�ak2

��� � �akn�1
have been defined. Then let

akn = minfat jat � �akn�1
� at � Ag. By the definition of akn we have

(9) akn � �akn�1
� akn+1�

Hence
akn

akn�1
� �. Furthermore

�akn�1
� akn

akn+1

akn

and so

�
akn
akn+1

� akn
akn�1

� ��

Since limn��
akn
akn+1

= 1 we prove the lemma.

Proof of the Theorem� Let K = 5ΔA and � = 2. By Lemma 3 we can
select a subsequence A1 of A for which A1 = f2ΔA �a �1 �a �2 ��� ��a �n �

��� �g and a �n+1 � 2a �n . Furthermore by (6) and (8) we can choose elements

b1� b2 of A for which a �1 �b1 �b2 �a �1 � ΔA (say let b1 = a5Δ+1 and

b2 = a10Δ�1) Then b2 � b1 �ΔA. Finally let A2 = A 	 [1� a �1). Clearly the
elements b1� b2 and the sequences A1� A2 satisfies the conditions of Lemma
2 and hence B = A1

S
A2
Sfb1g

Sfb2g is complete.

In the rest of the proof we shall show tha B is thin.

Since A2 is a finite sequence, thus

B(x ) � jA2j + 2 + A1(X )�

which means that if A1 is thin so is B .

By Lemma 3 for the elements of A1 we have limn�� a �n+1�a
�
n = 2,

which implieses the theorem.

Concluding remarks

We can now apply the theorem for some “classical” sequences which
have thin complete subsequences.

We shall investigate the following three type of sequences: let

P = f2 �3 ��� ��pn ��� �g
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be the sequence of prime numbers, let

B(p� q) = fpkqm : (p� q) = 1; � p� q �1� p� q� m� k � Ng

be the sequence the Birch-sequence.

Let gm (x ) � Z[x ]. Assume gm (x ) has positive leading coeffitient and

g�c�d� fgm (1)� � � � � gm (n)� � � �g = 1

and finally consider the sequence

G = fgm (1)� � � � � gm (n)� � � �g�

The sequence of P . Richert proved in [8] that ΔP = 7 and it is well
known that pn+1�pn  1 as n �.

The sequence B(p� q). Erdős conjectured and Birch proved that B(p� q)
is complete sequence (see [5]). By the irrationality of (log p� log q) we infer
that the quotient of consecutive terms of this sequence tends to 1.

The sequence G . Finally the completeness of the sequences G were
investigated by many authors. In 1948 Sprague proved for the sequence of
squares that ΔS = 129 [6]. Further he proved in [7] that for every k the

sequence fnk : n � Ng is complete. A far-reaching generalization of Birch’s
and Sprague’s results was published by J. W. Cassels (see [4] and (5)). This
result gives in the general case that the sequence G is complete. Furthermore
since limn�� gm (n + 1)�gm (n) = 1 we conclude that for these sequences
fulfills the conditions of the Theorem. Hence we obtain the following:

Corollary� The sequences P � B(p� q) and G have thin complete sub�

sequence�

Certainly there exists complete sequence which has no thin complete
subsequence. For instance if Φ = fF1 ��� �g where F1 = 1, F2 = 2 is
the sequence of Fibonacci then it is well known that Φ is complete and
F (x ) = c log2 x ; c �1. But if we omit at least two elements from Φ then
the remaining sequence cannot be complete (see [5]).
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1. Introduction

Recently the notion of warped product is playing an important role in
Riemannian geometry (see [3, 8, 9, 11, 14, 16]), moreover in geodesic metric
spaces [9]. This construction can be extended for Finslerian metrics with
some minor restriction. This is motivated by Asanov’s papers ([4, 5]) where
some models of relativity theory are described through the warped product
of Finsler metrics. For example, Asanov [4] studied the property of the
generalized Schwarzschild metric on R �M .

2. Preliminaries

Let M be a real manifold of dimension n and (TM���M ) the tangent
bundle of M . The vertical bundle of the manifold M is the vector bundle
(V� ��M ) given by V = Ker d� � T (TM ). (x i ) will denote local coordinates

on an open subset U of M , and (x i � y i ) the induced coordinates on ��1(U ) �

� TM . The radial vector field � is locally given by �(x � y) = ya �
�xa .

A Finsler metric on M is a function F : TM � R+ satisfying the
following properties:

1. F 2 is smooth on fM where fM = TM n (0)

2. F (u) �0 for all u �fM
3. F (�u) = j�jF (u) for all u � TM , � � R

4. For any p � M the indicatrix Ip = fu � TpM j F (u) �1g is strongly
convex.
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A manifold M endowed with a Finsler metric F is called a Finsler
manifold (M�F ).

Condition 4. implies that the quantities gi j (x � y) = 1
2
�2F (x �y)
�y i �y j

forms a

positive definite matrix so a Riemannian metric h�� �i can be introduced in the
vertical bundle (V� e�� TM ).

On a Finsler manifold there does not exist, in general, a linear metrical
connection. The analogue of the Levi-Civita connection lives just in the
vertical bundle, however, there are several ones.

In this paper we use the Cartan connection which is a good vertical
connection on V, i.e. an R-linear map

rv : X(fM ) � X(V) � X(V)

having the usual properties of a covariant derivations, metrical with respect

to h�� �i, and ’good’ in the sense that the bundle map � : TfM � V defined by
�(Z ) = rv

Z � is a bundle isomorphism when rv is restricted to V. The latter

property induces the horizontal subspaces Hu = Ker � for all u � fM which
are direct summands of the vertical subspaces Vu = Ker (d�)u :

TfM = H�V	

For a tangent vector field X on M we have its vertical lift XV and its

horizontal lift XH to fM .

Θ : V � H denotes the horizontal map associated to the horizontal
bundle H. Using Θ, first we get the radial horizontal vector field 
 = Θ � � .

In our case �H = 
(�̇). Secondly we can extend the covariant derivation rv

of the vertical bundle to the whole tangent bundle of fM . Denoting it with r,
for horizontal vector fields we have

rZH = Θ(rv
Z (Θ�1(H )))� � Z � X(fM )	

An arbitrary vector field Y � X(fM ) is decomposed into vertical and
horizontal parts:

rZY = rZY
V + rZY

H 	

Thus r : X(TfM ) � X(TfM ) � X(TfM ) is a linear connection on fM
induced by a good vertical connection. Its torsion � and curvature Ω are
defined as usual:

rXY 	rYX = [X�Y ] + � (X�Y )

RZ (X�Y ) = rXrY Z 	rYrXZ 	r[X�Y ]Z
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and the torsion has the property that for horizontal vectors � (X�Y ) is a
vertical vector [2]. The metrical property of the Cartan connection is also
important [2]:

X hY�Z i = hrXY�Z i + hY�rXZ i	

The Cartan connection does not verify the Koszul formula for all vectors,
but this formula is true for the horizontal ones, as is shown in the next Lemma:

Lemma �� Let (M�F ) be a Finsler manifold with its Cartan connection

r� For X�Y� Z �H the following relation holds�

2hrXY�Z i =

= X hY�Z i +Y hZ�X i 	 Z hX�Y i 	 hX� [Y�Z ]i + hY� [Z�X ]i + hZ� [X�Y ]i	

Proof� For the first three terms we use the metrical property of the Cartan
connection, and for the last three terms we use the relation satisfied by the
torsion as follows:

X hY�Z i = hrXY�Z i + hY�rXZ i;

Y hZ�X i = hrY Z�X i + hZ�rYX i;

Z hX�Y i = hrZX�Y i + hX�rZY i;

[Y�Z ] = rY Z 	rZY 	 � (Y�Z );

[Z�X ] = rZX 	rXZ 	 � (Z�X );

[X�Y ] = rXY 	rYX 	 � (X�Y )	

Summing up and using the fact that for horizontal vectors hX� � (Y�Z )i is
zero because � (Y�Z ) is vertical for horizontal vectors Y�Z we obtain the
Koszul formula.

We are interested in some properties of the curvature of Cartan connec-
tion listed below.

Lemma �� Let (M�F ) be a Finsler manifold� The curvature of the

Cartan connection satis�es the following properties for horizontal vectors

X�Y� Z�V�W �

1. R(X�Y ) = 	R(Y�X )

2. hRV (X�Y )�W i = 	hRW (X�Y )� V i

3. RZ (X�Y ) + RX (Y�Z ) + RY (Z�X ) = 0

4. hRV (X�Y )�W i = hRX (V�W )X�Y i�

The proof of the previous Lemma can be found in [2, p. 31], and [12,
p. 72].
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Let P be a submanifold of M of dimension p �n and let us consider
F � = F jTP ; it is a Finsler metric and thus P becomes a Finsler space. Letex � eP and let P�

ex
be the h�� �i

ex orthogonal complement of T
exTP in T

exTM .

Let P� be the disjoint union of all P�
ex

, ex � eP and let �� : eP� � eP
the natural projection. Then (P�� ��� eP) admits a natural structure of real

differentiable vector bundle, rankP� = n 	 p. It is the normal bundle of the
submanifold P .

Let eX �� Y be respectively a tangent vector field on eP and a cross section

in T eP and eX �� Y
�

prolongations to TfM . Then the restriction of r
eX �
Y

to T eP does not depend upon the choice of prolongations and is denoted by
r�
eX
Y . The bundle direct sum decomposition

TfM = T eP � P�

leads to the Gauss–Weingarten formulae:

r
eX
Y = r�

eX
Y + I(eX�Y )

r
eX
 = 	eA

�
eX + r�

eX
	

Here  � Sec(eP� P�) and a similar argument (independence of extensions ofeX �  to T eP ) leads to the notation r
eX
. Then r� is the induced connection,

I the second fundamental form, eA
�

the operators of Weingarten and r� is

the normal connection ([7, 1, 10]). Next we define the umbilical point of a
Finsler submanifold and the umbilical submanifold.

Definition �� A point q � P is an umbilical point if there exists a vector

Z � H�(P) such that I(X�Y ) = hX�Y iZ . The submanifold P is said to be
totally umbilical if every point of P is an umbilical point.

3. Construction of the warped product

Let (M�F1) and (N� F2) be Finsler manifolds with their Cartan con-

nections r1 and r2, and let f : M � R+ be a smooth function. Let
p1 : M �N �M , and p2 : M �N � N . We consider the product manifold

M �N endowed with the metric F : fM � eN � R,

F (v1� v2) =
q
F 2

1 (v1) + f 2(�1(v1))F 2
2 (v2)	



2019. május 4. –23:07

WARPED PRODUCT OF FINSLER MANIFOLDS 161

We show that the metric defined above is a Finsler metric. First it is clear that
F is smooth on fM � eN , because F1 and F2 are. F is not necessarily smooth
at the vectors of the form (v1� 0) and (0� v2) � TM �TN . This means that F
is not a really Finsler metric on the product manifold M � N , therefore the

study should be restricted to the domain fM � eN . Secondly F is homogeneous
with respect to the vector variables because F1 and F2 are. Third, the Hessian
of F with respect to the vector variables is of the form:�

A 0
0 f 2B

�
where A and B are the Hessians of the Finsler metrics F1 and F2. So the
Hessian of F is positive because the Hessians of F1 and F2 are. It means that
the indicatrix of F is strongly convex. The difference between this metric and
a classical Finsler metric is that it is not smooth at the vectors of the form
(v1� 0) and (0� v2).

The product manifold M � N with the metric F (v ) = F (v1� v2), for

v = (v1� v2) � fM � eN defined above will be called the warped product of
the manifolds M , N , and f will be called the warping function. We denote
this warped product by M�fN . We just showed that (M�fN� F ) is a Finsler
manifold in the restricted sense above.

Our goal is to express the geometry of warped product by the geometries
of M�N and the warping function f . The study follows the line adopted in
Riemannian and semi-Riemannian cases [13], with the specific situation due
to the Finslerian context.

The manifold M will be called base and the manifold N will be called
fiber as in [13].

4. The gradient of a function in Finsler geometry

In this section we define the gradient of the smooth function f : M � R+
with d fx�0. We follow the line of Shen [15, p. 43]. Define rfx by

rfx := L�1
x (d fx )

where Lx : TxM � T �
xM is the Legendre transformation. Shen proves that

rf H = brf
where brf is the gradient of f with respect to Riemannian metric induced by
the Finsler metric, and

F (rf ) =
q
hbrf � brf irf 	
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We work with rf H , the horizontal lifting of rf which has the property that

F 2(rf ) = hrf H �rf H i
rf H

.

Next we define the Hessian of a function.

Definition �� The Hessian of a function f � F(M ) is its second covari-
ant differential Hf = r(rf ).

Lemma �� The Hessian Hf satis�es the following relation�

H
f (X�Y ) = XY f 	 (rXY )f = hrX (rf H )� Y i

for X�Y �H�

Proof�

H
f (X�Y ) = r(df H )(X�Y ) = hrXrf

H � Y i

since Y f = hrf H � Y i and it follows that

XY f = X hrf H � Y i = hrXrf
H � Y i + hrf H �rXY i

= hrX (rf H )� Y i + (rXY )f

which implies the assertion.

If f is smooth on M (i.e. f : M � R is smooth), the lift of f to M �N

is the map bf := f � p1 : M �N � R. If a � TpM and q � N then the lift ba
of a to (p� q) is the unique vector in T(p�q)(M � q) such that dp1(ba) = a . If

X � X(M ) the lift of X to M �N is the vector field bX whose value at each
(p� q) is the lift of Xp to (p� q). Because of the product coordinate systems it

is clear that bX is smooth. It follows that the lift of X � X(M ) is the unique
element of X(M �N ) that is p1-related to X and p2-related to the zero vector
field on N . The same method could be used to lift objects defined on N to
M �N .

Now we prove a Lemma needed in what follows:

Lemma �� If h is a smooth function on M � then the gradient of the lift

h � p1 of h to M � fN is the lift to M � fN of the gradient of h on M �

Proof� Let v � TN . Now hr(h � p1)� vH i = vH (h � p1) = 0. Next for
x � TM we have that

hdep1((r(h � p1))H )� dep1(x )i =

= h(r(h � p1))H � xH i = (x (h � p1))H = h(rh)H � dp1(x )H i	
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From these two properties we obtain the assertion in the lemma.

Due to this lemma there will be no confusion if we denote h and rh
instead of h � p1 and r(h � p1), resp.

5. Properties of warped metrics

Let (M�F1) and (N� F2) be two Finsler manifolds, with Finsler metrics
F1, F2 resp. We consider the product manifold M �N and the warped metric
defined above. We consider the projections p1 : M �N �M and p2 : M �
�N � N and the canonical projections �1 : TM �M and �2 : TN � N .
The projections p1� p2 resp. generate the projections dp1 : TM �TN � TM
and dp2 : TM � TN � TN , for v = (v1� v2) � TM � TN� dpi (v1� v2) = vi ,
i = 1� 2.

It is obvious that the fibers p � N = p�1
1 (p)� p � M and the leaves

M �q = p�1
2 (q)� q � N are Finsler submanifolds of M �FN and the warped

metric has the properties:

1. for each q � N the map p1j(M�q) is an isometry onto M .

2. for each p � M the map p2j(p�N ) is a positive homothety onto N with

scale factor 1
f .

3. for each (p� q) �M�N the leaf M�q and the fiber p�N are orthogonal
with respect to the Riemannian metrics induced by the Finsler metrics.

The canonical projection �1 gives rise to the vertical bundle

(V1�f�1� TM )�

where V1 = Ker (d�1) and f�1 = d�1 : TTM � TM . The same is true for
the manifold N . Now we have that

d�1 � d�2 = d(�1 � �2) : TTM � TTN = T (TM � TN ) � TM � TN

and Ker d(�1 � �2) = Ker d�1 � Ker d�2. It follows that the vertical space

of the manifold M �N , V = V1 �V2, so the Riemannian metrics h�� �i1 and

h�� �i2, defined on V1 and V2 as in the introduction give rise to a Riemannian

metric h�� �i on V as follows: h�� �iv = h�� �i1v1
+ f 2(�1(v1))h�� �i2v2

. Now let H1

and H2 be the horizontal spaces with respect to the Cartan connections r1

and r2 on the Finsler manifolds (M�F1) and (N� F2), resp.
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We have the direct sum decomposition

TT (M �N ) = TTM � TTN = V1 �H1 �V2 �H2	

Next the Finsler metrics F1� F2 on the manifolds M and N resp. generate

the Riemannian metrics h� i1 and h� i2 on the vertical spaces V1 and V2,
resp. By the horizontal maps these Riemannian metrics are mapped onto
horizontal spaces H1�H2 resp. Finally these Riemannian metrics generates
a Riemannian metric on T (TM � TN ). In what it follows we work mostly
on the direct sum H1�H2 the direct sum of the liftings of H1 and H2 to the
TTM � TTN .

The following theorem relates the Cartan connections of M and N to the
Cartan connection of M � fN .

Theorem 	� On B = M � fN if X�Y � X(H1) and V�W � X(H2) the
following relations are true�

1. rXY on H1 �H2 is the lift of rXY on H1�

2. rXV = rVX = (Xf �f )V �

3. norrVW = I(V�W ) = 	(hV�W i�f )rf H �

4. � (X�V ) = � (V�X ) = 0�

5. tanrVW � X(N ) is the lift of rVW on N �

Proof� We apply the Koszul formula (see Lemma 1) for 2hrXY�V i
and we obtain that it is equal to 	V hX�Y i + hV� [X�Y ]i because [X�V ] =
= [Y�V ] = 0. Because X�Y are lifts from M , hX�Y i is constant on

fibers (liftings on N ), and because V � T eN follows that V hX�Y i = 0.
Analogously hV� [X�Y ]i = 0. Thus hrXY�V i = 0 for all V � X(N ) and it
follows formula (1).

First we prove the first equality from (2). The second one will be
proved after (3). We have that X hV�Y i = hrXV�Y i + hV�rXY i = 0, so
hrXV�Y i = 	hV�rXY i. We apply the Koszul formula for 2hrXV�W i,
and we observe that all the terms vanish except X hV�W i.

It follows from the expression of the Riemannian metric induced by

the warped metric that hV�W i(v � w ) = f 2��1(v )
�
hVw �Ww i. This term

is constant on leaves. Thus X hV�W i = X (f 2(�1(v ))hVw �Ww i) =

= 2f X (f (�1(v )))hVw �Ww i = 2
�
X f
f

�
hV�W i. From these relations we have
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that rXV =
�
X f
f

�
V . Now rXV 	 rVX = [X�V ] + � (X�V ). We can

assume that [X�V ] = 0.

It is obvious that V hW�X i = 0. But this means that

hrVW�X i = 	hW�rVX i = 	hW� (Xf �f )V +� (X�V )i = 	(Xf �f )hV�W i

because � (X�V ) is vertical. Now hrf H � X i = Xf . Thus

hrVW�X i = 	h(hV�W i�f )rf H � X i	

This yields (3).

hrVX�W i = 	hX�rVW i = 	hX� hV�W i�frf H i

=
1
f
hX�rf H ihV�W i = hhX�rf H i�f V�W i	

The above gives the second part of (2) and it follows that

rVX = rXV =

�
Xf

f

�
V�

and the mixed part of the torsion vanishes � (X�V ) = � (V�X ) = 0. The last
assertion (5) is trivial.

It is a remarkable fact that the torsion vanishes on the mixed part. This
will let us to compute the curvature of warped product.

Now the next Corollary easily follows:

Corollary 
� The leaves M � q of a warped product are totally

geodesic� the �bers p �M are totally umbilical�

Proof� By the claim (1) in Theorem 7 it follows that for a geodesic �
in M its lifting on M � fN is also a geodesic. The second assertion comes
from (3) of Theorem 7.
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6. Geodesics of warped product manifolds

In a warped product manifold a curve � can be written as �(s) =
= (�(s)� �(s)) where the curves � and � are the projections of � into M
and N , resp. Now we give conditions for a curve in the warped product to
be geodesic with respect to the warped metric.

Theorem �� A curve � = (�� �) in M � f N is a geodesic if and only if

1. r
� �H �

�H = jj� �H jj2

f rf H �

2. r
� �H �

�H = �2
f ��

(d(f ��))H

ds � �
H

Proof� We work in an interval around s = 0.

Case �� � �(0) is neither in T�(0)M nor in T�(0)N . Then � �(0)�0 and

� �(0)�0. So we can suppose that � is an integral curve for X in M and � is an
integral curve for V in N . Also we denote by X and V the lifts on M � fN .

It follows that � is a geodesic curve if and only if rXH +VH (XH +V H ) = 0.
But this means that

rXHX
H + rXHV

H + rVHX
H + rVHX

H = 0	

Now we use Theorem 7 from the previous section and we have that

rXHX
H 	

jjV H jj2

f
rf H = 0

and

2
XH f

f
V + rVHV

H = 0	

Case �� Suppose that � �(0) � T�(0)M . If � is a geodesic, because M �

� �(0) is totally geodesic, it follows that � remains in M � �(0). Thus � is
constant and the assertions of the theorem are trivial. Conversely if condition
(2) from Theorem 7 holds, since � �(0) = 0 it follows that � is constant. Then
condition (1) in Theorem 7 implies that � is a geodesic, and so is � .

Case �� Suppose that � �(0) � T�(0)N and nonzero. Suppose that rf

is not zero, because otherwise �(0) � N is totally geodesic and the conclu-
sion follows as in Case �. Now if � is a geodesic, it follows that on no
interval around 0 � remains in the totally umbilical fiber p � N . It follows
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that there is a sequence fsig � 0 such that for all i , � �(si ) is neither in
T�(si )M or in T�(si )

N . The assertions in the theorem follows by continuity

from the first case. Conversely, if (1) in the theorem is true it follows that

r
� �(0)H

� �(0)H�0 hence there exists a sequence fsig as above, and using

again the first case it follows that � is a geodesic.

7. Curvature of warped product manifolds

Now we express the curvature of the warped product. The curvature
tensor is defined by the relation

RZ (X�Y ) = rXrY Z 	rYrXZ 	r[X�Y ]Z	

Because the projection p1 is an isometry it follows that the lift of the curvature
on M is equal to the curvature of the warped product when is computed for
vectors from on H1.

Theorem ��� LetM�fN be a warped product of Finsler manifolds with

curvature tensor R and let X�Y� Z � H1 and U�V�W � H2� Let RMZ and

RNU denote the curvature tensors of the manifolds (M�F1) and (N� F2) resp�

The following relations are true�

1. RZ (X�Y ) � X(H1) is the lift of RMZ (X�Y ) on M �

2. RY (V�X ) = 	

�
H f (X�Y )

f

�
V � where H f is the Hessian of f �

3. RX (V�W ) = (Xf �f )� (V�W )�

4. RW (X�V ) =
�
hV�W i

f

�
rX (rf )�

5. RU (V�W ) = RNU (V�W ) 	
�
hrf �rf i

f 2

�
fhV�U iW 	 hW�U iV g�

Proof� (1) This is true because the projection p1 is an isometry and the
leaves are totally geodesic.

(2) Because [V�X ] = 0 it follows that rVrXY 	 rXrVY =

= RY (V�X ). By Theorem 7 we have that rVrXY =
�

(rXY )f
f

�
V because
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rXY � X(H1). The second term

rXrVY = rX

�
Y f

f
V

�
= X (Y f �f )V + (Y f �f )rXV

= [(XY )f �f +Y f X (1�f )]V + (Y f �f )(Xf �f )V	

Because X (1�f ) = 	Xf �f 2 the last expression reduces to (XY f �f )V .

Thus

RY (V�X ) = 	[(XY f 	 (rXY )f )�f ]V = 	(H f (X�Y )�f )V	

(3) We can assume that [V�W ] = 0. It follows that

RX (V�W ) = rVrWX 	rWrVX	

But

rVrWX = rV ((Xf �f )W ) = V (Xf �f )W + (Xf �f )rVW	

Now V (Xf �f ) = 0 because Xf �f is constant on the fibers. This implies that

RX (V�W ) = (Xf �f )[rVW 	rWV ] = (Xf �f )� (V�W )	

We note that RX (V�W ) � V2 by the properties of the Cartan connection.

By the symmetry of curvature hRV (X�Y )�W i = hRX (V�W )� Y i = 0

because RX (V�W ) is vertical. Now we use (2), the curvature symmetries,

and then we obtain that relation (3) is true.

(4) We have that hRW (X�V )� U i = hRX (W�U )�W i = 0 because of the

point above. We use here the properties from Lemma 2. Now RX (V�W ) is

vertical and it follows that

hRW (V�X )� Y i = hRY (V�X )�W i = H f (X�Y )hV�W i

= (hV�W i�f )hrX (rf )� Y i�

which gives assertion (4).
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(5) Again we can assume that [U�V ] is zero.

R(V�W ) =

= rVrWU 	rWrVU = rV f	(hW�U i�f )rf H + rN
VU g

	rW f	(hV�U i�f )rf H + rN
VU g = 	(hrVW�U i

+ hW�rVU i)(rf H �f ) 	 (hW�U i�f )rV (rf H )

+ rVr
N
WU + (hrWV�U i + hV�rWU i)(rf H �f )

+ (hV�U i�f )rW (rf H ) 	rWrN
VU = (hrWV 	rVW�U i

	 hW�rVU i 	 hV�rWU i)(rf H �f ) + rN
Vr

N
WU 	rN

WrN
VU

	 (hV�rN
WU i�f )rf H + (hW�rN

VU i)(rf
H )

+ (hV�U i�f )(hrf H �rf H i�f ) 	 (hW�U i�f )(hrf H �rf H i�f )V

= RN (V�W )U +
hrf H �rf hi

f 2 (hV�U iW 	 hW�U iV )	

We use that hV�rWU i = hV�rN
WU i, and the properties from Theorem 7.

Thus we have

RU (V�W ) = RNU (V�W ) +

�
hrf H �rf hi

f 2

	
(hV�U iW 	 hW�U iV )	
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170 LÁSZLÓ KOZMA, RADU PETER, CSABA VARGA

[7] Aurel Bejancu� On the theory of Finsler submanifolds, Meetings of Minds,
eds. P. L. Antonelli, Kluwer Academic Press, 1999, 111–129.

[8] Bang�Yen Chen� Geometry of warped product CR-submanifolds in Kaehler
manifolds, Monatsh� Math�� 133, (2001), 177–195.

[9] Chien�Hsiung Chen� Warped products of metric spaces of curvature bounded
from above, Trans� Amer� Math� Soc�, 351 (1999), 4727–4740.

[10] S� Dragomir� Submanifolds of Finsler Spaces. Conf� Sem� Mat� Univ� Bari,
271 (1986), 1–15.

[11] ByungHakKim� Warped producs with critical Riemannian metric, Proc� Japan
Acad� Ser� A Math� Sci�� 71 (1995), 117–118.

[12] M� Matsumoto� Foundations of Finsler geometry and special Finsler spaces,
Kasheisha Press, Japan, 1986.

[13] Barrett O�Neill� Semi�Riemannian geometry with applications to relativity,
Pure and Applied Mathematics. Academic Press, New-York, 1983.

[14] S� N�olker� Isometric immersions of warped products, Di�� Geom� Appl�� 6
(1996), 1–30.

[15] Z� Shen� Lectures on Finsler Geometry, World Scientific, 2001.
[16] M Ulanovskii� Lorentzian warped products and singularity, Gen� Relativity

Gravitation, 31 (1999), 1813–1820.
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1. Preliminaries

Let M be 2n +s dimensional manifold on which is defined an f -structure
of rank 2n with complemented frames. This means that there exist vector
fields �1� � � � � �s on M such that if �1� � � � � �s are dual 1-forms then

f (�i ) = 0(1)

�i � f = 0(2)

for any i = 1� � � � � s and

f 2 = �I +
sX
i=1

�i � �i �(3)

Let Γ(TM ) be the module of differentiable sections of TM . It is well
known that in such conditions we can define a Riemannian metric g on M
such that for any X�Y � Γ(TM ) the following equality holds:

(4) g(X�Y ) = g(f X� f Y ) +
sX
i=1

�i (X )�i (Y )�

We suppose also that the f -structure is a K-structure, i.e. [f � f ] +
Ps

i=1 �i �
d�i = 0, where [f � f ] is the Nijenhuis torsion of f (cf. [2]) and the fundamental
2-form, F defined as F (X�Y ) = g(X� f Y ) is closed, i.e. dF = 0.

If d�1 = � � � = d�s = F and �1 � � � � � �s � (d�i )
n�0 we say that the

K-structure is an S-structure and M is an S-manifold. Finally, if d�i = 0 for
all i = 1� � � � � s then the K-structure is called a C-structure and M is said a
C-manifold.
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We recall some facts that will be used in the sequel (cf. [2]).

1. On a K-manifold M the vector fields �1� � � � � �s are Killing.

2. If f is an S-structure then for any Y � Γ(TM ) and for any i = 1� � � � � s
we have that

(5) rY �i = �
1
2
f Y ;

if f is a C-structure then

(6) rY �i = 0

where we denote by r the Levi–Civita connection of the Riemannian
metric g .

3. A K-structure is a C-structure if and only if rF = 0 or rf = 0.

4. On S-manifolds we have:

(rX F )(Y�Z ) =
1
2

sX
i=1

�
�i (X )g(X�Z )� �i (Z )g(X�Y )

�

�
1
2

sX
i �j=1

�j (X )
�
�i (Y )�j (Z )� �i (Z )�j (Y )

�
�

2. Transversally holomorphic foliations

Theorem �� Let M be a 2n + s�manifold with an f �structure of rank

2n � Then f is a K if and only if the foliation ker f is a transversely K�ahler

foliation given by an isometric action of Rs �

Proof� Let f be a K structure. We know that the vector fields �1� �2� � � �
� � � � �s are Killing vector fields and [�i � �j ] = 0, i � j = 1� 2� � � � � s . Therefore
the subbundle spanned by �1� �2� � � � � �s is integrable and defines the foliation
F� . In fact, the condition for the K-structure, i.e.

0 = f[f � f ] +
sX
i=1

�i � d�ig = 0

easily implies that [�i � �j ] = 0 for any i � j = 1� � � � � s . Moreover, the fact that
the vector fields �i are Killing ensures that r�i

�j = 0 for any i � j = 1� � � �

� � � � s . As the vector fields �i are Killing the foliation F� is Riemannian and
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the Riemannian metric g is bundle-like. The normal bundle of F� can be

identified with Imf. First, notice that Imf�F� . In fact,

g(�i � f (X )) = g(f (�i )� f
2(X )) +

Xs

j=1
�j (�i )�j (f (X )) = 0

Moreover, rank(Imf) = codimF� so indeed Imf is the normal bundle of TF� .

Now we should prove that f jImf is foliated, which is equivalent to the property

L�i
(f jImf) = 0 �i = 1� � � � � s

i.e. L�i
f (Y ) = 0 for any section of Imf. We may assume that Y is an

infinitesimal automorphism of F� . First compute f[f � f ] +
Ps

i=1 �i � d�ig = 0

on �r and an infinitesimal automorphism X of F� , a section of Imf. Thus

[�r � X ] is a section of TF� . Therefore

f[f � f ] +
sX
i=1

�i � d�ig(�r � X ) = f ([�r � f (X )]) +
sX
i=1

d�i (��X )�i �

Hence f ([�r � f X ]) = 0 and d�i (�r � X ) = 0. So [�r � f (X )] � TF� for any X an

infinitesimal automorphism of F� . Let Y be an infinitesimal automorphism

of F� . Then:

L�i
f (f (Y )) = [�i ��Y ]� f ([�i � f (Y )] = 0

In fact, we may assume that Y is an infinitesimal automorphism commuting
with �i as the subbundle Imf is �i -invariant. So f jImf is constant along leaves
of F� (“foliated”). Moreover, the forms d�i are base-like as d�i (�j � � � �) = 0.
So is the form F as

F (�i � Y ) = 0� g(�i � f (Y )) = 0

and dF = 0. So our foliation F� is transversely Kähler as the metric g ,
tensor field f and the 2-form F project along leaves to the Riemannian metric
g , tensor field J and the 2-form Ω, respectively. The structure (g� J �Ω) is
Kählerian.

Now, assume that we have an Rs isometric action on M which is trans-
versely Kählerian. Then we have Killing vector fields �1� � � � � �s pair-wise
commuting which define a transversely Kähler foliation F� . As �1� � � � � �s are

Killing vector fields they leave invariant the subbundle Q orthogonal to TF� .
We define the tensor field forms �i as follows:

�i (�j ) = �
j
i � �i jQ = 0 f (�i ) = 0�
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On Q the tensor field f is defined as follows: let fi : Ui�N be a local submer-
sion defining the foliation F�; then dx fi jQ : Qx�Tfi (x )N is an isomorphism

for any x � Ui . If X � Qx then dx fi (X ) by X ; if X � Tfi (x )N we denote

(dx fi jQ )�1 by X̂ . With this notation in mind we put

f (X ) = dJ (X )

for any X � Q . So for any X � Qx f (X ) � Qx as well. If necessary we can
modify the Riemannian metric by assuming on Q the following values:

g(X�Y ) = g(X �Y )

for all X�Y � Q . With �1� � � � � �s , �1� � � � � �s , g and f defined as above it is
straightforward to verify that they define a K-structure.

Example �� We are going to use the well-known construction of a sus-
pension to produce examples of K-manifolds, cf. [11]. Let (F� ḡ� J̄ ) be a
compact Kähler manifold. Let

h:�1(T s ) = Zs � I so(F� ḡ � J̄ )

be a homomorphism of groups, which is equivalent to choosing s commuting
holomorphic isometries of (F� ḡ� J̄ ). The group Zs acts on the product Rs 	F
as follows. Let p � Zs, v � Rs , w � F , 	(p)(v � w ) = (v + p� h(p)(w )). The
action 	 is locally free and commutes with the standard action of Rs . If we
endow R

s 	 F with the product metric g̃ = g0 	 ḡ � (g0-the Euclidean metric
of Rs ), then the action 	 is isometric. The quotient manifold T s 	 hF is a
compact fibre bundle over T s with standard fibre F . The Riemannian metric
g̃ defines a Riemannian metric g on T s 	 hF for which the induce Rs -action
is isometric. Moreover, the foliation defined by this action is transversely
Kähler, so any such manifold T s 	 hF is equipped with a K-structure.

We finish the section with a very useful proposition whose proof is
straightforward.

Proposition �� Let W be a foliated submanifold of M �i�e� if x � W �

then the leaf Lx 
 W �� Let fUi � fi � gi j gi�I be a cocycle de�ning foliation

F� and N the transverse manifold� H the holonomy pseudogroup associated

to this cocycle� Then there exists W0 an H �invariant submanifold of N such

that W jUi
= f �1

i (W0) for any index i � I �

This proposition can be used to find properties of geodesics orthogonal to
F� . In fact, the submanifold W0 is totally geodesic iff W is totally geodesic

in the orthogonal direction to F�i
.
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3. General properties

Having proved the fact that our structure is a transversely Kähler foliation
let us draw some general conclusions.

The set of points of leaves without holonomy is open and dense in the
manifold M , cf. [14]. Unless all leaves are compact, there is no compact
leaf among them. If the foliation has a compact leaf without holonomy, then
this leaf covers any other leaf, thus all leaves are compact, cf. [13, 10, 17].
Leaves without holonomy are stable, which means that for any leaf L without
holonomy there exists an 
�0 such that any leaf at the distance smaller than

 from L is diffeomorphic to L.

The holonomy pseudogroup of our foliations consists of local isomor-
phisms of the Kähler structure of the transverse manifolds, i.e. hermitian
isometries which preserve the complex structure. The Molino structure the-
orem for Riemannian foliations, cf. [10], has its hermitian version, cf. [16,
19].

Theorem �� Let F be a transversely hermitian codimension 2q foliation

on a compact manifoldM � Then the bundle of transverse orthonormal frames

B(M�O(2q);F) admits an U (q) reduction B(M�U (q);F) which is its foli�

ated subbundle� The lifted foliation FU is transversely parallelisable� The

closures of its leaves are �bres of locally trivial �bration �called the basic

foliation� onto a compact manifold� The foliation of any closure by leaves of

FU is a Lie foliation� The projections onM of the �bres of the basic �bration

are the closure of the foliation F�

The structure theorem permits us to define the commuting sheaf, cf. [20,
19]. Local foliated transformations which preserve the complex structure and
the hermitian metric of the normal bundle, or equivalently which define local
isomorphisms of the induced Kähler (hermitian) structure on any traverse
manifold are lifted to the bundle B(M�U (q);F) and preserve the transverse
parallelism. So local foliated infinitesimal automorphisms of the complex
structure and the hermitian metric of the normal bundle are the foliated vector
fields which when lifted to bundle B(M�U (q);F) commute with the trans-
verse parallelism. Therefore we can formulate the following proposition, cf.
[19, 20].

Proposition �� Let F be a transversely hermitian codimension 2q folia�

tion on a compact manifoldM � Then the closures of leaves are submanifolds�
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are 	orbits
 of the commuting sheaf of the foliation and form a singular

foliation�

Now we apply the above results to our K-structures. The vector fields
�i are defined by an isometric action of Rs , which therefore defined a repre-
sentation of Rs into the group Isom(M� g) of isometries of the Riemannian
manifold (M� g). Therefore the closures of leaves are the orbits of some
toral action – the action of T r -the closure of Rs in Isom(M� g)-the smallest
compact abelian subgroup of Isom(M� g) containing the image of Rs . Let V
be the orthogonal complement in Rr = Lie(T r ) of Rs = Lie(Rs ). As the flows
of �i , i = 1� � � � � s� preserve the hermitian metric and the complex structure on
the normal bundle, so the flows of the characteristic vector fields of the toral
action. Thus the vector fields corresponding to vectors of V define the global
trivialisation of the commuting sheaf

As the vector fields �i commute it is most natural to recall the notion
of the rank of a manifold, cf. [4, 15]. This fact will help us determine the
dimension of the closures of leaves.

Proposition �� Let F be a codimension q foliation determined by an

isometric action of the group Rs � Then the closures of leaves have at most

dimension s + rk (q � 1)� where rk (q) is the rank of the q�sphere�

Let us choose a leaf L whose closure is of maximal dimension. The same
property have neighbouring leaves. The fact that the foliation is Riemannian
ensures that these neighbouring leaves live on sphere bundles of a tubular
neighbourhood of L, So do their closures. Therefore on the (q � 1)-spheres
there are (r�s) commuting vector fields. Thus r�s must be smaller or equal
to rk (q � 1).

The closures of leaves define a singular Riemannian foliation Fb. The
set of points M0 where the closures are of maximal dimension is open and
dense in M , and on this set the closures form a regular Riemannian foliation.
Let us look closer The tangent bundle TM on M0 admits the orthogonal
decomposition TF� � Qb � QN where TFb = TF� Qb . Denote by �b the
orthogonal projection of TM onto QN . Then define the (1� 1)-tensor field fb
by �bf . It is a kind of f -structure on the open set M0. We will study its
properties in relation to the initial K-structure in a subsequent paper.
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4. Submanifolds in K-manifolds

The theory of submanifolds tangent to the characteristic foliation devel-
oped for various types of f -structures can be also treated in a “foliated” way,
so very often these results are straightforward generalisations of properties
of submanifolds of Kähler manifolds. We assume that the ambient manifold
M is compact, although in most cases this condition can be weakened to
“complete”.

Let W be an m + s dimensional submanifold of M tangent to the char-
acteristic foliation F� , i.e. for any x � W , TxF� 
 TxW or equivalently

�i (x ) � TxW for i = 1� � � � � s . The following lemma is a simple generalization
of the Frobenius theorem.

Lemma �� Let x be a point of a submanifold W of dimension m�s

tangent to the foliation F� � Then there exists an adapted chart � :V ��

R2n+s � � = (�1� � � � � �2n+s )� at x such that the set U = fy � V j�m+s+1(y) =
= � � � �2n+s (y) = 0g is a connected component of V �W containing x and

(�1jU� � � � �m+s is an adapted chart for the induced foliation of W �

As a corollary we obtain the following:

Proposition �� Let W be a submanifold tangent to the characteristic

foliation of a K�manifold M � Then for any point x of W there exist neigh�

bourhoods U and V of x in W and M � respectively� having the following

properties�

i) U is a connected component of V �W containing x 

ii) U is a foliated subset of V �for the characteristic foliation�

iii) there exists a Riemannian submersion with connected �bres f :V � N0
onto a K�ahler manifold N0 de�ning the characteristic foliation

iv) there exists a submanifold W̄ of N0 such that U = f �1(W̄ )�

Now we turn our attention to CR-submanifolds, cf. [21, 9, 12, 3, 7, 5, 6].

Let W be a connected submanifold of a K-manifold M . Assume that
W is tangent to the characteristic foliation. Then W is called a contact
CR-submanifold of M if there exists a differentiable distribution D on W of
constant dimension, D : x � Dx 
 TxW , satisfying the following conditions:

i) D is invariant with respect to f , i.e. for any x �W f (Dx ) 
 Dx ;

ii) the complementary orthogonal distribution D�: x � D�
x 
 TxW is

anti-invariant with respect to f , i.e. for any x �W ; f (D�
x ) 
 TxW

�.
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A contact CR-submanifold W is non-trivial if dimD = h �0 and
dimD� = q �O ; cf. [21] p. 48. Let f (Dx ) = TxW � f (TxW ) = D0 and

f (D�
x ) = TxW

�� f (TxW ). Then the distribution D0 has constant dimension

and D = D0 or D = D0�TF, and D� = D�
0 �TF or D�

0 , respectively, where

D�
0 is the orthogonal complement of D0 � TF. This means that the tangent

bundle TW of W admits the following decomposition: TF��D0�D
�
0 and

ker �jTW = imf jTW = D0 � D�
0 . For the rest of the paper we assume that

D = D0 � TF.
Our previous considerations lead to the following:

Proposition �� Let W be a submanifold tangent to the characteristic

foliation of a K�manifold� Then W is a contact CR�submanifold i� the

corresponding submanifolds in any transverse manifold are the characteristic
foliation CR�submanifolds�

Our distributions D and D� have the following properties.

Theorem �� Let W be a contact CR�submanifold of a K�manifold M �

Then the distribution D� � TF is completely integrable and its integral
submanifolds are anti�invariant submanifolds �tangent to the characteristic

foliation��

For the proof see Theorem III.3.1 of [21] or [9], Theorem 3.1. Similarly
we have the following version of Theorem III.3.2 of [21], or [9], Th.3.5 ,
where B is the second fundamental form of the submanifold W in M :

Theorem �� Let W be a contact CR�submanifold of a K �manifold M �

Then the distribution D is integrable i� B(X� f Y ) = B(Y� f X ) for any
X�Y � D � Its integral submanifolds are invariant submanifolds of M �

Remark �� As the properties described by the above theorems are local,
they can be derived from the corresponding theorems for CR-submanifolds
of Kähler manifolds, compare Theorems IV.4.1 and IV.4.2 of [21].

Having proved these basic properties let us turn our attention to
geodesics:

Proposition �� LetW be a contact CR�submanifold tangent to the char�

acteristic foliation F� of a K�manifold M � If g(B(X�Y )� f Z ) = 0 for any

X�Y � D0� Z � D�
0 then any geodesic of W tangent to D0 at one point

remains tangent to D0 at any point of its domain�
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Proof� The foliation F� jW is a Riemannian foliation and the distribution

D0�D
�
0 is the orthogonal complement of the bundle tangent to the foliation.

Therefore a geodesic orthogonal to F� , i.e. tangent to D0 �D�
0 at one point

is tangent to D0�D�
0 at any point of its domain. Moreover, such orthogonal

geodesics are D0 � D�
0 -horizontal lift of the corresponding geodesics in the

transverse manifold, cf. [10]. Let us consider a geodesic : (a� b) � W
tangent to D0 at 0 and the set A = ft � (a� b): ̇(t) � D0g. The set A
is closed and 0 � A. We shall show that it is also open. As the problem
is local we can reduce our considerations to a foliated submanifold of a
K-anifold with the characteristic foliation given by a global submersion with

connected fibres, i.e. the characteristic fibration f :M � N and W = h�1(W̄ )
where W̄ is a CR-submanifold of the Kähler manifold N . Therefore TW̄
admits a decomposition into orthogonal distributions D̄ and D̄� such that

D = h�1(D̄) and D0 = ker � � h�1(D̄)� D�
0 = ker � � h�1(D̄�. Let B be the

second fundamental form of the submanifold W in M and B̄ be the second
fundamental form of the submanifold W̄ in N . Then B(X �� Y �) = B̄(X�Y )�,
cf. [21], p. 101, where for any vector X tangent to W̄ X � is its ker�

(D0 �D�
0 )-lift to M , and hence ḡ(B̄(X�Y )� f̄ Z ) = 0 for any X�Y � D̄ and

Z � D̄�. Then Proposition IV.4.2 of [21] ensures that D̄ is a totally geodesic
foliation of W̄ . Let ̄ be the geodesic in W̄ corre then ̄ is tangent to D̄ at
this point. Since the foliation D̄ is totally geodesic ̄ must be contained in

some leaf of D̄ . Hence  being the D0 �D�
0 -horizontal lift of ̄ , it must be

tangent to D0. Therefore the set A is open, and thus A = (a� b).

Taking as a model Kähler manifolds we can introduce the following
notions:

Definition �� We say that a contact CR-submanifold W is:
i) D0-totally geodesic iff B(X�Y ) = 0 for any X�Y � D0;

ii) contact mixed foliate if B(X�Y ) = 0 for any X � D and Y � D�, and
B(PX�Y ) = B(X� PY ) for any X�Y � D0.
It is not difficult to verify the following:

Lemma ��

i) W is a D0�totally geodesic i� W̄ is D̄�totally geodesic

ii) W is contact mixed foliate i� W̄ is mixed foliate�

Then we can prove:



2019. május 4. –23:07

180 LUIGIA DI TERLIZZI, JERZY KONDERAK, ANNA MARIA PASTORE, ROBERT WOLAK

Proposition 	� LetW be a contact CR�submanifold tangent to the char�
acteristic foliation of aK�manifoldM � IfW is D0�totally geodesic� then D is
a foliation and any geodesic of W tangent to D0 at one point remains tangent
to D0 at any point of its domain�

Proof� It is a consequence of Lemma 2, Corollary IV.4.3 of [21] and
of the considerations similar to those of the second part of the proof of
Proposition 4.

Another property of Kähler manifolds gives us the following theorem, cf.
Theorem IV.6.1 of [21] or [1].

Theorem �� LetW be a contact totally umbilical non�trivial contact CR�

submanifold of a K �manifold M � If dimD�
0 �1� then a geodesic orthogonal

to F� and tangent to W at one point has this property on an open subset of

its domain�

Proof� The corresponding submanifold W̄ in the transverse manifold
is totally umbilical. Since the characteristic foliation is Riemannian we have
to show that the geodesic is tangent to W on an open subset of its domain.
This property is a local one and therefore we can reduce our considerations to
the canonical fibration. The geodesic is the ker �-horizontal lift of a geodesic
in N . Therefore it is sufficient to know that the submanifold W̄ is totally
geodesic. This is precisely the fact which Bejancu’s theorem ensures.

Finally we have the following theorem about totally geodesic CR-
submanifolds, cf. Theorem 3.4 of [7] for S-structures.

Theorem �� Let W be a totally geodesic contact CR�submanifold of a

K�manifoldM � Then D and D��TF are Riemannian foliations� and locally�

i) W is di�eomorphic to Rs 	N0 	N1�

ii) the foliation D is given by the projection Rs 	N0 	N1 � N1 
 N �

iii) the foliationD��TF is given by the projection Rs	N0	N1 � N0 
 N �

iv) the submanifold W̄ 
 N is a Riemannian product of N0	N1 of a totally
geodesic invariant submanifold N0 and a totally geodesic anti�invariant
submanifold N1 of N �

Proof� The problem is local and we can reduce our considerations to the

case of canonical fibration. Therefore we can assume that W = f �1(W̄ ) for
some CR-submanifold W̄ of the Kähler manifold N and that the submersion
f :M � N is a Riemannian submersion. The orthogonal complement of TF



2019. május 4. –23:07

K-STRUCTURES AND FOLIATIONS 181

on W is equal to ker� = D0�D
�
0 . Therefore D0 = (df jW )�1(D̄)�ker� and

D�
0 = (df jW )�1(D̄�)�ker � where D̄ and D̄� are invariant and anti-invariant

distributions, respectively, of the CR-submanifold W̄ of N .

Since W̄ is totally geodesic, cf. [21], Prop. V.2.5, Theorem IV.6.2
of [21] assures that the submanifold W̄ of N is a Riemannian product of
N0	N1 of a totally geodesic invariant submanifold N0 and a totally geodesic
anti-invariant submanifold N1 of N . Therefore it remains to prove that the

foliations D and D��TF are Riemannian foliations of the submanifold W .
The subbundle D�

0 is the orthogonal complement of D , therefore the foliation

D is Riemannian iff any a geodesic of W which is tangent to D�
0 at one point

remains tangent to D�
0 at any point of its domain, cf. [22, 10]. Likewise

the subbundle D0 is the orthogonal complement of D� � TF, therefore the

foliation D� � TF is Riemannian iff any a geodesic of W which is tangent
to D0 at one point remains tangent to D0 at any point of its domain.

Let us take a geodesic � of W which is tangent to D�
0 at one point x .

Since f is a Riemannian submersion � is a horizontal geodesic, i.e. tangent

to ker�. Its image f � is a geodesic in W̄ , cf. [8], which is tangent to D̄� at

one point. As both distributions, D̄ and D̄� are totally geodesic, the geodesic
f � remains tangent to D̄ throughtout its domain. The ker �-orthogonal lift � �

passing through the point x of f � is a geodesic in M and W which is tangent

to D�
0 . Both geodesics, � and � �, have the same tangent vector at the point

x , therefore they must be equal.
Similar considerations are valid for the other distribution.
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1. Introduction

Let fYi ����i ��g be a sequence of identically distributed random

variables and fai ����i ��g a sequence of real numbers with
�P

i=��
jai j�

��. Put

Xk =
�X

i=��

ai+kYi � k � 1�

When fYi ��� �i ��g is a sequence of independent random variables,
there have been some authors who studied limit properties for the moving av-
erage process fXk � k � 1g. In particular, Ibragimov (1962) had established
the Central Limit Theorem for fXk � k � 1g, Burton and Dehling (1990)
had obtained large deviation priciple for fXk � k � 1g assuming E exp(tY1) �
�� for all t , and Li et al. (1992) had obtained the following result on
complete convergence.

Theorem A� Suppose fYi ����i ��g is a sequence of independent

and identically distributed �i�i�d�� random variables� Let fXk � k � 1g be

de�ned as above and 1 � t �2� Then EY1 = 0 and E jY1j2t �� imply

(1�1)
�X
n=1

P

������
nX
k=1

Xk

����� � �n1�t

�
��� ���0�
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Recently, Zhang (1996) gave a general version of Theorem A under
identically distributed �-mixing assumptions. Clearly, Theorem A implies

(1�2)
�X
n=1

P

������
nX
i=1

Yi

����� � �n1�t

�
��� ���0�

While, by Kolmogorov’s law of iterated logarithm, we know

lim sup
n��

�����
nP
i=1

Yi

�����
n1�2

= � a.s.�

Therefore, (1.2) is not true for t = 2, further (1.1) does not hold for t = 2.

The main aim of this note is to extend and generalize Theorem A to NA
random variables; discuss the result for t = 2 in NA setting, which had not
been settled by Li et al. (1992) in i.i.d. setting.

A finite family of random variables fXi � 1 � i � ng is said to be
negatively associated (NA) if for every pair of disjoint subsets A and B of
f1� 2� � � � � ng,

Cov(f1(Xi � i � A)� f2(Xj � j � B)) � 0

whenever f1 and f2 are coordinatewise increasing and such that the covariance
exists. An infinite family of random variables is NA if every finite subfamily
is NA. This definition is introduced by Alam and Saxena (1981) and care-
fully studied by Joag�Dev and Proschan (1983) and Block, Savits and
Shaked (1982). As pointed out and proved by Joag�Dev and Proschan

(1983), a number of well known multivariate distributions possess the NA
property, such as (a) multinomial, (b) convolution of unlike multinomials,
(c) multivariate hypergeometric, (d) Dirichlet, (e) Dirichlet compound multi-
nomial, (f) negatively correlated normal distribution, (g) permutation distri-
bution, (h) random sampling without replacement, and (i) joint distribution of
ranks. Because of its wide applications in multivariate statistical analysis and
reliability, the notion of NA have received considerable attention recently.
We refer to Joag�Dev and Proschan (1983) for fundamental properties,
Newman (1984) for the central limit theorem, Matula (1992) for the three
series theorem, Su et al. (1997) for a moment inequality, a weak invariance
principle and an example to show that there exists infinite family of non-
degenerate non-independent strictly stationary NA random variables, Shao
and Su (1999) for the law of the iterated logarithm, Liang and Su (1999a) for
convergence rates of law of the logarithm, Liang and Su (1999b) and Liang
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(2000) for complete convergence of weighted sums, Roussas (1994) for the
central limit theorem of random fields, some examples and applications.

2. Main Result

Here, let fYi ��� �i ��g be a sequence of identically distributed
NA random variables (r.v.’s) with EY1 = 0 and fXk � k � 1g be defined as in
section 1. Denote by L(x ) = max(1� log x ).

Theorem ���� Let h(x ) �0 be a slowly varying function as x �� and

r � 1� 1 � t �2� h(x ) is non�decreasing when r = 1� If E
�jY1jr th(jY1jt )

�
�

��� then ���0�

�X
n=1

nr�2h(n)P

������
nX
k=1

Xk

����� � �n1�t

�
���

Theorem ���� Let r �1� If E [Y 2
1 �L(jY1j)]r ��� then there exsits

some �0 �0 such that ���0�

�X
n=1

nr�2P

������
nX
k=1

Xk

����� � �(nL(n))1�2

�
���

Theorem ���� For 	�0� if E
h
Y 2

1 �(L(jY1j))1��
i
��� then ���0�

�X
n=1

1
n
P

������
nX
k=1

Xk

����� � �(nL(n))1�2

�
���

Remark ���� Since i.i.d. r.v.’s are a special case of NA r.v.’s, Theorem
2.1 generalizes and extends Theorem A. Theorems 2.2–2.3 complement the
results for t = 2 in NA setting, which had not been discussed by Li et al.
(1992) in i.i.d. setting.

Remark ���� Gut (1980) conjectured that under fYig is a sequence of

i.i.d. symmetric random variables, for 	 �0, if E
h
Y 2

1 �(L(jY1j))1�
i
��,

then ���0,
�X
n=1

1
n
P

������
nX
i=1

Yi

����� � �(n(L(n))1�2

�
���
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Clearly, Theorem 2.3 extends and generalizes (taking a0 = 1, aj = 0, j
0)
Gut’s (1980) above conjecture.

3. Proof of Main Result

In this section, a 	 b means a = O(b). C and Cq (q � 1) will represent
positive constants, their value may change from one place to another.

Lemma � (Burton and Dehling (1990)). Let
�P

i=��
ai be an absolutely

convergent series of real numbers a =
�P

i=��
ai � b =

�P
i=��

jai j� Suppose

Φ : [�b� b] � R is a function satisfying the following conditions�

(i) Φ is bounded and continuous at a �

(ii) There exist � �0 and C �0 such that for all jx j � � � jΦ(x )j � C jx j�
Then

lim
n��

1
n

�X
i=��

Φ

�
� i+nX
j=i+1

aj

	
A = Φ(a)�

Remark ���� Taking Φ(x ) = jx jq , q � 1, from Lemma 1 we have

(3�1) lim
n��

1
n

�X
i=��

������
i+nX
j=i+1

aj

������
q

= jajq �

Lemma �� (Su et al. (1997), Shao and Su (1999)). Let p � 2 and let

fXi � i � 1g be a sequence of NA r.v.’s with EXi = 0 and E jXi jp �� Then�

there exist constant Ap �0 and Bp �0 such that

E

�����
nX
i=1

Xi

�����
p

� Ap


�
�
�

nX
i=1

EX 2
i

�p�2

+
nX
i=1

E jXi jp
�
� �

E max
1�k�n

�����
kX
i=1

Xi

�����
p

� Bp


�
�
�

nX
i=1

EX 2
i

�p�2

+
nX
i=1

E jXi jp
�
� �
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Lemma �� (Shad and Su (1999)). Let fXj � 1 � j � ng be mean zero NA

r.v.’s� �nite variance� Denote by Bn =
nP
j=1

EX 2
j � Then for any x �0� � �0

and 0 � �1�

P

�
max

1�k�n
jSk j � x

�
� 2P

�
max

1�k�n
jXk j��

�
+

+
2

1� 
exp

�
� x2

2(�x + Bn)

�
1 +

2
3

ln

�
1 +

�x

Bn

���
�

Remark ���� If fZi ;�� �i ��g is a sequence of identically
distributed mean zero NA r.v.’s with E jZ1j ��, finite variance and

fai ;���i ��g a sequence of real numbers with
�P

i=��
jai j ��. Put

B =
�P

i=��
E jaiZi j2. From Lemma 3, we have

P

�
�
������
�X

i=��

aiZi

������ � 2x

	
A � P

�
�
������

mX
i=�m

aiZi

������ � x

	
A+ P

�
�
������
X
ji j�m

aiZi

������ � x

	
A �

� 2P

�
sup
i
jaiZi j��

�
+

2
1� 

exp

�
� x2

2(�x + B)

�
+
E jZ1j
x

X
ji j�m

jai j�

Since
�P

i=��
jai j��, ���0, choose m such that E jZ1j

x

P
ji j�m

jai j��. Thus,

we get

P

�
�
������
�X

i=��

aiZi

������ � 2x

	
A �(3�2)

� 2P

�
sup
i
jaiZi j��

�
+

2
1� 

exp

�
� x2

2(�x + B)

�
�

Proof of Theorem ���� Note that

(3�3)
nX
k=1

Xk =
�X

i=��

�
nX
k=1

ai+k

�
Yi =

�X
i=��

aniYi �
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It suffices to show that for every ��0,

�X
n=1

nr�2h(n)P

�
�
������
�X

i=��

a+
niYi

������ ��n1�t

	
A ���(3�4)

�X
n=1

nr�2h(n)P

�
�
������
�X

i=��

a�niYi

������ ��n1�t

	
A ���(3�5)

where a+
ni = ani 
0, a�ni = (�ani )
0. We prove only (3.4), the proof of (3.5)

is analogous. Let
Yni =

= �n1�t I (a+
niYi ��n1�t ) + a+

niYi I (ja+
NIYi j � n1�t ) + n1�t I (a+

niYi �n1�t )�
Then

�X
n=1

nr�2h(n)P

�
�
������
�X

i=��

a+
niYi

������ ��n1�t

	
A �

�
�X
n=1

nr�2h(n)P

�
�
������
�X

i=��

Yni

������ �
�

2
n1�t

	
A+

+
�X
n=1

h(n)
�X

i=��

P(ja+
niYi j�n1�t =: I1 + I2�

From (3.1) we can assume, without loss of generality, that
�P

i=��
a+
ni � n ,

a+
ni � 1 and denote by Inj = fi � Z : (j + 1)�1�t �a+

ni � j�1�tg. It is easy to
verify from Lemma 1 that

(3�6)
kX
j=1

#Inj � Cn(k + 1)1�t �

For I2, using (3.6) we have

I2 �
�X
n=1

nr�2h(n)
�X
j=1

(#Inj )
�X
k=nj

P(k � jY1jt �k + 1) �

�
�X
n=1

nr�2h(n)
�X
k=n

[k�n]X
j=1

(#Inj )P(k � jY1jt �k + 1) 	
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�X
n=1

nr�1h(n)n�1�t
�X
k=n

k1�tP(k � jY1jt �k + 1) 	

	 E [jY1jr th(jY1jt )] ���

By EY1 = 0, we get�����
�P

i=��
EYni

�����
n1�t

� 2E jY1jt I (jY1j�n1�t ) � 0� as n ���

Thus, to prove I1 ��, we need only to show that

I �1 =:
�X
n=1

nr�2h(n)P

�
�
������
�X

i=��

(Yni � EYni )

������ � �n1�t

	
A��� ���0�

In fact, we use the Markov’s inequality for a suitably large M , which will be
determined later, Lemma 2 and note that for each n � 1, fYni ����i ��g
is still a sequence of NA r.v.’s from the definition, we have

I �1 	
�X
n=1

nr�2h(n)n�M�t


��
��
�
� �X
i=��

E jYni j2
	
A
M�2

+
�X

i=��

E jYni jM
��
�� =

=: I3 + I4�

If r �2, note that E jY1j2 �� and
�P

i=��
jani jq � Cn for q � 1, taking

M �2t(r � 1)�(2� t), we get

I3 �
�X
n=1

nr�2h(n)n�M�t

�
�X

i=��

h
n2�tP(ja+

niYi j�n1�t )+

+ E ja+
niYi j2I (ja+

niYi j � n1�t
i�M�2

	

	
�X
n=1

nr�2�(1�t�1�2)M h(n) ���
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If 1 �r � 2 and 1 �rt � 2, then there exists some s such that r �s �1,
taking M �2(r � 1)�(s � 1), we have

I3 �
�X
n=1

nr�2h(n)n�M�t

�
�X

i=��

h
n2�tP(ja+

niYi j�n1�t )+

+ E ja+
niYi j2I (ja+

niYi j � n1�t
i�M�2

=

=
�X
n=1

nr�2�M�th(n)

�
�� �X
i=��

2�tZ
0

P(ja+
niYi j2 �x )dx

�
��
M�2

	

	
�X
n=1

nr�2�(s�1)M�2h(n) ���

If r = 1. Choose M = 2. Similarly to the below proof of I4 ��, we get
I3 ��.

As to I4, we have

I4 	
�X
n=1

nr�2h(n)
�X

i=��

P(ja+
niYi j�n1�t )+

+
�X
n=1

nr�2�M�th(n)
�X

i=��

E ja+
niYi jM I (ja+

niYi j � n1�t ) =: I5 + I6�

From the proof of I2 �� we know I5 ��.

I6 �
�X
n=1

nr�2�M�th(n)
�X
j=1

(#Inj )j
�M�t

2nX
k=1

E jY1jM I (k1 �jY1jt � k )+

+
�X
n=1

nr�2�M�th(n)
�X
j=1

(#Inj )j
�M�t

n(j+1)X
k=2n+1

E jY1jM I (k1 �jY1jt � k ) =

=: I7 + I8�

Note that for M � 1 and k � 1, we have
�X
j=k

(#Inj )j
�M�t � Cnk�(M�1)�t �
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Hence, taking M �rt , we get

I7 	
�X
k=1

�X
n=[k�2]

nr�1�M
t h(n)E jY1jM I (k1 �jY1jt � k ) 	

	
�X
k=1

k r�
M
t h(k )E jY1jM I (k1 �jY1jt � k ) 	

	 E [jY1jr th(jY1jt )] ���

I8 	
�X
n=1

nr�2�M
t h(n)

�X
k=2n+1

n

�
k

n

��(M�1)
t

E jY1jM I (k1 �jY1jt � k ) 	

	
�X
k=2

[k�2]X
n=1

nr�1�M
t h(n)E jY1jM I (k1 �jY1jt � k ) 	

	 E [jY1jr th(jY1jt )] ���

Proof of Theorem ���� We need only to prove that for ���0�2,

�X
n=1

nr�2P

�
�
������
�X

i=��

a+
niYi

������ ��(nL(n))1�2

	
A ���(3�7)

�X
n=1

nr�2P

�
�
������
�X

i=��

a�niYi

������ ��(nL(n))1�2

	
A ���(3�8)

We give proof of (3.7), the proof of (3.8) is analogous. Let

�n =
10
2�

p
n�L(n)� �n =

�

4N

p
nL(n)�

Y (1)
ni = ��nI (a+

niYi ���n) + a+
niYi I (ja+

niYi j � �n) + �nI (a+
niYi ��n)�

Y (2)
ni = (a+

niYi � �n)I (�n �a+
niYi ��n )�

Y (3)
ni = (a+

niYi + �n)I (��n �a+
niYi ���n )�

Y (4)
ni = (a+

niYi + �n)I (a+
niYi � ��n ) + (a+

niYi � �n )I (a+
niYi � �n)�

where N is some large positive integer, which will be specified later on. Then

�X
n=1

nr�2P

�
�
������
�X

i=��

a+
niYi

������ ��(nL(n))1�2

	
A �



2019. május 4. –23:10

192 H.-Y. LIANG, JONG-IL BAEK

�
�X
n=1

nr�2P

�
�
������
�X

i=��

Y (1)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

nr�2P

�
�
������
�X

i=��

Y (2)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

nr�2P

�
�
������
�X

i=��

Y (3)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

nr�2P

�
�
������
�X

i=��

Y (4)
ni

������ �
�

4
(nL(n))1�2

	
A =: J1 + J2 + J3 + J4�

From (3.1), we can assume a+
ni � (2L(2))�1�2, denote by

Inj = fi � Z : ((j + 2)L(j + 2))�1�2 �a+
ni � ((j + 1)L(j + 1))�1�2g�

Note that
kP
j=1

#Inj � Cn((k + 2)L(k + 2))1�2. Similarly to the proof of I2 ��,

we get

J4 �
�X
n=1

nr�2
�X

i=��

P
�
ja+
niYi j �

�

4N
(nL(n))1�2

�
�

�
�X
n=1

nr�2
�X
j=1

(#Inj )
�X
k=nj

P(jY1j2�L(jY1j) � Cnj ) 	

	
�X
k=1

k1�2
kX
n=1

nr�3�2(L(3k�n))1�2P

�
k � jY1j2

CL(jY1j)
�k + 1

�
�

Choose  �0 such that r � 1�2 � , L(x ) � Cx2� when x � 2k0 for some
k0 �0. Hence,

kX
n=1

nr�3�2(L(2k�n))1�2 	
kZ

1

x r�3�2(L(2k�x ))1�2dx 	
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k�k0Z
1

x r�3�2(k�x )�dx +

kZ
k�k0

x r�3�2(L(2k0))1�2dx 	 k r�1�2�

Therefore,

J4 	
�X
k=1

k rP

�
k � jY1j2

CL(jY1j)
�k + 1

�
	 E [jY1j2�L(jY1j)]r ���

Choose r0 such that r �r0 �1, hence E jY1j2r0 ��. From the definition

of Y (2)
ni , we know that Y (2)

ni �0, taking N �(r �1)�(r0�1), by the property
of NA, we have

J2 =
�X
n=1

nr�2

�
� �X
i=��

Y (2)
ni � �

4
(nL(n))1�2

	
A �

�
�X
n=1

nr�2P(there are at least N i’s such that Y (2)
ni 
0) �

�
�X
n=1

nr�2

�
� �X
i=��

P(a+
niYi ��n)

�
�
N

	

	
�X
n=1

nr�2�(r0�1)N (L(n))Nr0 ���

Similarly, Y (3)
ni �0 and J3 ��. By EY1 = 0 and E jY1j2r0 ��,

�P
i=��

(a+
ni )

2r0 � Cn , we have

������
�X

i=��

EY (1)
ni

������ �(nL(n))1�2 �

�
�X

i=��

[�nP(ja+
niYi j��n) + E ja+

ni Ii jI (ja+
niYi j��n)]�(nL(n))1�2 	

	 1�n�(r0�1)(L(n))�(r0�1) � 0� az n ���
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Therefore, to prove J1 ��, it suffices to show that

J �1 =:
�X
n=1

nr�2P

�
�
������
�X

i=��

(Y (1)
ni � EY (1)

ni )

������ �
�

5
(nL(n))1�2

	
A ���

Note that for each n � 1, fY (1)
ni ��� �i ��g is still a sequence of NA

r.v.’s. Taking � = 10
�

p
nL(n), x = �

10
p
nL(n),  = 1

2 and it is easy to verify
that

sup
i
jY (1)

ni �EY
(1)
ni j � 2�n = �� B =

�X
i=��

E (Y (1)
ni �EY

(1)
ni )2 � C0nEY

2
1 �

where C0 satisfies
�P

i=��
a2
ni � nC0�2. Hence, by using (3.2) we get

J �1 � 4
�X
n=1

nr�2 exp

�
�� 1

2 � �2

100 � nL(n)

2(n + C0nEY
2
1 )

	
A = 4

�X
n=1

n
r�2� �

400(1+C0EY
2
1

)
���

here �0 = 40
q

(r � 1)(1 + C0EY
2
1 ).

Proof of Theorem ���� Similarly to the proof of Theorem 2.2, we prove
only that

�X
n=1

1
n
P

�
�
������
�X

i=��

a+
niYi

������ ��(nL(n))1�2

	
A��� ���0�

We mas assume 	 �1 and choose � �0 such that � �	. Denote by

�n = n1�2(L(n))(1��)�2,

Y (1)
ni = ��nI (a+

niYi ���n) + a+
niYi I (ja+

niYi j � �n) + �n I (a+
niYi ��n)�

Y (2)
ni = (a+

niYi � �n)I
�
�n �a+

niYi �
�

4N
(nL(n))1�2

�
�

Y (3)
ni = (a+

niYi + �n)I
�
��n �a+

niYi �
�

4N
(nL(n))1�2

�
�

Y (4)
ni = (a+

niYi + �n)I
�
a+
niYi ��

�

4N
(nL(n))1�2

�
+

+ (a+
niYi � �n)I

�
a+
niYi �

�

4N
(nL(n))1�2

�
�
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where N is some large positive integer, which will be specified later on. Then

�X
n=1

1
n
P

�
�
������
�X

i=��

a+
niYi

������ ��(n(L(n))1�2)

	
A �

�
�X
n=1

1
n
P

�
�
������
�X

i=��

Y (1)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

1
n
P

�
�
������
�X

i=��

Y (2)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

1
n
P

�
�
������
�X

i=��

Y (3)
ni

������ �
�

4
(nL(n))1�2

	
A+

+
�X
n=1

1
n
P

�
�
������
�X

i=��

Y (4)
ni

������ �
�

4
(nL(n))1�2

	
A =: Q1 + Q2 + Q3 + Q4�

From (3.1), similarly to the proof of J4 �� we can get Q4 ��. From the

definition of Y (2)
ni we know that Y (2)

ni �0, hence taking N �1�(	 � �) and

noticing that
�P
j=1

(#Inj )j
�� 	 n for � �0 (the definition of Inj is as in the

proof of Theorem 2.2),

Q2 =
�X
n=1

1
n
P

�
� �X
i=��

Y (2)
ni � �

4
(nL(n))1�2

	
A �

�
�X
n=1

1
n

�
� �X
i=��

P(a+
niYi ��n)

�
�
N

�

�
�X
n=1

1
n

�
� �X
j=1

(#Inj )P

�
Y 2

1
(L(jY1j))1��

�

� CnL1�� (n)(j + 1)L(j + 1)

(L(nL1��(n)) + L((j + 1)L(j + 1)))1��

��N
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�X
n=1

1
n


�
�
�X
j=1

(#Inj )
h
(njL(j + 1))�1(L(n))�(���)+

+ (njL�(j + 1))�1(L(n))�(1��)
i�
� 	

	
�X
n=1

1
n

h
(L(n))�N (�(���) + (L(n))�N (1��)

i
���

Similarly, Y (3)
ni �0 and Q3 ��. By EY1 = 0 and E [Y 2

1 �(L(jY1j))1��] �
��, we get ������

�X
i=��

EY (1)
ni

������ �(nL(n))1�2 �

� 1

(nL(n))1�2

�X
i=��

[n1�2L(1��)�2(n)P(ja+
niYi j�n1�2L(1��)�2(n))+

+E ja+
niYi jI (ja+

niYi j�n1�2L(1��)�2(n))] �

� 1

(nL(n))1�2

�X
j=1

(#Inj )[n
1�2L(1��)�2(n)P(Y 2

1 �nL1��(n)(j + 1)L(j + 1))+

+((j + 1)L(j + 1))�1�2E jY1jI (Y 2
1 �nL1��(n)(j + 1)L(j + 1)) 	

	 (L(n))�(����2) + (L(n))�(1���2) � 0 as n ���

Thus, to prove Q1 ��, it suffices to show that

Q1� =:
�X
n=1

1
n
P

�
�
������
�X

i=��

(Y (1)
ni � EY (1)

ni )

������ � � � (nL(N ))1�2

	
A ��� ���0�

Since, for each n � 1, fYni ����i ��g remains a sequence of NA r.v.’s,
using Lemma 2, choose p�maxf2�	� 2(1� 	)�� + 2g we have

Q1� 	
�X
n=1

1
n
� (nL(n))�p�2


��
��
�
� �X
i=��

E jY (1)
ni j2

	
A
p�2

+
�X

i=��

E jY (1)
ni jp

��
�� =:

=: Q5 + Q6�
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While

Q5 �

�
�X
n=1

1
n
� (nL(n))�p�2


�
�

�X
i=��

[nL1��(n)P(ja+
niYi j�n1�2L(1��)�2(n))+

+E ja+
niYi j2I (ja+

niYi j � n1�2L(1��)�2(n))]

�
�
p�2

	

	
�X
n=1

1
n
� (nL(n))�p�2


�
�
�X
j=1

(#Inj )[nL
1��(n)P(Y 2

1 �CnL1�� (n)j L(j ))+

+(j L(j ))�1E (Y 2
1 �(L(jY1j))1��) � (L(jY1j))1��I (Y 2

1 �CnL1�� (n)j L(j ))]

�
�
p�2

	

	
�X
n=1

1
n

[(L(n))�p��2 + (L(n))�p�2] ���

Q6 �
�X
n=1

1
n
� (nL(n))�p�2

�X
i=��
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niYi jpI (ja+

niYi j � n1�2L(1��)�2(n))+
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�X
n=1

1
n
� (nL(n))�p�2

�X
j=1

(#Inj )[(j L(j ))�p�2E jY1jp

I (Y 2
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1 �CnL1��(n)j L(j ))] �

�
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1
n
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�
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�
Y 2
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�
�
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�

Y 2
1

(L(jY1j))1�� �
CnL1�� (n)j L(j ) 

L
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!
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1
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�
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	borito01
	01ramad
	02VATTV
	03KISS
	04SZILI
	05MATHD1
	06MATHD2
	07DATMAT
	08LIHUO
	09cifre
	10BU
	11HEGED
	12KEMPR
	13DIMOV
	14HEGYV
	15KOZMA
	16WOLAK
	20LIANG
	99IND01
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



